关于常数变易法的一个解释

关于常数变易法的一个解释
关于常数变易法的一个解释

常数变易法

常数变易法的解释 注:本方法是对崔士襄教授写的《“常数变易法”来历的探讨》论文的解释。思路并非本人原创。特此注明。背景详见本人前一篇博文。 我们来看下面的式子: y’+P(x).y = Q(x) (1) 对于这个式子最正常的思路就是“分离变量”(因为之前所学的思想无一不是把变量分离再两边积分)。所以我们的思维就集中在如何将(1)式的x和y分离上来。 起初的一些尝试和启示 先直接分离看一下: dy/dx+P(x)·y = Q(x) => dy = ( Q(x)-P(x).y ).dx (2) 从中看出y不可能单独除到左边来,所以是分不了的。这时想想以前解决“齐次方程”时用过的招数:设y/x = u = > y = u·x . 将y = u·x代入(1)式: u’·x+u+P(x)·u·x = Q(x) => u’·x+u·(1+P(x)·x) = Q(x) => du/dx·x = Q(x)-u(1+P(x)·x) => du = [Q(x)-u·(1+ P(x).x)].(1/x).dx (3) 这时u又不能单独除到左边来,所以还是宣告失败。不过,这里还是给了我们一点启示:如果某一项的变量分离不出来,那使该项成为零是比较好的选择。因为这样“变量分离不出”这个矛盾就消失了——整个一项都消失了,还需要分什么呢。比如说,对于(3)式,如果x=-1/P(x),那么那一项就消失了;再比如说,对于(2)式,如果P(x)=0,那么那一项也消失了。当然这些假设都是不可能的,因为x和P(x)等于几是你无法干预的。不过我们可以这么想:如果我们巧妙地构造出一个函数,使这一项等于零,那不就万事大吉了。Ok,好戏开场了。 进一步:变量代换法

常数变易法原理

常数变易法原理 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

常数变易法原理 我们来看下面的式子: y’+P(x).y=Q(x) (1) 对于这个式子最正常的思路就是“分离变量”(因为之前所学的思想无一不是把变量分离再两边积分)。所以我们的思维就集中在如何将(1)式的x和y分离上来。 起初的一些尝试和启示 先直接分离看一下: dy/dx+P(x).y=Q(x) dy=[Q(x)-P(x).y].dx (2) 从中看出y不可能单独除到左边来,所以是分不了的。这时想想以前解决“齐次方程”时用过的招数:设y/x=u→ y=u.x .将y=u.x代入(1)式: u’.x+u+P(x).u.x=Q(x) → u’.x+u.(1+P(x).x)=Q(x)→du/dx.x =Q(x)-u(1+P(x).x) →du=[Q(x)-u.(1+P(x).x)].(1/x).dx (3) 这时u又不能单独除到左边来,所以还是宣告失败。不过,这里还是给了我们一点启示:如果某一项的变量分离不出来,那使该项成为零是比较好的选择。因为这样“变量分离不出”这个矛盾就消失了——整个一项都消失了,还需要分什么呢。比如说,对于(3)式,如果x=-1/P(x),那么那一项就消失了;再比如说,对于(2)式,如果P(x)=0,那么那一项也消失了。当然这些假设都是不可能的,因为x和P(x)等于几是你无法干预的。

不过我们可以这么想:如果我们巧妙地构造出一个函数,使这一项等于零,那不就万事大吉了。Ok,好戏开场了。 进一步:变量代换法 筒子们可能觉得要构造这么一个函数会很难。但结果会让你跌破眼镜。y=u·v就是这么符合要求的一个函数。其中u和v都是关于x的函数。这样求y对应于x的函数关系就转变成分别求u对应于x的函数关系和v对应于x的函数关系的问题。你可能觉得把一个函数关系问题变成两个函数关系问题,这简直是脑残的表现——非也,u和v都非常有用,看到下面就知道了。 让我们看看讲代换y=u·v代入(1)式会出现什么: u’.v+u.(v’+P(x).v)=Q(x) (4) 如果现在利用分离变量法来求u对应于x的函数关系,那么u·(v’+ P(x)·v)就是我们刚刚遇到的没法把u单独分离出来的那一项,既然分不出来,那么干脆把这一项变为零好了。怎么变这是v的用处就有了。令v’+P(x)·v=0,解出v对应x的函数关系,这本身就是一个可以分离变量的微分方程问题,可以将其解出来。 dv/dx+P(x)·v=0 →v=C1.e^(-∫P(x)dx) (5)

常数变易法原理

常数变易法原理 我们来看下面的式子: y’+P(x).y?=?Q(x) (1) 对于这个式子最正常的思路就是“分离变量”(因为之前所学的思想无一不是把变量分离再两边积分)。所以我们的思维就集中在如何将(1)式的x和y分离上来。 ??起初的一些尝试和启示 先直接分离看一下: dy/dx+P(x).y?=?Q(x) dy?=?[Q(x)-P(x).y].dx (2) 从中看出y不可能单独除到左边来,所以是分不了的。这时想想以前解决“齐次方程”时用过的招数:设y/x?=?u??→y?=?u.x .将y?=?u.x代入(1)式: u’.x+u+P(x).u.x?=?Q(x) →u’.x+u.(1+P(x).x)?=?Q(x)→du/dx.x?=?Q(x)-u(1+P(x).x) →du?=?[Q(x)-u.(1+P(x).x)].(1/x).dx (3) 这时u又不能单独除到左边来,所以还是宣告失败。不过,这里还是给了我们一点启示:如果某一项的变量分离不出来,那使该项成为零是比较好的选择。因为这样“变量分离不出”这个矛盾就消失了——整个一项都消失了,还需要分什么呢。比如说,对于(3)式,如果x=-1/P(x),那么那一项就消失了;再比如说,对于(2)式,如果P(x)=0,那么那一项也消失了。当然这些假设都是不可能的,因为x和P(x)等于几是你无法干预的。不过我们可以这么想:如果我们巧妙地构造出一个函数,使这一项等于零,那不就万事大吉了。Ok,好戏开场了。

?进一步:变量代换法 筒子们可能觉得要构造这么一个函数会很难。但结果会让你跌破眼镜。y=u·v 就是这么符合要求的一个函数。其中u和v都是关于x的函数。这样求y对应于x的函数关系就转变成分别求u对应于x的函数关系和v对应于x的函数关系的问题。你可能觉得把一个函数关系问题变成两个函数关系问题,这简直是脑残的表现——非也,u和v都非常有用,看到下面就知道了。 让我们看看讲代换y=u·v代入(1)式会出现什么: u’.v+u.(v’+P(x)?.v)?=?Q(x) (4) 如果现在利用分离变量法来求u对应于x的函数关系,那么u·(v’+P(x)?·v)就是我们刚刚遇到的没法把u单独分离出来的那一项,既然分不出来,那么干脆把这一项变为零好了。怎么变?这是v的用处就有了。令v’+P(x)?·v=0,解出v对应x的函数关系,这本身就是一个可以分离变量的微分方程问题,可以将其解出来。 ?dv/dx+P(x)?·v?=?0? →v?=?C1.e^(-∫P(x)dx)? (5) ?现在v解出来了,接下来该处理u了,实际上当v解出来后u就十分好处理了。把(5)式代入(4)式,则u·(v’+P(x)·v)这一项便被消掉了。剩下的是u’?·C1·e^(-∫P(x)dx)?=?Q(x) 而这也是一个可以分离变量的微分方程。同样可以十分容易地解出来: du/dx?·C1·e^(-∫P(x)dx)=Q(x) →du?=?1/C1·e^(∫P(x)dx)·Q(x)·dx →u?=?1/C1.∫e^(∫P(x)dx).Q(x).dx+C2 (6)

常数变易法的解释

常数变易法的解释 我们来看下面的式子: y’+P(x).y =Q(x) (1) 对于这个式子最正常的思路就是“分离变量”(因为之前所学的思想无一不是把变量分离再两边积分)。所以我们的思维就集中在如何将(1)式的x和y分离上来。 起初的一些尝试和启示 先直接分离看一下: dy/dx+P(x)·y =Q(x) => dy =( Q(x)-P(x).y ).dx (2) 从中看出y不可能单独除到左边来,所以是分不了的。这时想想以前解决“齐次方程”时用过的招数:设y/x =u => y =u·x . 将y =u·x代入(1)式: u’·x+u+P(x)·u·x =Q(x) => u’·x+u·(1+P(x)·x) =Q(x) => du/dx·x =Q(x)-u(1+P(x)·x) => du =[Q(x)-u.(1+P(x).x)].(1/x).dx (3) 这时u又不能单独除到左边来,所以还是宣告失败。不过,这里还是给了我们一点启示:如果某一项的变量分离不出来,那使该项成为零是比较好的选择。因为这样“变量分离不出”这个矛盾就消失了——整个一项都消失了,还需要分什么呢。比如说,对于(3)式,如果x=-1/P(x),那么那一项就消失了;再比如说,对于(2)式,如果P(x)=0,那么那一项也消失了。当然这些假设都是不可能的,因为x和P(x)等于几是你无法干预的。不过我们可以这么想:如果我们巧妙地构造出一个函数,使这一项等于零,那不就万事大吉了。Ok,好戏开场了。 进一步:变量代换法 筒子们可能觉得要构造这么一个函数会很难。但结果会让你跌破眼镜。y=u·v就是这么符合要求的一个函数。其中u和v都是关于x的函数。这样求y对应于x的函数关系就转变成分别求u对应于x的函数关系和v对应于x的函数关系的问题。你可能觉得把一个函数关系问题变成两个函数关系问题,这简直是脑残的表现——非也,u和v都非常有用,看到下面就知道了。 让我们看看讲代换y=u·v代入(1)式会出现什么: u’.v+u.(v’+P(x) .v) =Q(x) (4) 如果现在利用分离变量法来求u对应于x的函数关系,那么u·(v’+P(x) ·v)就是我们

常数变易法推导

我们来看下面的式子: y’+P(x).y =Q(x) (1) 对于这个式子最正常的思路就是“分离变量”(因为之前所学的思想无一不是把变量分离再两边积分)。所以我们的思维就集中在如何将(1)式的x和y分离上来。 起初的一些尝试和启示 先直接分离看一下: dy/dx+P(x)·y =Q(x) => dy =( Q(x)-P(x).y ).dx (2) 从中看出y不可能单独除到左边来,所以是分不了的。这时想想以前解决“齐次方程”时用过的招数:设y/x =u => y =u·x . 将y =u·x代入(1)式: u’·x+u+P(x)·u·x =Q(x) => u’·x+u·(1+P(x)·x) =Q(x) => du/dx·x =Q(x)-u(1+P(x)·x) => du =[Q(x)-u.(1+P(x).x)].(1/x).dx (3) 这时u又不能单独除到左边来,所以还是宣告失败。不过,这里还是给了我们一点启示:如果某一项的变量分离不出来,那使该项成为零是比较好的选择。因为这样“变量分离不出”这个矛盾就消失了——整个一项都消失了,还需要分什么呢。比如说,对于(3)式,如果x=-1/P(x),那么那一项就消失了;再比如说,对于(2)式,如果P(x)=0,那么那一项也消失了。当然这些假设都是不可能的,因为x和P(x)等于几是你无法干预的。不过我们可以这么想:如果我们巧妙地构造出一个函数,使这一项等于零,那不就万事大吉了。Ok,好戏开场了。 进一步:变量代换法 筒子们可能觉得要构造这么一个函数会很难。但结果会让你跌破眼镜。y=u·v就是这么符合要求的一个函数。其中u和v都是关于x的函数。这样求y对应于x的函数关系就转变成分别求u对应于x的函数关系和v对应于x的函数关系的问题。你可能觉得把一个函数关系问题变成两个函数关系问题,这简直是脑残的表现——非也,u和v都非常有用,看到下面就知道了。 让我们看看讲代换y=u·v代入(1)式会出现什么: u’.v+u.(v’+P(x) .v) =Q(x) (4) 如果现在利用分离变量法来求u对应于x的函数关系,那么u·(v’+P(x) ·v)就是我们刚刚遇到的没法把u单独分离出来的那一项,既然分不出来,那么干脆把这一项变为零好了。

常数变易法的实质以及为什么可以用常数变易法解微分方程

欲得到非齐次线性微分方程的通解,我们首先求出对应的齐次方程的通解,然后用待定系数法或常数变易法求出非齐次方程本身的一个特解,把它们相加,就是非齐次方程的通解。 同济版的实质就是变量代换u,然后变成可分离变量。求出u,然后回代。解出方程。 解微分方程的实质就是变量替换,然后化解为可分离变量。然后回代。待定系数法 考虑以下的微分方程: 对应的齐次方程是: 它的通解是: 由于非齐次的部分是(),我们猜测特解的形式是: 把这个函数以及它的导数代入微分方程中,我们可以解出A: 因此,原微分方程的解是: () 常数变易法 假设有以下的微分方程:

我们首先求出对应的齐次方程的通解,其中C1、C2是常数,y1、y2是x的函数。然后我们用常数变易法求出非齐次方程的一个特解,方法是把齐次方程的通解中的常数C1、C2换成x的未知函数u1、u2,也就是: y = u1y1 + u2y2。(1) 两边求导数,可得: y' = u1' y1 + u2' y2 + u1y1' + u2y2'。 我们把函数u1、u2加上一条限制: u1' y1 + u2' y2 = 0。(4) 于是: y ' = u1y1' + u2y2'。(2) 两边再求导数,可得: y" = u1' y1' + u2' y2' + u1y1" + u2y2"。(3) 把(1)、(2)、(3)代入原微分方程中,可得: u1' y1' + u2' y2' + u1y1" + u2y2" + pu1y1' + pu2y2' + qu1y1 + qu2y2 = f(x)。 整理,得: u1' y1' + u2' y2' + (u1y1" + pu1y1' + qu1y1) + (u2y2" + pu2y2' + qu2y2) = f(x)。由于y1和y2都是齐次方程的通解,因此(u1y1" + pu1y1' + qu1y1)和(u2y2" + pu2y2' + qu2y2)都变为零,故方程化为: u1' y1' + u2' y2' = f(x)。(5) (4)和(5)联立起来,便得到了一个u1'和u2'的方程组。解这个方程组,便可得到u1'和u2'的表达式;再积分,便可得到u1和u2的表达式。 这个方法也可以用来解高于二阶的非齐次线性微分方程。一般地,有:

一阶微分方程的常数变易法探析

一阶微分方程的常数变易法的应用探析 刘卫 (杭州师范大学理学院数学072班 310036) 【摘要】:常数变易法求解一阶微分方程是作为求解一阶线性方程的解法给出的。本文先介绍一阶线性非齐次微分方程的常数变易法,然后讨论四种形式的一阶非线性微分方程的常数变易法,包括贝齐次方程和贝努力方程等的常数变易法。 【关键词】:一阶线性 一阶非线性 常数变易法 1、一阶线性非齐次微分方程的常数变易法 为求解一阶非齐次线性微分方程)()(x Q y x p dx dy += (1) 先解对应的其次线性微分方程 y x p dx dy )(= (2) 用分离变量法可得(2)的通解:? =dx x p ce y )( (c 是任意常数) (3) 然后从这通解出发,把这通解中的任意常数c 编译成x 的未知函数)(x c ,得到 ? =dx x p e x c y )()( (4) 于是:?-? '='dx x p dx x p e x p x c e x c y )()()()()( (5) 将(4)和(5)代入方程(1),得: )()()()()()()()()(x Q e x c x p e x p x c e x c dx x p dx x p dx x p +? =? +? ' 即:)()()(x Q e x c dx x p =?',所以,)()()(x Q e x c dx x p ?='- 所以:c dx x Q e x c dx s p +?= ? -)()()( 所以,(1)的通解为:))(()()(c dx x Q e e y dx s p dx x p +??=?- 例1 x xy dx dy 42+-= 解:首先求线性齐次方程02=+xy dx dy 的通解2 x ce y -=。 再应用常数变易法求线性非齐次微分方程的通解,为此,在上式中把常数c 变易成待 定函数)(x c ,即令:2 )(x e x c y -=,代入原方程得: x e x xc e x xc e x c x x x 4)(2)(2)(2 2 2 +-=-'---

常数变易法原理

常数变易法原理 常数变易法原理 我们来看下面的式子: y+ P(x)?y = Q(x) (1) 对于这个式子最正常的思路就是“分离变量”(因为之前所学的思想无一不是 把变量分离再两边积分)。所以我们的思维就集中在如何将( 1)式的x和y分 离上来。 起初的一些尝试和启示 先直接分离看一下: dy/dx + P(x) ? y = Q(x) dy = [Q(x) —P(x) ? y] ? dx .(2) 从中看出y不可能单独除到左边来,所以是分不了的。这时想想以前解决“齐次方程”时用过的招数:设y/x = u T y = u ? x将y = u ? x代入(1)式: u'?x+ u+ P(x) -u -x = Q(x) T u'?x+ u ?(1 + P(x) -x) = Q(X)T du/dx -x = Q(x)

—u(1 + P(x)? x) T du = [Q(x) —u - (1+ P(x)? x)] - (1/x) - dx (3) 这时u又不能单独除到左边来,所以还是宣告失败。不过,这里还是给了我们一点启示:如果某一项的变量分离不出来,那使该项成为零是比较好的选择。 因为这样“变量分离不出”这个矛盾就消失了一一整个一项都消失了,还需要分什么呢。比如说,对于(3)式,如果x=—1/P(x),那么那一项就消失了;再比如说,对于(2)式,如果P(x)= 0,那么那一项也消失了。当然这些假设都是不可能的,因为x和P(x)等于几是你无法干预的。不过我们可以这么想:如果我 们巧妙地构造出一个函数,使这一项等于零,那不就万事大吉了。Ok,好戏开 场了。 进一步:变量代换法 筒子们可能觉得要构造这么一个函数会很难。但结果会让你跌破眼镜。y= u ? v 就是这么符合要求的一个函数。其中u和v都是关于x的函数。这样求y对应于 x的函数关系就转变成分别求u对应于x的函数关系和V对应于x的函数关系的问题。你可能觉得把一个函数关系问题变成两个函数关系问题,这简直是脑残的表现 -------- 非也,u和V都非常有用,看到下面就知道了。 让我们看看讲代换y= u ? v代入(1)式会出现什么: u'?v+ u ? (v'+ P(x) ? v) = Q(x) ...... ⑷ 如果现在利用分离变量法来求u对应于x的函数关系,那么u?(v'+ P(x) ? v) 就是我们刚刚遇到的没法把u单独分离出来的那一项,既然分不出来,那么干脆把这一项变为零好了。怎么变?这是v的用处就有了。令v'+ P(x) ? v = 0, 解出v对应x的函数关系,这本身就是一个可以分离变量的微分方程问题,可以将

一阶线性方程与常数变易法习题及解答

§2.2 一阶线性方程与常数变易法习题及解答 求下列方程的解 1.dx dy =x y sin + 解: y=e ?dx (?x sin e ?-dx c dx +) =e x [- 2 1e x -(x x cos sin +)+c] =c e x -21 (x x cos sin +)是原方程的解。 2.dt dx +3x=e t 2 解:原方程可化为: dt dx =-3x+e t 2 所以:x=e ?-dt 3 (?e t 2 e -?-dt 3c dt +) =e t 3- (5 1e t 5+c) =c e t 3-+5 1e t 2 是原方程的解。 3.dt ds =-s t cos +2 1t 2sin 解:s=e ?-tdt cos (t 2sin 2 1?e dt dt ?3c + ) =e t sin -(?+c dt te t t sin cos sin ) = e t sin -(c e te t t +-sin sin sin ) =1sin sin -+-t ce t 是原方程的解。 4. dx dy n x x e y n x =- , n 为常数. 解:原方程可化为:dx dy n x x e y n x += )(c dx e x e e y dx x n n x dx x n +??=?- )(c e x x n += 是原方程的解. 5.dx dy +1212--y x x =0

解:原方程可化为:dx dy =-1212+-y x x ?=-dx x x e y 212(c dx e dx x x +?-221) )21(ln 2+=x e )(1 ln 2?+--c dx e x x =)1(12x ce x + 是原方程的解. 6. dx dy 234xy x x += 解:dx dy 234xy x x += =23y x +x y 令 x y u = 则 ux y = dx dy =u dx du x + 因此:dx du x u +=2 u x 21u dx du = dx du u =2 c x u +=33 1 c x x u +=-33 (*) 将x y u =带入 (*)中 得:3433cx x y =-是原方程的解.

浅析常微分方程的常数变易法

浅析常微分方程的常数变易法 高菲菲 【期刊名称】《现代计算机(专业版)》 【年(卷),期】2012(000)014 【摘要】The variation of constants method is an effective way to solve the first-order linear non-homogeneous differential equation, but most textbooks only explain the use of method, did not give the origin of this method. Discusses the origin of the variation of constants method, promotes and enhances the understanding and grasp of the variation of constants method.%常数变易法是解决一阶非齐次线性微分方程通解的有效方法.但是多数教材只讲解了使用方法,而没有给出此法的由来。讨论常数变易法的由来,并对其进行推广,从而加深对常数变易法的理解和掌握。 【总页数】3页(8-10) 【关键词】常微分方程;常数变易法;通解;特解 【作者】高菲菲 【作者单位】内蒙古财经大学统计与数学学院,呼和浩特010051 【正文语种】中文 【中图分类】O175.1 【相关文献】 1.常微分方程求解中常数变易法的应用研究 [J], 许莹霞 2.常微分方程中常数变易法的推广解析 [J], 贾永兴 3.常数变易法求解常微分方程 [J], 李治远; 朱桂玲

相关文档
最新文档