空间向量与立体几何.用空间向量计算距离与角度

空间向量与立体几何.用空间向量计算距离与角度
空间向量与立体几何.用空间向量计算距离与角度

空间向量与立体几何.用空间向量计算距离与角度

【例1】 在正方体1111ABCD A B C D -中,1111111

44

A B B E D F ==

=,求1BE 与1DF 所成角的余弦值.

【例2】 直三棱柱111ABC A B C -中,1111BC AC BC AB ⊥⊥,.求证:11

AB AC =. C 1

B 1

A 1

C

B

A

【例3】 如图所示,在底面是直角梯形的四棱锥S ABCD -中,90ABC ∠=°,SA ⊥平

面ABCD ,1

12

SA AB BC AD ====,.求面SCD 与面SBA 所成的二面角的正切值.

D

C

B

A S

【例4】 已知(023)A ,,,(216)B -,,,(115)C -,,,求方向向量为(001)j =,,直线

与平面ABC 所成角的余弦值.

【例5】 已知平行六面体ABCD A B C D ''''-中,4AB =,3AD =,5AA '=,

60BAA DAA ''∠=∠=°,90BAD ∠=°,求AC '的长

D '

C '

B 'A 'D

C

B

A

【例6】 如图直角梯形OABC 中,π

2

COA OAB ∠=∠=

,2OC =,1OA AB ==,SO ⊥平面OABC ,1SO =,以OC 、OA 、OS 分别为x 轴、y 轴、z 轴建立直角坐标系O xyz -.

⑴求SC 与OB 的夹角α的大小(用反三角函数表示); ⑵设(1)n p q =,,,满足n ⊥平面SBC ,求 ①n 的坐标;

②OA 与平面SBC 的夹角β(用反三角函数表示); ③O 到平面SBC 的距离.

B

A

O

S

【例7】 如图四棱锥P ABCD -中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,

垂足为G ,G 在AD 上,且4PG =,13

AG GD =,BG GC ⊥,2GB GC ==,

E 是BC 的中点.

⑴求异面直线GE 与PC 所成的角的余弦值; ⑵求点D 到平面PBG 的距离;

⑶若F 点是棱PC 上一点,且DF GC ⊥,求

PF

FC

的值.

P

G

F

E

D

C

B

A

【例8】 已知E F ,

分别是正方体1111ABCD A B C D -的棱BC 和CD 的中点,求 ⑴1A D 与EF 所成角的大小; ⑵1A F 与平面1B EB 所成角的大小; ⑶二面角11C D B B --的大小.

【例9】 长方体1111ABCD A B C D -中,4AB BC ==,E 为11

AC 与11B D 的交点,F 为1

BC 与1B C 的交点,又AF BE ⊥,求⑴长方体的高1BB ;⑵二面角B AF C --的大小.

【例10】 如图:在空间四边形ABCD 中,AB 、BC 、BD 两两垂直,且2AB BC ==,

E 是AC 的中点,异面直线AD 和BE

所成的角为⑴BD 的长度;⑵二面角D AC B --的余弦值.

E

D

C

B

A

【例11】 如图,直三棱柱111ABC A B C -中,AB AC ⊥,D 、E 分别为1AA 、1B C 的中

点,DE ⊥平面1BCC ⑴证明:AB AC =.

⑵设二面角A BD C --为60?,求1B C 与平面BCD 所成角的大小.

E

D

C 1

B 1

A 1

C

B

A

【例12】 如图,在直三棱柱111ABC A B C -中,12AA BC AB ===,AB BC ⊥,求二面

角11

1B AC C --的大小. C 1

B 1

A 1

C

B

A

【例13】 如图,直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=?,

侧棱12AA =,D 、E 分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD ?的垂心G .

⑴求1A B 与平面ABD 所成角的余弦值; ⑵求点1A 到平面AED 的距离.

1

A

【例14】 如图,四棱锥S ABCD -

中,底面ABCD 为矩形,

SD ⊥底面ABCD ,AD =,2DC SD ==.点M 在侧棱SC 上,60ABM ∠=?.

⑴证明:M 是侧棱SC 的中点;

⑵求二面角S AM B --的大小.

M

S

D C

B

A

【例15】 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平

面互相垂直且DE =ED AF ∥且90DAF ∠=?. ⑴求BD 和面BEF 所成的角的余弦;

⑵线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由.

P F

E D

C

A

【例16】 如图,在空间四边形OABC 中,

8645OA AB AC BC ====,,,,45OAC ∠=°,60OAB ∠=°,求OA 与BC 的夹角的余弦值.

C

B

A

O

【例17】 如图,在三棱柱111ABC A B C -中,AB ⊥侧面11BB C C ,E 为棱1CC 上异于C 、

1C 的一点,1EA EB ⊥

,已知AB =12BB =,1BC =,1π

3

BCC ∠=

, 求:⑴异面直线AB 与1EB 的距离;

⑵二面角11A EB A --的平面角的正切值.

A B C

A 1

B 1

C 1

E

【例18】 如图,在棱长为1的正方体1111ABCD A B C D -中,E 、F 、

G 分别是11C D 、11A D 、1BB 的中点,取如图所示的空间直角坐标系,

⑴写出A 、1B 、E 、G 的坐标;

⑵求证:CF AE ⊥,且CF AE =; ⑶求异面直线EF 与AG 所成角的余弦值.

G

F E

C D

B

A

D 1C 1

B 1

A 1

【例19】 如图,在棱长为1的正方体1111ABCD A B C D -中,E 、F 、

G 分别是11C D 、11A D 、1BB 的中点,

⑴求证:CF AE ⊥,且CF AE =; ⑵求异面直线EF 与AG 所成角的余弦值.

⑶写出平面AGC 的一个法向量.

G

F E

C D

B

A

D 1C 1

B 1

A 1

【例20】 如图,在直四棱柱1111ABCD A B C D -中,底面是边长为1的菱形,侧棱长为

2.

⑴11B D 与1A D 能否垂直?请证明你的判断;

⑵当111A B C ∠在ππ[]32

,上变化时,求异面直线1AC 与11A B 所成角的取值范围.

D 1

C 1

B A 1D

C

B

A

【例21】 如图:已知四棱锥P ABCD -的底面是平行四边形,PE ABCD ⊥面,垂足E

在边AD 上BEC △是等腰直角三角形,2BE EC ==,四面体PBEC 的体积为8

3

E

D

C

B

A

P

⑴求面PBC 与底面ABCD 所成的锐二面角的余弦值; ⑵求点A 到面PBC 的距离;

⑶若点F 在直线PC 上,且PC BEF ⊥面,求

PF

PC

的值.

【例22】 如图所示:边长为2的正方形ABFC 和高为2的直角梯形ADEF 所在的平

面互相垂直且DE =ED AF ∥且90DAF ∠=?.

⑴求BD 和面BEF 所成的角的余弦;

⑵线段EF 上是否存在点P 使过P 、A 、C 三点的平面和直线DB 垂直,若存在,求EP 与PF 的比值;若不存在,说明理由.

P F

E

D

C

B

A

利用空间向量解立体几何 完整版

向量法解立体几何 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离

点()111,,P x y z 与()222,,Q x y z 的 距离为PQ =u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法

向量法求空间距离教案

A B C D O S x y z 图2 A B C D α n a b 龙文学校——您值得信赖的专业化个性化辅导学校 龙文学校个性化辅导教案提纲 教师:_______ 学生:_______ 年级:______ 授课时间:_____年___月___日_____——_____段 一、授课目的与考点分析:向量法求空间距离 能用向量方法解决空间距离问题,了解向量方法在研究集合问题中的应用. 二、授课内容及过程: 1、点到平面的距离 方法:已知AB 为平面α的一条斜线段,n 为平面α的法向量, 则A 到平面α的距离d =AB n n ? . 2、两条异面直线距离: 方法:a 、b 为异面直线,a 、b 间的距离为:AB n d n ?= . 其中n 与a 、b 均垂直,A 、B 分别为两异面直线上的任意两点 题型1:异面直线间的距离 例1、如图2,正四棱锥S ABCD -的高2SO =,底边长2AB =。求异面直线BD 和SC 之间的距离? 题型2:点面距离 如图,在长方体1111ABCD A BC D -,中,11,2AD AA AB ===,点E 在棱AD 上移动.(1)证明:11D E A D ⊥; (2)当E 为AB 的中点时,求点E 到面1ACD 的距离; (3)AE 等于何值时,二面角1D EC D --的大小为4 π. 解:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴, 建立空间直角坐标系,设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C (1).,0)1,,1(),1,0,1 (,1111E D DA x E D DA ⊥=-=所以因为

空间向量与立体几何知识总结

已知两异面直线 b a,,,,, A B a C D b ∈∈,则异面直线所成的角θ为:cos AB CD AB CD θ? = u u u r u u u r u u u r u u u r 例题 【空间向量基本定理】 例1.已知矩形ABCD,P为平面ABCD外一点,且PA⊥平面ABCD,M、N分别为PC、PD上的点,且M分成定比2,N分PD成定比1,求满足的实数x、y、z的值。 分析;结合图形,从向量出发,利用向量运算法则不断进行分解,直到全部向量都用、、表示出来,即可求出x、y、z的值。 如图所示,取PC的中点E,连接NE,则。 点评:选定空间不共面的三个向量作基向量,并用它们表示出指定的向量,是用向量解决立体几何问题的一项基本功,要结合已知和所求,观察图形,联想相关的运算法则和公式等,就近表示所需向量。再对照目标,将不符合目标要求的向量当作新的所需向量,如此继续下去,直到所有向量都符合目标要求为止,这就是向量的分解。有分解才有组合,组合是分解的表现形式。空间向量基本定理恰好说明,用空间三个不共面的向量组可以表示出空间任意一个向量,而且a,b,c的系数是惟一的。 【利用空间向量证明平行、垂直问题】 例2.如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。 (1)证明:PA方形ABCD—中,E、F分别是,的中点,求:(1)异面直线AE与CF所成角的余弦值; (2)二面角C—AE—F的余弦值的大小。

点评:(1)两条异面直线所成的角可以借助这两条直线的方向向量的夹角求得,即。 (2)直线与平面所成的角主要可以通过直线的方向向量与平面的法向量的夹角求得,即 或 (3)二面角的大小可以通过该二面角的两个面的法向量的夹角求得,它等于两法向量的夹角或其补角。 【用空间向量求距离】 例4.长方体ABCD —中,AB=4,AD=6,,M 是A 1C 1的中点,P 在线段BC 上,且|CP|=2,Q 是DD 1的中点, 求: (1)异面直线AM 与PQ 所成角的余弦值; (2)M 到直线PQ 的距离; (3)M 到平面AB 1P 的距离。 本题用纯几何方法求解有一定难度,因此考虑建立空间直角坐标系,运用向量坐标法来解决。利用向量的模和夹角求空间的线段长和两直线的夹角,在新高考试题中已多次出现,但是利用向量的数量积来求空间的线与线之间的夹角和距离,线与面、面与面之间所成的角和距离还涉及不深,随着新教材的推广使用,这一系列问题必将成为高考命题的一个新的热点。现列出几类问题的解决方法。 (1)平面的法向量的求法:设,利用n 与平面内的两个向量a ,b 垂直,其数量积为零,列出两个三元 一次方程,联立后取其一组解。 (2)线面角的求法:设n 是平面的一个法向量,AB 是平面 的斜线l 的一个方向向量,则直线与平面 所成 角为n AB n AB ??= θθsin 则 (3)二面角的求法:①AB,CD 分别是二面角 的两个面内与棱l 垂直的异面直线,则二面角的大小为

向量法求空间点到平面的距离教案

学习必备 欢迎下载 向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

学习必备欢迎下载

学习必备 欢迎下载 若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 2202420 11(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

用向量法求空间距离

用向量法求空间距离 湖南省冷水江市七中(417500) 李继龙 在高中立体几何中引入空间向量,为解决立体几何问题提供了一种新的解题方法,有时也能降低解题难度.下面通过例题介绍用向量法求空间距离的方法. 一、 求两点之间的距离 用向量求两点间的距离,可以先求出以这两点为始点和终点的向量,然后求出该向量的模,则模就是两点之间的距离. 例1 已知正方体ABCD-A 1B 1C 1D 1的棱长为1,点P 是AD 1的中点,Q 是BD 上一点, DQ=4 1 DB ,求P 、Q 两点间的距离. 解 如图1,以1DD DC DA 、、所在的直线分别为x 轴、y 轴和z 轴建立空间直角坐标系D-xyz ,则 0)4 141(Q )21021(,,、,,P , 所以)21 -4141(-,,=. 46= ,即P 、Q 两点的距离为4 6. 二、 求点到直线之间的距离 已知如图2,P 为直线a 外一点,Q 为a 上任意一点,PO ⊥a 于点O ,所以点P 到直线a 的距离为|PO|=d . 则有>= < 故>

例2 在长方体OABC-O 1A 1B 1C 1中,OA=2,AB=3,AA 1=2.求点O 1到直线AC 的距离. 解 建立如图3所示的空间直角坐标系,连结AO 1,则A(2,0,0),C(0,3,0),O 1(0,0,2). 所以0)32-(AC 2)02-(AO 1,,,,,==. 故 d = 13 286 213168=- = 所以点O 1到直线AC 的距离为13 286 2. 三、 求点到平面的距离 如图4设A 是平面α外一点,AB 是平面α的一条斜线,交平面α于点B ,而是平面α的法向量,那么向量 在方向上的射影长就是点A 到平面α的距离d ,所以 d ==>

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗? 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离? 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 剖析:如图, BO 平面 ,垂足为O ,则点B 到平面 的距离是线段BO 的长度。 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

若AB 是平面 的任一条斜线段,则在BOA Rt ABO COS ? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z r 则n AB n AC r u u u r r u u u r ,.∵(3,4,0)AB u u u r ,(3,0,2)AC u u u r ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z 即340320x y x z ∴3432y x z x 取4x ,则(4,3,6)n r ∴(4,3,6)n r 是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E u u u r u u u r u u u r 设平面EFG 的一个法向量 为(,,)n x y z r 2202420 11(,,1)33 n EF n EG x y x y n r u u u r r u u u r r ,

高中数学讲义微专题64 空间向量解立体几何(含综合题习题)

微专题64 利用空间向量解立体几何问题 一、基础知识 (一)刻画直线与平面方向的向量 1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =-- 2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线 (2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组: 1112220 x y z x y x y z x y z z ++=?? ++=? 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量 解:设(),,n x y z =,则有20230x y x y z +=??++=? ,解得:2x y z y =-??=? ::2:1:1x y z ∴=- ()2,1,1n ∴=- (二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面 ,αβ的法向量) 1、判定类 (1)线面平行:a b a b ?∥∥ (2)线面垂直:a b a b ⊥?⊥ (3)面面平行:m n αβ?∥∥ (4)面面垂直:m n αβ⊥?⊥ 2、计算类: (1)两直线所成角:cos cos ,a b a b a b θ?==

用向量法求空间距离

A B C D m n 1 图向量法求空间距离 向量融形、数于一体,具有几何形式和代数形式的“双重身份”,向量成为中学数学知识的一个交汇点,空间向量将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值计算,化繁难为简易,化复杂为简单,成为解决立体几何问题的重要工具。 1.异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量,分别在 n m 、上各取一个定点B A 、,则异面直线n m 、的距离 d 等于在上的射影长,即| |n d = 证明:如图1,设CD 为公垂线段,取b a ==, | |||)(?=?∴?++=?∴++= | |||||n n AB d ?= =∴ 2平面外一点P 到平面α的距离 如图2,先求出平面α的法向量,在平面内任取一定 点A ,则点p 到平面α的距离d 等于在上的射影长,即| |n d = 因为空间中任何向量均可由不共面的三个基向量来线性表示,所以在解题时往往根据问题条件首先选择适当的基向量,把相关线段根据向量的加法、数乘运算法则与基向量联系起来。再通过向量的代数运算,达到计算或证明的目的。一般情况下,选择共点且不共面的三个已知向量作为基向量。 [例 1] 如图3,已知正三棱柱111C B A ABC -的侧棱长为2, 底面边长为1,M 是BC 的中点,当1AB MN ⊥时,求点1A 到平面AMN 的距离。 图2 A B C M N 1 A 1 B 1 C 图3

几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: 解:当1AB MN ⊥时,如图4 , 、)0,0,0(A )81 ,1,0()0,43,43()2,21,23(1N M B 、、、)2,0,0(1A ,则 )2,0,0(),0,4 3,43( ),8 1 ,41,43(1==- =AA AM MN , 设向量),,(z y x n =与平面AMN 垂直,则有 )0()1,1,3(8 ),81,83( 8183 0434********>-=-=∴?????? ?-==?=???????=+=++-??????⊥⊥z z z z z n z y z x y x z y x AM n MN n 取)1,1,3(0-=n 向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是 5 5 21)1()3(|)1,1,3()2,0,0(||||,cos |||2 2201011011= +-+-?= =>

利用空间向量解立体几何完整

利用空间向量解立体几何(完整版)

————————————————————————————————作者:————————————————————————————————日期:

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为222212121()()()PQ x x y y z z =-+-+-u u u r 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ u u u r 在法向量(),n A B =上的射影 PQ n n ?u u u r = 002 2 Ax By C A B +++ 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ u u u r , 计算平面α的法向量n , 计算PQ u u u r 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4) (1)线面平行:l ∥α?a ⊥u ?a ·u =0?a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α?a ∥u ?a =k u ?a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β?u ∥v ?u =k v ?a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β?u ⊥v ?u ·v =0?a 3a 4+b 3b 4+c 3c 4=0 例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2. (1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC . [证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空 间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ? ????1 2,1,12, F ? ????0,1,12,EF =? ?? ?? -12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC =(1,0,0),AB =(1,0,0). (1)因为EF =-1 2AB ,所以EF ∥AB ,即EF ∥AB . 又AB ?平面P AB ,EF ?平面P AB ,所以EF ∥平面P AB . (2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0, 所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,AP ?平面P AD ,AD ?平面P AD ,所以DC ⊥平面P AD .因为DC ?平面PDC , 所以平面P AD ⊥平面PDC . 使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直. 例2、在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上, 且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点. 求证:(1)B 1D ⊥平面ABD ; (2)平面EGF ∥平面ABD .

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 教材分析 重点:点面距离的距离公式应用及解决问题的步骤 难点:找到所需的点坐标跟面的法向量 教学目的 1.能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2.能将求线面距离、面面距离问题转化为求点到面的距离问题。 3.加强坐标运算能力的培养,提高坐标运算的速度和准确性。 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、空间中如何求点到面距离 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a ? b = a b cos 0(0为a与b的夹角) 二、向量法求点到平面的距离

如果令平面的法向量为 n ,考虑到法向量的方向,可以得到点 B 到平面的距离为 _r BA?n BO=—:— n 因此要求一个点到平面的距离, 可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量 (2)求出该平面的一个法向量 (3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量 ? 例1、在空间直角坐标系中,已知A(3,0,0), B(0,4,0) , C(0,0,2),试求平面 ABC 的一个 法向量. 解:设平面ABC 的一个法向量为 r n (x, y, z) r uuu r uuur uuu unr 则 n AB , n AC . v AB (3,4,0), AC (3,0, 2) ? (x, y, z)( 3,4,0) 0即 3x 4y 0 3 y x (x, y, z)( 3,0,2) 0 3x 2z 0 . 4 取x 4,则n (4, 3,6) 3 z x 2 ??? n (4, 3,6)是平面 ABC 的一个法向量 例2、如图,已知正方形 ABCD 的边长为4, E 、F 分别是AB 、AD 的 中点,GC 丄平面 ABCD ,且GC = 2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). uuir uuur EF (2, 2,0), EG ( 2, 4,2), uuu BE (2,0,0) 设平面EFG 的一个法向量 若AB 是平面 的任一条斜线段,则在 Rt BOA 中,BO = BA?COS ABO BA?BO B A B O BO 剖析:如图,BO 平面 ,垂足为0,则点B 到平面 的距离是线段 BO 的长度。 =网? BA? BO

利用空间向量解立体几何(完整版)

向量法解立体几何 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系 线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为(PQ x =2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离:

方法:在直线上取一点(),Q x y , 则向量PQ 在法向量(),n A B =上的射影PQ n n ? = 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤: ① 先求线的方向向量与面的法向量的夹角,若为锐角角即可,若为钝角,则取其补角; ②再求其余角,即是线面的夹角. 3.面面夹角(二面角) 若两面的法向量一进一出,则二面角等于两法向量的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.

向量法求空间距离n

向量法求空间距离 广州市第78中学数学科 黄涛 教学重点难点 重点:掌握由向量数量积推导距离公式 难点:空间向量的投影的理解,灵活运用数形结合的思想,空间直角坐标系的 建立,求法向量,向量的选取。 教学方法、教学手段 采用启发诱导式教学,并结合实践探索,互动教学。 因为要充分体现数形结合思想,有大量的图形对比引导,以多媒体展示作为黑板板书补充。 教学目标: (1) 知识目标:理解向量数量积与射影的关系,基本掌握用数量积公式的变形求空间距离的方法和步骤 (2) 能力训练目标:培养动手能力,计算表达能力,空间想象能力 (3) 创新素质目标:通过立体几何向量方法解题体会知识之间的内在联系,事物内在的本质联系,懂得通过思维的拓展从事物的广泛联系中寻找解决问题的方法 (4) 情感目标:化繁为简,化难为易,在师生共同探索中建立学生学习数学的信心和热情 教学过程: 一.复习引入 1.如右图中正方体ABCD-A 1B 1C 1D 1的棱长为1,则点D 1到平面BB 1C 1C 的距离是_______,直线B 1C 1与B 1C 的距离是_________. 2.点C 1到平面AB 1C 的距离又是______,体对角线BD 1与面对角线B 1C 的距离是__________. 分析:以第一题找具体线段方法求距离很困难,提出能否避开“作图”这一难点,不通过找具体的线段求解,而用“数”来求解? 3.我们已经学习了向量的数量积为0可证垂直,| |||,cos b a b a b a ??>=<可求夹角, 221221221)()()(||z z y y x x a a a -+-+-==? 可以求两点间的距离,射影公式>

向量法求空间点到平面的距离教案

向量法求空间点到面距离(教案) 新课导入: 我们在路上行走时遇到障碍物一般会想到将障碍物挪开,那还有别的方法吗 对!绕过去。在生活中我们都知道转弯,那么在学习上我们不妨也让思维转个弯,绕过难点 用另一种方法解决。 我们知道要想求空间一点到一个面的距离,就必须要先找到这个距离,而找这个距离恰恰是 一个比较难解决的问题,我们今天就让思维转个弯,用向量法解决这个难题。 一、复习引入: 1、 空间中如何求点到面距离 方法1、直接做或找距离; 方法2、;等体积 方法3、空间向量。 2、向量数量积公式 a · b =a b cos θ(θ为a 与b 的夹角) 二、向量法求点到平面的距离 剖析:如图,⊥BO 平面α,垂足为O ,则点B 到平面α的距离是线段BO 的长度。 教材分析 重点: 点面距离的距离公式应用及解决问题的步骤 难点: 找到所需的点坐标跟面的法向量 教学目的 1. 能借助平面的法向量求点到面、线到面、面到面、异面直线间的距离。 2. 能将求线面距离、面面距离问题转化为求点到面的距离问题。 3. 加强坐标运算能力的培养,提高坐标运算的速度和准确性。

若AB 是平面α的任一条斜线段,则在BOA Rt ? ABO COS ∠? 如果令平面的法向量为n ,考虑到法向量的方向,可以得到点B 到平面的距离为 BO 因此要求一个点到平面的距离,可以分为以下三步:(1)找出从该点出发的平面的任一 条斜线段对应的向量(2)求出该平面的一个法向量(3)求出法向量与斜线段对应的向量的 数量积的绝对值再除以法向量的模 思考、已知不共线的三点坐标,如何求经过这三点的平面的一个法向量? 例1、在空间直角坐标系中,已知(3,0,0),(0,4,0)A B ,(0,0,2)C ,试求平面ABC 的一个法向量. 解:设平面ABC 的一个法向量为(,,)n x y z = 则n AB n AC ⊥⊥,.∵(3,4,0)AB =-,(3,0,2)AC =- ∴(,,)(3,4,0)0(,,)(3,0,2)0x y z x y z ?-=???-=?即340320x y x z -+=??-+=? ∴3432y x z x ?=????=?? 取4x =,则(4,3,6)n = ∴(4,3,6)n =是平面ABC 的一个法向量. 例2、如图,已知正方形ABCD 的边长为4,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,且GC =2,求点B 到平面EFG 的距离. 解:如图,建立空间直角坐标系C -xyz . 由题设C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0), F(4,2,0),G(0,0,2). (2,2,0),(2,4,2),B (2,0,0)EF EG E =-=--=设平面EFG 的一个法向量 为(,,)n x y z = 220242011(,,1)33 n EF n EG x y x y n ⊥⊥-=?∴?--+=?∴=,

空间向量解立体几何(含综合题习题)

利用空间向量解立体几何问题 一、基础知识 (一)刻画直线与平面方向的向量 1、直线:用直线的方向向量刻画直线的方向问题,而方向向量可由直线上的两个点来确定 例如:()()2,4,6,3,0,2A B ,则直线AB 的方向向量为()1,4,4AB =-- 2、平面:用平面的法向量来刻画平面的倾斜程度,何为法向量?与平面α垂直的直线称为平面α的法线,法线的方向向量就是平面α的法向量,如何求出指定平面的法向量呢? (1)所需条件:平面上的两条不平行的直线 (2)求法:(先设再求)设平面α的法向量为(),,n x y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组: 1112220 x y z x y x y z x y z z ++=?? ++=? 解出,,x y z 的比值即可 例如:()()1,2,0,2,1,3a b ==,求,a b 所在平面的法向量 解:设(),,n x y z =,则有20230x y x y z +=??++=? ,解得:2x y z y =-??=? ::2:1:1x y z ∴=- ()2,1,1n ∴=- (二)空间向量可解决的立体几何问题(用,a b 表示直线,a b 的方向向量,用,m n 表示平面,αβ的法向量) 1、判定类 (1)线面平行:a b a b ?∥∥ (2)线面垂直:a b a b ⊥?⊥

(3)面面平行:m n αβ?∥∥ (4)面面垂直:m n αβ⊥?⊥ 2、计算类: (1)两直线所成角:cos cos ,a b a b a b θ?== (2)线面角:cos ,sin a m a m a m θ?= = (3)二面角:cos cos ,m n m n m n θ?==或cos cos ,m n m n m n θ?=-=- (视平面角与 法向量夹角关系而定) (4)点到平面距离:设A 为平面α外一点,P 为平面α上任意一点,则A 到平面 α的距离为A AP n d n α-?= ,即AP 在法向量n 上投影的绝对值。 (三)点的存在性问题:在立体几何解答题中,最后一问往往涉及点的存在性问题,即是否在某条线上存在一点,使之满足某个条件,本讲主要介绍使用空间向量解决该问题时的方法与技巧 1、理念:先设再求——先设出所求点的坐标(),,x y z ,再想办法利用条件求出坐标 2、解题关键:减少变量数量——(),,x y z 可表示空间中的任一点,但题目中所求点往往是确定在某条线或者某个平面上的,所以使用三个变量比较“浪费”(变量多,条件少,无法求解),要考虑减少变量的个数,最终所使用变量的个数可根据如下条件判断:

空间向量主要解决立体几何问题的类型及解法

空间向量主要解决立体几何问题的类型及解法 引入两个重要空间向量 , a、直线的方向向量; b、平面的法向量。 1、判断直线、平面间的位置关系; (1)直线与直线的位置关系; (2)直线与平面的位置关系; (3)平面与平面的位置关系; 2、求解空间中的角度; 3、求解空间中的距离。 (1)在空间直角坐标系中,如何求平面法向量的坐标呢? 如图,设a=( x1,y1,z1)、b=(x2,y2,z2)是平面α内的两个不共线的非零向量,由直线与平面垂直的判定定理知,若n⊥a且n⊥b,则n⊥α.换句话说,若n·a = 0且n·b = 0,则n⊥α. 求平面的法向量的坐标的一般步骤: 第一步(设):设出平面法向量的坐标为n=(x,y,z). 第二步(列):根据n·a = 0且n·b = 0可列出方程组 第三步(解):把z看作常数,用z表示x、y. 第四步(取):取z为任意一个正数(当然取得越特殊越好),便得到平面法向量n的坐标. 立体几何问题的类型及解法 一、判定直线、平面间的位置关系 (1)直线与直线的位置关系 不重合的两条直线a,b的方向向量分别为a ,b. ①若a∥b,即a=λb,则a∥b. ②若a⊥b,即a·b = 0,则a⊥b (2)直线与平面的位置关系 ?直线L的方向向量为a,平面α的法向量为n,且L α. ?①若a∥n,即a=λn,则L⊥α ?②若a⊥n,即a·n = 0,则a ∥α.

? 例1棱长都等于2的正三棱柱ABC-A1B1C1, ? D,E 分别是AC,CC1的中点,求证: ? (1)A1E ⊥平面DBC1; ? (2)AB1 ∥ 平面DBC1 L x y

空间向量及立体几何练习试题和答案解析

1 ?如图,在四棱锥P- ABCD中,底面ABC助正方形,平面PADL平面ABCD点 M在线段PB上, PD//平面MAC PA=PD^, AB=4 (1)求证:M为PB的中点; (2)求二面角B- PD- A的大小; (3)求直线MC与平面BDP所成角的正弦值. 【分析】(1)设ACH BD=O则0为BD的中点,连接0M利用线面平行的性质证明OM/ PD再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PGLAD,再由面面垂直的性质可得PGL平面ABCD贝U PGLAD,连接0G则PGL0G再证明OGLAD.以G为坐标原点,分别以GD GO GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B- PD- A的大小; (3)求出门;的坐标,由:"与平面PBD的法向量所成角的余弦值的绝对值可得直 线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设ACH BD=O ??? ABCD^正方形,二O为BD的中点,连接OM ??? PD//平面MAC PD?平面PBD 平面PBDH 平面AMC=OM ??? PD// OM则一-—,即卩M为PB的中点; BD BP (2)解:取AD中点G, ??? PA=PD- PGL AD ???平面PADL平面ABCD且平面PADH平面ABCD=AD ??? PG!平面ABCD 贝U PG!AD,连接OG 贝U PG1OG 由G是AD的中点,O是AC的中点,可得OG/ DC贝U OGLAD.

以G为坐标原点,分别以GD GO GP所在直线为x、y、z轴距离空间直角坐标

相关文档
最新文档