生物酶技术在印染工业中的应用

生物酶技术在印染工业中的应用
生物酶技术在印染工业中的应用

生物酶技术在印染工业中的应用

本文重点介绍了生物技术在纺织染整行业中的研究

现状及应用研究成果,并对其未来的应用前景进行了展望。

This paper mainly introduced current research and application situation of bio-enzyme in dyeing and finishing industry in domestic and overseas markets, and finally presented a brief overview for the development of bio-enzyme applied in textile industry.

近年来,生物技术在印染行业中的应用越来越广泛,例如生物前处理、生物后整理技术和生物技术在染化料中的应用,以及生物技术在印染废水处理中的应用等。酶具有生物降解性,对环境友好,同时经酶处理的纺织品具有许多特殊的功能,大大提高了纺织品的服用性能和附加值,能满足市场上不同消费群体的需求,具有很好的发展前景。

1 生物酶在前处理中的应用

前处理工序一般流程长、处理条件强烈(高温、高浓度、强碱、强氧化剂)、占地面积大、工作环境差和排污量大、含杂复杂、时间长且加工质量难以控制,而且使用化学法前处理污染严重、水资源耗量大、废水处理负担重。前处理过

程可能的污染源包括:①精练中所用的酸碱会导致废水含极端的pH值;②由于精练工序一般在高温下进行,因而产生高温的废水;③废水的高悬浮物主要来自退浆及精练工序所产生的毛屑、纤维及淀粉、胶和蜡等杂质,使废水中的BOD 值提高,另外常用的醋酸等酸化剂也会提高BOD值;④废水的COD高主要来自PVA等化学浆料。

1.1 生物酶在退浆中的应用

采用酶法退浆,具有以下特点。

(1)酶退浆废水pH值低,可生化性好,符合清洁生产和绿色环保要求。

(2)酶退浆作用快,效果好,退浆率高达7 级,而传统碱退浆只能达到 4 级。

(3)碱退浆使浆料疏松、膨化,未将其分解为小分子物质,因此对水洗要求较高,水量、温度控制不当,会使浆料重新凝结、聚集,沾污布面,形成浆斑,从而造成大批量半制品回修。而酶退浆则使浆料在酶的作用下催化分解为水溶性很高的小分子物质,浆液粘稠度低,不会再次凝结。

(4)酶退浆半制品手感柔软,强力损伤小。对强降比较严重的功能性整理(如免烫、阻燃整理等)品种,特别适合采用酶退浆。

淀粉酶是纺织工业中最早进行工业化应用的酶制剂之一,如采用淀粉酶代替碱去除坯布上的淀粉浆料。使用淀粉

酶退浆能将淀粉分解成可溶性低分子糖的酶(α?C葡聚糖酶),而且用酶处理产生的分解物无毒性,但这些分解物必

须经处理后再排放,否则会提高退浆废水中的BOD。

岳新霞研究发现,采用α?C淀粉酶对竹浆纤维织物进行酶退浆处理具有良好的退浆效果,织物强力无明显损失,较传统碱退浆工艺能节约大量能源,符合清洁生产要求。

1.2 生物酶在精练中的应用

传统的棉织物精练是在热碱液中进行的,效果非常显著,缺点是由于添加润湿或渗透剂、鳌合剂等化学品造成了印染废水处理的沉重负担,精练废水含碱量大,pH值高,要耗用大量的酸中和,并需用大量的水冲洗,且使废水中COD/BOD 的比率增高,污染了环境。据统计,印染废水的70% 来自

前处理中的精练。而且,如果在碱精练中工艺条件控制不严格,还易造成纤维素的氧化损伤,强力下降。另外,由于在浓碱液中精练,会致使棉织物的局部碱浓度过高,产生较大的收缩,给后续加工质量带来很大的影响。

近年来人们尝试用生物酶进行棉织物的精练,可在温和的温度及pH值条件下有效去除棉的脂蜡,而且对纤维的结

构和强力没有损伤。生物酶代替传统的碱精练将具有继续研究和扩大应用的趋势,除了环保这一因素,从经济的角度来看,酶精练的实际成本并不高于传统的碱精练,综合考虑所节约的能源和水,有时可能更经济。

魏玉娟研究表明,对珍珠纤维/棉混纺针织物采用复合酶精练,总体效果较碱精练好,吸湿性得到明显改善,织物中珍珠粉碳酸钙含量保留率高,采用酶精练完全可以取代碱精练。Sho Yeung Kang和Helen H.Epps等通过比较传统碱精练和酶处理对 3 种彩棉回潮率的影响,发现经酶处理的彩棉回潮率远高于传统碱精练彩棉的回潮率。陈伟等研究发现角质酶通过对棉纤维角质的分解可提高棉针织物的润湿性能,增加角质酶用量可使更多的角质被分解,从而达到更好的润湿性能。角质酶和果胶酶复合后能不同程度地提高棉针织物的果胶去除率、棉蜡去除率和润湿性能,其中润湿性提升较明显。Renuka Dhandapani等研究发现酶精练有助于去除棉坯布中非纤维素部分杂质,对于纤维素类杂质需酶与表面活性剂、EDTA等复合使用,去杂效果良好。

1.3 生物酶在漂白中的应用

目前棉织物漂白一般采用过氧化氢法,但是漂白时金属离子的催化作用会引起纤维的损伤。生物酶漂白尚处于开发阶段,目前研究较多的是 3 种氧化还原酶在漂白中的应用,即漆酶、过氧化物酶和葡萄糖氧化酶。

棉纺织品或其它纤维纺织品经过氧化氢漂白后,部分纺织品要进行染色或印花,如果残留有过氧化氢,在染色和印花时会破坏染料或使染色不匀,或降低上染率。为了除尽残留的过氧化氢,在漂白后用过氧化氢酶处理纺织品,将残留

的过氧化氢分解成水和氧而提高水洗效率,改善纺织品的染色性能。因此,过氧化氢酶处理不仅可以去除织物上残留的过氧化氢,而且可以直接染色,具有高效、节能、无污染的优点,是绿色染整技术的重要工艺之一。

Nimai Chandra Pan等研究表明,采用生物酶法对黄麻织物进行漂白,其白度、亮度、吸湿性、手感及外观均优于传统的化学漂白。阎贺静等采用精练漂白一浴法,在酶精练时加入H2O2和EDTA,结果表明处理后的棉织物其棉籽壳、蜡质和果胶质的去除率与传统精练和漂白工艺相当。酶精练和漂白工艺全过程均在较低温度下进行,且能达到比较理想的棉籽壳去除率,弥补了酶精练工艺的缺陷。

Huntsman Textile Effects(亨斯迈纺织染化)在Genencor (杰能科)推出的创新生物酶的基础上研制了一种漂白技术――Gentle Power BleachTM,该新型过氧化漂白系统要求织物漂白温度仅为65 ℃,中性pH值范围,从而大大降低了处理和漂洗温度,能耗及用水量更可降低40%。利用Gentle Power BleachTM对织物进行前处理后,手感更加柔和、膨松和自然,对于棉质纤维效果更为明显。使用Gentle Power BleachTM后,纤维重量损失率低,色彩更加鲜明、亮丽和浓郁。

1.4 生物酶在脱胶工艺中的应用

目前麻纤维脱胶的主要工艺还是以化学脱胶为主,但会

对纤维造成一定的损伤,脱胶后的麻纤维成单纤维状态,大麻单纤维长度仅20 mm左右,很难直接用于纺织;而且化

学脱胶废水色度深,碱性强(pH值高达13)、有机成分复杂、水质波动大,是一种较难处理的有机废水。从环保角度考虑,酶法及微生物法脱胶被认为是极有发展前途的。

吴红玲等经过研究证明,大麻纤维采用生物酶脱胶作用条件温和,对纤维损伤小,易掌握脱胶的程度,有利于提高出麻率,在技术上是可行的。毕晓春等研究表明在最优工艺条件下采用生物酶与碱氧一浴脱胶工艺,处理光叶楮韧皮制得的光叶楮纤维各品质指标相对较好,应用于纺织行业很有潜力。最优工艺为:生物酶用量 4 g/L,浴比1∶10,时间 4 h,温度50 ~55 ℃;助剂Na2SiO3 • 9H2O 6 g/L,MgSO4 • 7H2O用量为0.1%;浴比为1∶10 条件下,NaOH 5 g/L,双氧水4 g/L,煮练时间150 min。

1.5 生物酶在丝光工艺中的应用

生物酶可用于织物的丝光――“生物抛光”,即用纤维素酶对棉织物在无张力状态下处理,可以减少织物表面茸毛、小球,提高织物的光洁性,产品不仅与碱丝光效果相近,还赋予其柔软的特性。生化抛光主要用于棉、麻等天然纤维以及容易起毛起球的Tencel® 等人造纤维织物。此外,还

用于去除染色等加工产生的表面茸毛,使纤维和织物表面变得光洁。

黄霞兵等研究发现,生物抛光整理后的织物表面光洁,富有光泽,手感柔软,悬垂系数下降,具备一般柔软剂整理达不到的品质。生物抛光整理后的织物强力下降,下降率应控制在20%,失重率在3%,失重率超过5% 时织物的服用性能就明显受到影响。

周文常研究表明,经纤维素酶整理后的亚麻织物,布面光洁,手感柔软,舒适性提高,从而提高了亚麻织物的服用性能及附加值。纤维素酶对亚麻织物的生物抛光整理,是一种降解减量处理,但工艺控制不当,会使织物强力损失过大,因此要严格控制工艺条件。李波研究采用纤维素酶BP ?C 96对纯棉双面针织物进行抛光整理,酶处理温度最好控制在50 ℃,pH值控制在4.8 左右,酶用量和作用时间视织物厚薄和设备运转速度而定。抛光处理后,若不马上染色,必须进行失活处理,以免织物损伤。

2 生物酶在染色中的应用

陈伟等研究用酶进行精练时发现,和未处理试样相比,单独用角质酶处理织物的上染速度和上染百分率有所提高,但效果不如单用果胶酶处理的织物;角质酶和果胶酶复合酶处理织物的上染速度和上染百分率比单用果胶酶略高,且明显高于单用角质酶处理的织物。此外,羊毛经蛋白酶处理后,低温染色性能可明显改善。在同等减量的条件下,通常蛋白酶水解减量模式对羊毛低温染色性能的改善更明显。

3 生物酶在后整理及其他工序中的应用

棉纤维的超级柔软整理,利用纤维素酶对棉的水解作用可使织物表面改性,控制减量率在3% ~5% 左右,就能得到丝一般的超级柔软手感,获得新的织物风格。

苎麻针织物在贴身穿着过程中会产生较强的刺痒感,在一定程度上限制了其服用范围。高锡光等研究发现对织物进行酶处理后,将其硬而直的尖端部分原纤化,使之柔软,可改善粗硬麻制品的肌肤触感和穿着舒适感,适量增大酶的用量(强力损失控制在允许的范围内),可以降低织物的刺痒感,提高麻制品的品位和质量。采用酶对苎麻织物处理时,酶用量、pH值、温度、浴比、时间对实验结果都有影响,其中酶用量在3%(o.w.f)以内时,酶用量的影响最大。

目前应用于牛仔布返旧整理的纤维素酶大多为中性纤

维素酶或酸性纤维素酶,适度酶洗可赋予织物独特的光泽和柔软的手感,且不会引起织物强力的过度损伤,同时减轻了浮石对设备的磨损,提高了生产效率,另外生物酶可降解,污水易处理,利于环保。所以,纤维素酶在靛蓝牛仔布返旧整理中已得到广泛应用。到1998年,就已有约80% 的牛仔布水洗利用纤维素酶。

L. Ammayappan等研究发现对于棉/毛混纺织物,采用纤维素酶及蛋白复合酶处理,能增加织物上纳米、微纳米等整理剂的量,改善织物的悬垂性、毛细效应、干折皱回复角、

抗皱性、手感等,但同时剪切张力会有所降低。

Tencel® 类纤维在湿处理过程中由于物理摩擦容易

产生原纤化,其原纤维较长,易相互缠结,伏在织物表面影响外观。通过生物酶处理,可去除原纤茸毛,经干态下转鼓处理,产生次级原纤化,具有桃皮绒的效果。

合成纤维因其亲水性低而影响纤维的加工性能,在生产过程中妨碍水渗入织物的孔隙及后处理化合物的应用。最新研究表明,酶能够使合成材料水解,例如角质酶、聚酯酶和脂肪酶通过酯键的水解能提高聚酯的亲水性。

漆酶能催化许多芳香族化合物降解,根据漆酶对染料降解的原理,可以用于印染废水的脱色、染色织物的生物酶洗,可以去除其浮色,如固定化漆酶酶洗工艺可替代传统的皂洗工艺,提高织物的湿处理牢度,还能降低后处理残液的色度,减轻了印染废水处理的负担,有利于生态环境保护。

4 展望

生物酶催化具有安全高效、环保节能的特点,生物酶可以或部分替代传统的化学品完成生态型染整加工。但酶在应用中存在稳定性差、不能回收重复利用等问题,因此通过化学或物理手段用载体将酶束缚或限制在一定区域内,使其进行特有和活跃的催化作用。如固定化酶具有贮存稳定性高、易于控制、工艺简便等优点,在化学、生物工程、医学等领域得到了迅速发展,也必将在染整行业中得到广泛的研究与

应用。

参考文献

[1] 黄霞兵,梁海波. 生物抛光酶在高支高密棉织物上的应用[J]. 染整技术,2011,33(3):17 ?C 20.

[2] 吴赞敏. 纺织品染整清洁加工技术[M]. 北京:中国纺织出版社,2007.

[3] 李立. 酶退浆工艺探讨[J]. 印染,2004(12):17 ?C 19.

[4] 岳新霞. 竹纤维织物的酶退浆工艺研究[J]. 纺织科

技进展,2006 (4):46 ?C 48.

[5] 魏玉娟. 珍珠纤维/棉混纺针织物生物酶精练工艺研究[J]. 印染助剂,2011,28(4):41 ?C 44.

[6] Sho Yeung Kang,Helen H Epps. Effect of Scouring and Enzyme Treatment on Moisture Regain Percentage of Naturally Colored Cottons[J]. The Journal of The Textile Institute,2009,100(7):598 ?C 606.

[7] 陈伟,王强,等. 角质酶和果胶酶复合酶对棉针织物的精练研究[J]. 印染助剂,2011,28(1):39 ?C 41.

[8] Renuka Dhandapani,Ian R Hardin. THE APPLICATION OF XYLANASE ENZYME SYSTEMS FOR REMOVAL OF RECALCITRANT SEED COAT FRAGMENTS[A]. Proceedings of the Annual International Conference & Exhibition of AATCC[C],2010:40 ?C

49.

[9] Nimai Chandra Pan,Sambhu Nath Chattopadhyay,Ashim Kumar Roy,et al. Preparation of Full Bleached Jute Fabric by Enzyme Application[J]. Man-Made Textiles in India,2010,53(8):288 ?C 290.

[10] 阎贺静,韩晓红,等. 棉织物酶精练漂白同浴处理工艺[J]. 印染,2011 (9):5 ?C 9.

[11] 吴红玲,蒋少军,等. 大麻纤维生物酶脱胶工艺试验[J]. 染整技术,2010,23(7):24 ?C 27.

[12] 吴晓春,曲丽君,等. 光叶楮生物酶与碱氧一浴化学联合脱胶初探[J]. 青岛大学学报(工程技术版),2009,24(2):42 ?C 45,52.

[13] 周文常. 纤维素酶对亚麻织物的生物抛光整理[J]. 纺织科技进展,2008,(3):63 ?C 65.

[14] 李波. 棉针织物生物抛光整理工艺[J]. 印染,2007(12):23 ?C 24.

[15] 高锡光,孙卫国. 纤维素酶整理消除苎麻针织物刺痒感的研究[J]. 毛纺科技,2011,39(5):21 ?C 24.

[16] 周爱晖. 纤维素酶在纺织品返旧整理中的应用[J]. 印染助剂,2011,28 (2):10 ?C 13.

[17] L Ammayappan,et al. Effect of Silicone and Urethane Finishing Treatment on Performance Properties of Enzyme

Treated Wool/cotton Union Fabric[J]. Man-made Textiles in India,2010(3):47 ?C 51.

[18] 李晔. 酶的固定化及其应用[J]. 分子催化,2008,22(1):86 ?C 96.

生物酶催化技术及活性污泥膨胀技术

生物酶催化技术及活性污泥膨胀技术 [摘要] 本文主要对工业及生活污水处置进行了分析,提出了生物酶催化技术在滞留污水应急处置中的应用,以及从介绍活性污泥膨胀现象的特点及分类,并从温度、营养比例、污泥负荷、DO值、pH值、早期消化等角度进行分析,得出进水水质、运行条件不同,产生污泥膨胀的原因各异的结论。为环境污染应急处置提供了有效措施。 [关键词] 生物酶滞留污水活性污泥;污泥膨胀; [引言] 我国国民经济迅猛发展,城市规模不断扩大,人口数目增长迅速,随之而来是城市、工业、生活污水水量不断加大,水质也越来越复杂,仅仅依靠稀释及水体自净作用处理过污水已经无法满足达标排放要求,会对下游水体产生较大污染和影响。这种情况下,我们就不不采取措施加大对城市生活污水处理力度,以改善不断恶化水环境污染趋势。目前国内现有的常规处理工艺无法应对突发性环境污染造成的超标污染物,深度处理工艺也仅能应对部分超标污染物。而了解了活性污泥的相关原理和方法就能很有效的解决污水的相关问题。活性污泥法自1914年被A1dern发明,由于其经济、可靠的优势而得到广泛应用,并随着实际运行产生了阶段曝气、渐减曝气、AB工艺、A/O工艺、A2/O等系列变形工艺,但无论是哪种改进的活性污泥工艺都会发生污泥膨胀现象,并且活性污泥膨胀现象发生非常广泛,活性污泥膨胀能够降低污泥沉降性能,影响出水水质。因此污泥膨胀成为活性污泥法困扰人们最大的难题之一。如何采用有效的应急处置技术,在最短时间有效去除污染物,已成为当前所面临的新课题。

生物酶催化处理污水技术 1生物酶催化处理污水技术的机理 将生物酶催化技术应用于环境中污染物的去除,不同于普通微生物的系列生物酶技术,是将多种生物酶进行复合,通过生物酶打开污染物中更复杂的化学链,酶分子可以使反应物分子中化学键拉长、扭曲和变形,使他们更容易被水解,因而加速有机物的分解,将其迅速降解为小分子,从高分子有机物降解为低分子有机物或CO2、H2O等无机物,降低 COD值,从而达到去除污染物的目的,并可大大降低污水处理费用。 与其他微生物处理相比,生物酶催化处理法具有催化效能高、反应条件温和、对废水质量及设备情况要求较低,反应速度快,对温度、浓度和有毒物质适应范围广,可以重复使用等优点。 酶催化反应通式: 在酶催化反应中,根据中间产物学说,催化反应可以分为两步进行,反应式如下: E +S → ES → P + E 酶底物中间产物最终产物 酶(E)的作用是:与S暂时结合形成一个新化合物ES,ES的活化状态(过渡态)比无催化剂的该化学反应中反应物活化分子含有的能量低得多。ES再反应产生P,同时释放E。E可与另外的S分子结合,再重复这个循环。降低整个反应所需的活化能,使在单位时间内有更多的分子进行反应,反应速度得以加快。

酶在纺织中的应用

植物、动物以及微生物中都有酶,它们对细胞的功能具有重要的作用。酶已在啤酒、葡萄酒酿造业及食品加工业中应用了很多年。在这些行业中,它们被用来加工奶酪、改良人类消费所需的豆类及谷物、清洁柑橘类水果、制造稳定的浓缩果汁等。在纺织工业中,较为著名的是酶在传统的退浆工艺中的应用,而随着生物技术的发展,在纺织生产中酶的应用越来越多,从对纤维的改性到织物的漂白都有相应的酶制剂的使用。 1酶的认识 1.1酶的特性 催化剂是一类能改变反应速度,但不改变反应性质、反应方向和反应平衡点, 而且反应完成后其本身不发生变化的物质。酶是一种特殊的催化剂,作为催化剂它有一定的特点。 (1)高催化效率:在与无机或有机催化剂相比的情况下,酶的催化效率高达107 ~ 1012倍,某些酶甚至可加快反应速率高达1014倍。酶的这种高催化效率是因为酶能够显著降低反应过渡态能量。 (2)高度的专一性:酶的专一性是指一种酶只能催化一种或一类结构相似的底物进行某种类型反应的特性。催化反应的专一性是酶最重要的特性之一, 是酶与其它非酶催化剂最主要的不同之处,这种原理通过图1所示的锁-钥匙原理可以形象的表达。 图1 锁-玥匙原理 (3)反应条件温和:酶来自生物体,因而一般酶催化反应均可在常温常压条件下进行,有利于生产控制,并可节约能源,降低设备成本。另外,酶催化反应都在弱酸、弱碱或中性条件下进行,对环境污染小,对设备的腐蚀小,生产安全性高。 1.2酶的作用机理和过程 酶和底物的作用机理和过程如下表示:酶与底物作用→形成酶和底物的复合物→生化作用→形成酶与底物过度态络合物→酶和生成物分离而释放反应生成物和原来的酶。这样可使整个反应的活化能降低, 从而加快了反应速度。生化反应完成后, 酶和生成物分离, 酶又可重新催化反应。 1.3影响酶活性的因素 酶催化反应的效率取决于以下因素:酶的浓度、反应物浓度、保温或反应时间、反应温度、系统的PH值、所存在的活化剂及阻化剂。 在最佳的温度和PH值下,酶的催化水解反应总的反应速度取决于形成酶反应复合物的时间和生成产物的时间。要使复合物易于形成, 酶的浓度应足够高。且在酶附近的反应物浓度也应较高。反应物的浓度太高,反而不利于反应进行。这是因为过多的反应集中于酶的连接点或反应点上, 形成瓶颈其中的一种或两种情况发生都会降低反应速率。若反应时间较长, 酶的用量应低一些,较高用量的酶可降低总的反应时间, 但也不能过高。

核技术的应用与发展

核技术的应用与发展 摘要:核技术是建立在核科学基础之上的一门现代技术,因而泛称核科学技术。核 科学技术为现代化科学技术的组成部分,其渊源可以追溯到1896年天然放射性的 发现,至今已有100多年的历史。带电粒子加速器的发现与核反应堆的建造为核 科学技术的发展,奠定了雄厚的物质基础。第二次世界大战期间核科学技术在军事 领域的突破体现了核科学技术发展的时代特征,即技术的科学化与科学的技术化。 世界第一颗原子弹的爆炸显示了核能释放的巨大威力,开创了本世纪现代科学技术 定向发展的新格局,即动用国家一级的权威,动员全社会的力量,精心规划部署, 全面推进核技术的发展和实践。 关键词:核技术领域应用发展趋势 一、核技术的前世今生 自1895年伦琴发现了X射线,1896年贝克勒尔发现铀的天然放射性,随后 居里夫妇发现“钋”和“镭”两种天然放射性核素,以及1899年至1900年α、β和γ 射线的发现以来,人类对辐射进行了大量的研究并建立了核科学。核技术在医学、生物、农业、材料科学等各个领域得到广泛的应用,核技术成为当今世界重要的 高科技领域之一。 目前,我国已形成了基本配套的军民两用核动力与核燃料循环科研开发工业 体系,具备了自主设计建造中小型核电站的能力和核电站燃料组件的生产能力, 核技术(包括核供热、同位素和辐射技术等)在工业、农业、医学军事等多个领域 得到广泛应用。经过几十年的发展,我国在科研、设计、建设和运行等方面积累 了许多宝贵经验,培养和造就了一支专业齐全、具有相当实力的科研、开发、设 计和工程建设队伍。我国的核能和平利用产业已经形成了一定的规模,在某些技 术领域达到了世界先进水平。 二、核技术的应用 (一)核技术在农业中的应用 核技术在农业中的应用主要有同位素示踪技术与核辐射技术两个方面。同位 素示踪技术的应用,是直接将作为示踪剂的示踪原子的核素,利用其易于探测的 核物理性质和同位素的物理、化学性质相同的原理,建立同位素示踪法和同位素 分析法,将该方法作为研究T.具或实验手段,应用于农业科学中.的作物营养生理、土壤肥料、环境保护、植物保护和畜牧兽医等各个方面。核辐射技术的应用,则 是将放射性核素作为辐射源,利用射线对物质作用产生的物理效应、化学效应和 生物效应,对生命物质进行改造,创造新的生物资源。核辐射技术在农业科学中 主要应用于作物品种改良、害虫防治、食品贮藏保鲜和辐照刺激生物生长等各个 方面。 (二)核技术在医学中的应用 射线和粒子束技术在医学中主要有两个方面的应用:-一个是核医学成像,另 一“个是肿瘤的放射治疗。核医学成像技术包括单光子发射断层成像(SPECT)和正 电子断层成像(PET)。根据统计学方法的研究结果,SPECT可以比X2CT提前3个月 诊断出癌症,PET--般比SPECT还要早3个月诊断出癌症。核医学成像技术不同于X 射线断层成像(CT)、磁共振成像(MRI)和超声波成像,在显像之前必须注射相应的 放射性药物作为显像剂,其影像反映的是显像剂及其代谢产物的时间和空间分布。核医学成像技术是目前惟一能在体外获得活体中发生的生物化学反应、器官的生 理学和病理学变化以及细胞活动信息的方法,可为疾病诊断提供分子水平的信息。

生物酶的相关知识点

生物酶的相关知识点

————————————————————————————————作者:————————————————————————————————日期: ?

细胞代谢 物质跨膜运输与酶和ATP 核心考点整合 考点整合一:物质跨膜运输 1.物质运输方式的比较 离子和小分子物质大分子和颗粒物质 自由 扩散 协助 扩散 主动 运输 胞吞 (内吞) 胞吐 (外排)运输 方向 高浓度→ 低浓度 高浓度→ 低浓度 低浓度→ 高浓度 细胞外 →内 细胞内 →外 运输 动力 浓度差浓度差能量 (ATP) 能量 (ATP) 能量 (ATP) 载体不需要需要需要不需要不需要 实例水、CO 2 、O 2 、甘油、 乙醇 红细胞吸 收葡萄糖 K + 、Ca 2+ 、Mg 2+ ,小肠吸收 氨基酸、葡萄 糖 白细胞吞噬 病菌、变形虫 吞食食物颗 粒 胰腺细胞分 泌胰岛素2.影响物质运输速率的因素?(1)物质浓度(在一定浓度范围内) (2)O2浓度

特别提示:①乙图中,当物质浓度达到一定程度时,受运载物质载体数量的限制,细胞运输物质的速率不再增加。?②丁图中,当O2浓度为0时,细胞通过无氧呼吸供能,细胞也可吸收物质。 (3)温度 温度可影响生物膜的流动性和有关酶的活性,因而影响物质运输速率。低温会使物质跨膜运输速率下降。 【例1】(2010·广东卷,1)下图是植物根从土壤中吸收某矿质离子示意图。据图判断,该离子跨膜进入根毛细胞的方式为 A.自由扩散 B.协助扩散 C.主动运输 D.被动运输 (2010·成都质检)在水池中沉水生活的丽藻,其细胞里的K+浓度比池水里的K+浓度高1065倍。据此判断下列说法正确的是?A.随着池水中富营养化程度的提高,K+进入丽藻加快

核能技术应用及发展

核能技术应用及发展 核能是核裂变能的简称,是由于原子核内部结构发生变化而释放出的能量。核能的释放通常有两种形式,一种是重核的裂变,即一个重原子核(如铀、钚)分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量;另一种是轻核的聚变,即两个轻原子核(如氢的同位素氘)聚合成为一个较重的核,从而释放出巨大的能量。 重核裂变是指一个重原子核,分裂成两个或多个中等原子量的原子核,引起链式反应,从而释放出巨大的能量。 所谓轻核聚变是指在高温下(几百万度以上)两个质量较小的原子核结合成质量较大的新核并放出大量能量的过程,也称热核反应。它是取得核能的重要途径之一。 与重核裂变相比,轻核聚变发电有着无可比拟的优点。 (1)能量巨大。核聚变比核裂变释放出更多的能量。例如,铀-235的裂变反应,将0.1%的物质变成了能量;而氘的聚变反应,将近0.4%的物质变成了能量。 (2)资源丰富。重核裂变使用的主要原料是铀,目前探明的储量仅够使用几十年;而轻核聚变使用的是海水中的氘,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即“1升海水约等于300升汽油”,地球上海水中就有45万亿吨氘,足够人类使用数百亿年。而且地球上锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。因此受控核聚变的燃料取之不尽、用之不竭。 (3)成本低廉。1千克氘的价格只为1千克浓缩铀的1/40。 (4)安全、无污染核。聚变不产生放射性污染物,万一发生事故,反应堆会自动冷却而停止反应,不会发生爆炸。 但是,实现核聚变的条件十分苛刻,为了使2个原子核聚变,必须使两个原子核的一方或双方有足够的能量,去克服彼此之间的静电斥力,满足这样的条件需要几千万甚至几亿摄氏度的高温。 自20世纪70年代起,世界范围内掀起了托卡马克的研究热潮。目前,全世界有30多个国家及地区开展了核聚变研究,运行的托卡马克装置有几十个。 最近,由中国、美国、欧盟、日本、俄罗斯、韩国共同参与的国际热核反应堆合作计划(ITER)因其最终选址问题再次引起了人们的兴趣。这个被称为“人造太阳”的热核反应堆,不仅因为13万亿日元的巨大投资引人关注,更因为如能在未来50年内开发成功,将在很大程度上改变目前世界能源格局,使人类拥有取之不尽、用之不竭的理想的洁净能源。国际热核实验反应堆是继国际空间站之后最大的国际科学合作项目,我国也已正式加盟。根据计划,世界首座热核反应堆将于2006年开工,2013年前完工。这预示着在能源革命中占有重要地位的核聚变能开发和利用的曙光已出现,核能文明时代即将到来。 虽然目前化石燃料在能源消耗中所占的比重仍处于绝对优势,但此种能源不仅燃烧利用率低,而且污染环境,它燃烧所释放出来的二氧化碳等有害气体容易造成 "温室效应",使地球气温逐年升高,造成气候异常,加速土地沙漠化过程,给社会经济的可持续发展带来严重影响。与火电厂相比,核电站是非常清洁的能源,不排放这些有害物质也不会造成"温室效应",因此能大大改善环境质量,保护人类赖以生存的生态

微生物酶

微生物酶 微生物酶是指起着催化作生物体系中特定反应的、由微生物活细胞产生的蛋白质。作为催化剂的微生物酶,它可以加速三种反应:水解反应、氧化反应和合成反应。微生物酶可以在活细胞内进行催化作用,也可以透过细胞作用细胞外的物质;前者称内酶,后者称外酶。酶具有专一性酶的催化过程是一个两步反应: E(酶) + S(基质)→ ES(复合物)→ E(酶) + P(底物) 酶的活性受环境条件的影响十分显著,主要的物理环境条件有:温 度、需氧。量和pH值,这些条件是废水生物处理过程中的最重要因素。 在特定的条件下,微生物细胞才会产生大量的活性酶,即微生物酶。在生成过程中,控制环境条件是很重要的,以使决大部分活性酶能完整保存下来。当微生物细胞生成活性酶后,它们会钝化,并和酶一起保留下来,以不同的方式,分几个阶段使酶净化。目前,还没有科学的名称来对用于制造酶的微生物体命名。但那些含酶物质中酶活性是能够保证的。为了最佳利用酶的催化功能,我们必须熟悉一些影响酶活性和稳定性的基本原则。因为酶是一种生物化合物,且由大量蛋白质组成,所以要受到外界环境的影响。以下原则对用于化学方面的大多数生物酶来说,都是适合的。环境的 PH 值对酶的活性和稳定性有显著的影响。最佳活性会因不同酶的 PH 值的变化而变化。在 PH 值变化时,不同酶的活性有差异。另一个主要因素是温度。因为酶是生物催化剂,至少部分地由蛋白质组成的,所以它们对温度的变化十分敏感。环境温度升高会使酶的活性成倍增强。当达到最佳温度时,温度在高就会引起酶的迅速退化,活性也就会降低。然而,不同种类的酶对温度的抵抗力和敏感程度有很大的差异。例如:从枯草菌素中提取的细菌酶对热的敏感度就比从米谷蛋白中提取的真菌酶低。一些由某类细菌发酵而来的淀粉酶甚至能在沸水中短暂保持稳定性,并在 70-80 摄氏度之间达到最佳活性。我们的实验室已经发现大约 85% 从地衣类物质和淀粉酶中提取的酶能在高温中保持活性,但米谷蛋白酶在此高温中就要失去大于 90% 的活性。当经发酵的、含酶的微生物体保持干燥时,这种物质就比湿的更能抵御外界环境温度的变化。事实上,大多数酶在标准状况下不大会出现稳定性问题。采用生物酶技术处理有机废物时,如何利用酶特性是十分重要的,包括它们怎样起作用,在什么条件下起作用,以及如何保持它们的活性等等 因为动、植物来源有限,且受季节、气候和地域的限制,而微生物不仅不受这些因素的影响,而且种类繁多、生长速度快、加工提纯容易、加工成本相对比较低,充分显示了微生物生产酶制剂的优越性。现在除少数几种酶仍从动、植物中提取外,绝大部分是用微生物来生产的。

核技术及其应用的发展

核技术与核安全 核动力技术的核心是反应堆技术,反应堆可用来发电,供热,驱动运载工具等.反应堆还可以产生大量中子,故在有些核技术应用中亦可利用反应堆作为中子源,或利用反应堆中子做活化分析,生产放射性核素等."核能工程与技术"和"辐射防护与环境保护"也是"核科学与技术"之下的二级学科. 实际上核技术与核物理是密不可分的,这两个学科在发展过程中始终是互相依托,互相渗透的.同时,作为核探测技术和射线应用技术的基础,研究各种射线和荷能粒子束与物质的相互作用是十分重要的.其相互作用既可以产生物理的变化,也可以产生化学的变化,还可以产生生物学的变化.相应的研究构成了辐射物理学,辐射化学和辐射生物学的主要内容.在核技术的应用中还经常要对放射性核素进行分离,或用放射性核素标记化合物,这属于放射化学的范畴.因此,核技术及应用这一学科与核物理学,辐射物理学,辐射化学,放射化学等学科有密切的联系,其中辐射物理往往也被纳入核技术的范畴内.近年来核技术在医学中的应用得到迅速发展,相应地又产生了医学物理,核医学等学科.另一方面,核技术的研究经常涉及大型仪器设备的研制,其本身又是物理,机械,真空技术,电子学,射频技术,计算机技术,控制技术,成像技术等多种学科和技术的综合.故此核技术充分体现了多种学科的交叉这一特点,是现代科学技术的重要组成部分,也是当代重要的高技术之一.第二次世界大战之后核技术开始大规模地应用到国民经济之中,形成了许多新兴的产业,如辐射加工,无损检测,核医学诊断设备与9放射治疗设备,同位素和放射性药物生产等.据统计,美国和日本的国民经济总产值(GDP)中核技术的贡献约占3%~4%.美国核技术产生的年产值约为3500亿美元,其中非核能部分约占80%. 现代很多科学技术成就的取得都是与核技术的贡献分不开的.仅以诺贝尔奖为例,1931年美国科学家劳伦斯发明回旋加速器,为此获得了1939年诺贝尔物理奖.1932年英国科学家Cockcroft和Walton制造了第一台高压倍压加速器并用其完成了首次人工核反应,获1957年诺贝尔物理奖.此外还有八项诺贝尔物理奖和化学奖是利用加速器进行实验而获得的.在探测器方面,威尔逊因发明云室探测器而获1927年诺贝尔物理奖,其后布莱克特因改进威尔逊云室实现自动曝光而获1948年诺贝尔物理奖,鲍威尔发明照相乳胶法并用其发现π介子而获1950年诺贝尔物理奖,这之后格拉泽因发明气泡室使粒子探测效率提高1000倍而获1960年诺贝尔物理奖,阿尔瓦雷兹因改进气泡室并用其发现共振态粒子而获1968年诺贝尔物理奖,沙帕克因发明多丝正比室和漂移室而获1992年诺贝尔物理奖.在核分析技术方面,1948年美国科学家利比建立了14C测年方法并为此获得了1960年诺贝尔化学奖,穆斯堡尔因发现穆斯堡尔效应而获1961年诺贝尔物理奖,布罗克豪斯和沙尔因发展了中子散射技术而获1994年诺贝尔物理奖.核技术对于科学发展的重要推动作用由此可见一斑.由于核技术为多种学科的基础研究提供了灵敏而精确的实验方法和分析手段,自20世纪80年代以来各国竞相建造与核技术密切相关的大型科学工程,如大型对撞机,同步辐射装置,自由电子激光装置,散裂中子源,加速器驱动次临界反应堆,大型放射性核束加速器等,其造价动辄数亿美元乃至数十亿美元.美国能源部2003年11月发布研究报告"未来科学的装置",列出了今后20年重点发展的28项大型科学工程,其中基于加速器的有14项,占了一半.我国自改革开放以来先后建造了北京正负电子对撞机,兰州重离子加速器,合肥同步辐射装置等大科学工程,辐照和放疗用电子加速器,大型集装箱探测装置,辐射加工和同位素生产等也已经形成了一定规模的产业. 1 在工业中的应用 核技术的工业应用始于20世纪50年代兴起的辐射加工.辐射加工利用60Co源产生的γ射线或电子加速器产生的电子束照射物料,可引起高分子材料的聚合,交联和 1

活性生物酶在染整加工中的应用..

活性生物酶在染整加工中的应用 1活性生物酶的发展背景及其特性 1.1 活性生物酶的发展背景 当今社会,保护人类生存环境的呼声日益高涨,各国制定的环境政策和法规日益严格,使需要耗费大量化学品和水资源,且会产生大量污染的印染行业面临巨大挑战。全球的纺织化学和染整工作者不断地寻求、尝试环保型的新产品、新技术和新设备。酶制剂作为一种生物制剂,无毒无害,它的开发应用顺应了绿色生产加工和可持续发展的要求,因而为越来越多的染整工作者所认可,并替代传统的一些强酸、强碱等化学品用于染整加工中。现代生物工程技术的发展亦为酶的进一步应用提供了可能。酶整理工艺代表了纺织工业发展的趋势,其在纺织品整理中的应用正不断向扩大领域和纵深发展。 1.2 酶的特性 酶是一类天然的高分子量蛋白质,可催化化学反应的进程,被誉为“生物催化剂”。作为催化剂,酶具有以下特性[1、2] : 1.2.1 专一性 酶的专一性体现为一种酶只能作用于一种或一类结构相似的底物,并催化某种类型的反应。然而酶的专一性程度视酶的种类不同而有所差异。大多数酶呈绝对或几乎绝对专一性,只催化一种底物反应;少数专一性程度低的酶,可作用多种底物。 1.2.2 高效性 酶催化反应的速率极高,一般可达几百万倍。例如,过氧化氢酶在催化分解双氧水漂白后剩余的过氧化氢反应中,一分子的过氧化氢酶在1 s 内可催化分解500 万个双氧水分子,可见其效率相当高。 1.2.3 低反应条件 酶催化反应不像一般催化剂需要高温、高压、强酸、强碱等剧烈条件,而可在较温和的常温、常压下进行。

1.2.4 易变性失活 在受到紫外线、热、射线、表面活性剂、金属盐、强酸、强碱及其它化学试剂如氧化剂、还原剂等因素影响时,酶蛋白的二级、三级结构有所改变从而使酶丧失催化反应活性。 1.3 酶的催化机理 酶催化某一特定的化学反应是通过降低该反应的活化能实现的。酶催化反应的进程可表示为[3]: A + E — A-E — E + B 式中:A ———底物; B ———产物; E ———酶。 酶先与底物形成酶-底物络合物,改变底物的能量,使其易于发生转变;而反应结束后,酶催化剂与其他所有的催化剂一样,仍保持原状,并可进行其他更进一步的转化。因此只需要少量的酶便足以维持反应的进行。 1.4 酶失活 酶催化反应进行到一定程度后,要采取一定措施使酶失活,如不及时使其失活,会造成纤维损坏,严重时织物完全毁坏。通常通过改变温度或pH 值来实现酶失活,有时亦可采用化学品使其“中毒”而失活。 1.5 酶处理的应用优势 随着生物酶技术的不断发展,酶在纺织品染整加工中的应用可涵盖大部分工序。酶在染整加工中的应用之所以不断扩大,得益于酶处理所具有的下列优势: ①由于酶的生物降解性,酶技术是一种绿色环保的技术; ②废水排出量少,其中盐含量和其他有害环境的药剂量也减少; ③酶可重复利用; ④反应条件温和,能够降低能源的消耗; ⑤在加工需求的选择上可以实现多样化。 2 活性生物酶的分类和活性

核技术在工业、农业、环境、医学中的应用

核技术在工业、农业、环境、医学中的应用 年级姓名: 2015级郜苏徽 学院专业:经管经济类 学号: 2015014481 课程名称:核技术安全与应用 任课教师:吕金印 日期: 2015/11/28

核技术在工业、农业、环境、医学中的应用 经济管理学院经济类郜苏徽 2015014481 核技术是现代科学技术的重要组成部分,是当今世界重要的高科技领域之一,许多发达国家都把核技术视为科技制高点,并进行大力开发应用。通常人们将核技术划分为核武器技术、核能技术和民用非动力核技术。 自1895年伦琴发现了X射线,1896年贝克勒尔发现铀的天然放射性,随后居里夫妇发现“钋”和“镭”两种天然放射性核素,以及1899年至1900年α、β和γ射线的发现以来,人类对辐射进行了大量的研究并建立了核科学。核技术在医学、生物学、农业、材料科学等各个领域得到广泛的应用,核技术成为当今世界重要的高科技领域之一。在此就核技术在工业、农业、环境和医学中的应用作一简要介绍。 1、核技术在工业中的应用 核技术在工业上主要有三方面的运用:工业辐照、核子仪与放射性测量、工业射线探伤。 1.1工业辐照 又称辐射加工,是指利用电离辐射与物质相互作用产生的物理效应、化学效应和生物效应,对物质和材料进行加工处理的一种核技术。辐射加工通常包括γ辐射加工(钴60和铯137为辐射源)和电子加速器辐射加工(电子束和X射线)。我们常用辐照装置进行物质的消毒,例如说医院对医疗器械、血液样品、药物产品等的消毒,食品加工产对食品保鲜等等。 1.2核子仪与放射性测量 核子仪是一种测量装置,由一个带屏蔽的辐射源(具有放射性或能放出X射线)和一个辐射探测器组成。射线未穿过物质或者与需要分析的物质相互作用,为连续分析或过程控制提供实时数据。因此核子仪在工业中运用十分广泛,例如说过程控制和产品质量的控制。我们常用的几种核子仪如:①核子密度计,它的用源一般采用铯137(其活度范围一般在1.85GBq,50mCi左右),对大直径的管子的测量用钴60较多,而对几厘米直径的细管用镅241源。在烟草行业中,用β射线源测量连续卷烟机中烟草的密度。②测厚仪,利用γ射线对金属、非金属材料的厚度进行测量(其测量范围为:镅241放射源,0.15~4mm;铯137放射源,2.5~60mm;钴60放射源,4~90mm)。在工业制造过程中,经常采用表面保护和表面精加工技术。③料位计,它的作用的对物料位置高度进行测量,主要采用γ射线源。对堆积密度小的物料(如泡沫塑料)或少量物料(如管中牙膏)的测量,用β射线源。

核技术及其应用的发展

核技术及其应用的发展 人防五队风水专业乔亚鑫3382011515 1896年贝克勒尔发现铀的天然放射性,从此诞生了一门新的科学:原子核科学技术。1919年卢瑟福利用天然α射线轰击各种原子,确立了原子的核结构,随后又首次用人工方法实现了核反应。但是用天然射线源能够研究的核反应很有限,人们开始寻找一种可以产生具有不同能量的各种粒子束的装置,于是粒子加速器应运而生。同时,为了探测各种射线和核反应的产物,还需要有辨别粒子种类和能量的探测器及相应的电子学设备。在研究核物理的过程中人们发现,放射性一方面可能造成人体的伤害,另一方面它也可以在医学、工农业和其它方面有许多应用。于是相应地,辐射防护技术与射线应用技术也发展起来。此外,核物理的研究还导致了许多放射性核素的发现。它们的半衰期长至数千万年,短至不足1秒。在不同场合下选择适当的放射性核素,可以做示踪剂、测年工具或药物使用。这就是放射性核素技术(或称为同位素技术)。上述粒子加速器技术、核探测技术与核电子学、射线和粒子束技术、放射性核素技术等,通常统称为核技术。概括而言,核技术就是利用放射性现象、物质(包括荷能粒子)和规律探索自然、造福人类的一门学科,其主要内容是研究射线、荷能粒子束和放射性核素的产生、与物质相互作用、探测和各种应用的技术。在我国现行的研究生培养体系中“核技术及应用”属于一级学科“核科学与技术”之下的一个二级学科。核技术还包括核武器技术与核动力技术(或称为核能技术)。核动力技术的核心是反应堆技术,反应堆可用来发电、供热、驱动运载工具等。反应堆还可以产生大量中子,故在有些核技术应用中亦可利用反应堆作为中子源,或利用反应堆中子做活化分析、生产放射性核素等。“核能工程与技术”和“辐射防护与环境保护”也是“核科学与技术”之下的二级学科。 实际上核技术与核物理是密不可分的,这两个学科在发展过程中始终是互相依托、互相渗透的。同时,作为核探测技术和射线应用技术的基础,研究各种射线和荷能粒子束与物质的相互作用是十分重要的。其相互作用既可以产生物理的变化,也可以产生化学的变化,还可以产生生物学的变化。相应的研究构成了辐射物理学、辐射化学和辐射生物学的主要内容。在核技术的应用中还经常要对放射性核素进行分离,或用放射性核素标记化合物,这属于放射化学的范畴。因此,核技术及应用这一学科与核物理学、辐射物理学、辐射化学、放射化学等学科有密切的联系,其中辐射物理往往也被纳入核技术的范畴内。近年来核技术在医学中的应用得到迅速发展,相应地又产生了医学物理、核医学等学科。另一方面,核技术的研究经常涉及大型仪器设备的研制,其本身又是物理、机械、真空技术、电子学、射频技术、计算机技术、控制技术、成像技术等多种学科和技术的综合。故此核技术充分体现了多种学科的交*这一特点,是现代科学技术的重要组成部分,也是当代重要的高技术之一。第二次世界大战之后核技术开始大规模地应用到国民经济之中,形成了许多新兴的产业,如辐射加工、无损检测、核医学诊断设备与 放射治疗设备、同位素和放射性药物生产等。据统计,美国和日本的国民经济总产值(GDP)中核技术的贡献约占3%~4%。美国核技术产生的年产值约为3500亿美元,其中非核能部分约占80%。

厌氧生物活性酶重要性!

厌氧生物活性酶 “厌氧生物活性酶”是一种从秃鹫强酸性的胃液中,通过特异的研究路径分离筛选而出的多种可高效溶解病灶的特异厌氧菌群。 经过两代人几十年的不懈努力,实现了靶向厌氧生物酶+靶向发酵技术,并 实现重大突破。靶向筛选出(特殊环境筛选)的厌氧生物菌群——复合菌群,结合现代微生物发酵技术,借鉴传统发酵工艺,窖藏厌氧发酵。 历经两代人20多年的不懈努力,通过精深的古方挖掘以中华药典多种古方 为基底,经过特异厌氧菌群酶解,再经长期聚合分化,凝聚集成超强的复 合药剂。 厌氧菌群在长达40年的厌氧发酵中不断的被提升炼化,历经最久的厌氧发酵,最终分泌出超强活性的嗜酸厌氧生物活性酶。 通过厌氧生物活性酶独具的“透皮性”,带动具有超强活性厌氧生物酶 群与古法复合制剂透过表皮、肌肉与骨骼直达病灶核心。沿组织间隙迅速 寻找体内厌氧环境,靶向性的渗透进入组织内部,厌氧生物活性酶在具有 厌氧性的病变组织内被迅速激活,借助以古法复合制剂,诱发人体内自身 蛋白酶等开始溶解增生骨赘。将病变组织在体内自行溶解后,通过人体循 环系统代谢的形式被身体排出,开启人体自愈力。在特殊中草药作用下, 诱导出人体自身潜在干细胞,快速再生出新的软组织细胞。 酶的作用: 一、调节菌群平衡,建立屏障 1、的状况。 2、建立屏障。 3、抗感染 和消炎作用。 二、促进营养物质分解吸收、增强体质 1、营养物质吸收对人体健康 的作用。 2、只能吸收最小的分子,(酶)所扮演的角色 就是把营养物质分解成最小的分子。3、合成维生素,促进钙、铁的吸收。 三、改善机体内环境,清除体内垃圾。1、促进肝脏解毒过程。2、提 高肾功能、促进肾脏的排毒作用。3、对心血管系统的作用。

核技术在工业上的应用

核技术在工业方面的运用 核技术在工业方面主要有三方面的运用:工业辐照;核子仪与放射性测量;工业射线探伤。 工业辐照,又称辐射加工,是指利用电离辐射与物质相互作用产生的物理效应、化学效应和生物效应,对物质和材料进行加工处理的一种核技术。辐照加工通常包括Y辐射加工(钴60和铯137为辐射源)和电子加速器辐射加工(电子束和X射线)。我们常用辐照装置进行物质的消毒。例如说我们医院对医疗产品、血液产品、药物产品的消毒;食品厂对食品保鲜;杀虫;还有西斜聚合物材料的合成。 核子仪是一种测量装置,由一个带屏蔽的辐射源(具有放射性或能放出x射线)和一个辐射探测器组成。射线未穿过物质或者与需要分析的物质相互作用,为连续分析或过程控制提供实时数据。因此核子仪在工业中运用十分广泛,例如说过程控制和产品质量的控制。我们常用的几种核子仪如:1.核子密度计,它的用源一般采用137Cs(其活度范围一般在1.85GBq,50mCi左右),对大直径的管子的测量用60Co较多,而对几厘米直径的细管用241Am源。在烟草行业,用β射线源测量连续卷烟机中烟草的密度。2.测厚仪利用γ射线对金属、非金属材料的厚度进行测量。(其测量范围为:241Am放射源:0.15~4mm,137Cs放射源:2.5~60mm,60Co放射源:4~90mm)。在工业制造过程中,经常采用表面保护和表面精加工技术。3.粒位计,它的作用是对物料位置高度进行测量,主要采用γ射线源。对堆积密度

小的物料(如泡沫塑料)或少量物料(如管中牙膏)的测量,用β射线源。 工业射线探伤是对一个部件或产品进行非破环性检验过程。例如CT技术、康普顿散射成像技术、数字射线照相技术、辐射数字成像技术。我们常用的工业探伤辐射元主要来自:X射线机、密封放射源和粒子加速器。当窄束单能射线穿过物质时,通过的射线按指数规律减弱。而射线的减弱能力与透射方向上的尺寸、其线减弱系数与物体的线减弱的差别、散射线的控制情况有关。由此我们便可得到被检测物的形状等从而确定是否含有危险物。X射线多运用于被检查的部件较薄,可以随时随地的开展工作,保管方便,射线强度调整快捷,无需像放射源那样随时间衰减而更换等优点,因此我们常用在铸件、焊接件、电子元器件、结构上。γ射线源,可以产生高能光子,并具有特定能量,有利于图像重建。常运用在焊接件监测和铸件上。 放射性测井是根据岩石和介质的核物理性质,研究物质剖面,寻找油气、煤等矿产油井工程的地球物理方法。在煤田、铀矿勘探和石油勘探中,有着重要的地位。我们常用γ射线测井和中子测井。 由上面我们可以看出,核技术在工业上越来越重要。引导着工业的进步。

纤维素酶在纺织工业中的应用

纤维素酶在纺织工业中的应用 报告人:张雨菲16300270102 一、技术原理 纤维素酶(Cellulase)是一种复合酶,是由降解纤维素的一组酶的总称。 将纤维素酶分离可分为C1酶、Cx酶、葡萄糖苷等三种组分。用纤维素酶降解纤维素,C1酶仅能作用于纤维素的结晶部分,主要分解产物为纤维素二果糖;Cx酶仅能作用于可溶性纤维素的衍生物和膨胀或部分降解纤维素;葡萄糖苷分为外切β-1,4-葡聚糖酶和内切β-1,4-葡聚糖酶。内切β-1,4-葡聚糖酶可以随机切断纤维素链的β-1,4-苷键;外切β-1,4-葡聚糖酶可从纤维素链的非还原性末端分解下葡萄糖单位。它们的水解产物为纤维素二糖、纤维素寡糖和葡萄糖。葡萄糖苷酸可使C1酶、Cx酶的水解产物转化为葡萄糖。三种酶各有专一性,但能相互协调。 由纤维素酶催化的三种类型的反应:内切酶、外切纤维素酶、β-葡糖苷酶 纤维素酶的β-葡糖苷酶活性的细节

纤维素酶的作用机制非常复杂,现在为止还没有完全弄清楚。除了各组分对纤维素分子的分解作用,目前越来越多的研究显示纤维素酶各组分之间有协同作用。不过,大体上它的水解作用可以分为以下几步:(1)酶分子从水相转移到纤维的表面;(2)酶分子与纤维表面结合,形成E+S的复合物;(3)把水分子转移到酶与底物复合物的激活位点;(4)在酶与底物的复合物催化下,水与纤维的接触表面发生发应;(5)产生的产物转移到水相中。 二、技术应用 ①减量处理 纤维素织物用纤维素酶处理都伴随着纤维的减量或失重,并引起许多性能变化。减量处理主要是改善织物的柔软、弹性和悬垂性。棉织物经过纤维素酶整理后,手感和外观可以有很大的改善。因为织物表面的绒毛被去除,处理后的织物更光洁、颜色更鲜艳。织物的硬挺度和刚性降低,光滑度和悬垂性提高,使织物获得更好的手感。 ②生物抛光处理 生物抛光是一种用纤维素酶改善棉织物表面的整理工艺,以达到持久的抗起毛起球并增加织物的光洁度和柔软度。天然纤维素的结构复杂,结晶度高,在一定酶浓度和时间条件下很难把纤维素完全水解成葡萄糖单体,仅对织物表面或伸出织物表面的茸毛状短小纤维作用。生物抛光也就是去除从纤维表面伸出的细微纤维,经纤维素酶处理后稍经机械加工就可以得到表面平滑而茸毛少的织物。生物抛光的主要功效是使服装和面料长久保持光鲜、手感更柔软。 ③水洗和石磨处理 纤维素酶还广泛应用于牛仔裤产品的洗涤加工,代替石洗加工工艺。最早应用在靛蓝牛仔服装的洗涤整理上,以获得与石磨相同的染料脱色,洗白等褪色防旧效果。这种加工的原理是,首先将牛仔服装上的浆料充分去除,充分发挥纤维素酶对牛仔服装表面的剥蚀作用;纤维素酶仅对牛仔服装表面部分水解,造成纤维在洗涤时发生脱落,在纤维素酶处理时,牛仔服装在转鼓中不断发生摩擦,加速服装表面纤维的脱落,并使吸附在纤维表面的靛蓝等染料一起去除,产生石磨洗涤的效果,并具有独特的外观和柔软的手感。 ④其它处理 除上述处理外,纤维素酶还与脂肪酶、果胶酶共同应用于棉织物的精练加工,去除棉纤维中的天然杂质,为后续染色、印花和整理加工创造条件。酶精练后的织物润湿性、强度保留率与碱精练相同,失重率较少,耗水率低。纤维素酶整理也用于粘胶、Lyocell和醋酸纤维织物,能改善织物的手感、悬垂性,去除织物表面的绒毛,减少了粘胶织物的起球倾向和Lyocell织物的原纤化倾向。苎麻织物存在手感粗糙性差、穿着刺痒感问题,严重影响了苎麻织物的服用性能,通过纤维素酶减量整理,能够使织物获得柔软的手感和光洁的布面,刺痒感消失或改善。 三、技术优缺点 优点:①纤维素酶处理具有环保、节能、高效、无毒等特点,其副产品和废液可以作为肥料, 对环境无害。②酶具有专一性, 特定的酶只能水解特定的化学键。③酶在温和的温度、pH 和压力下使用。 缺点:①使用酶会提高成本,。②且酶对温度、pH 、湿度和污染物敏感。 ③酶的货架期比化学药品短。

核技术应用复习

核技术:是指在原子核物理现象基础上发展起来的,利用原子核反应堆、粒子加速器、放射性同位素和核粒子探测器等各种核物理设备和核实验方法为各个部门服务的一门新兴技术。 核武器——核变(裂变、聚变) 及生化效应 目前的分类核能与核动力(核工程)——反应堆、热工(工程热力学与传热学的简称,传热学是研究热量传递的一门学科,如反应堆的导热,对流换热,辐射能的传递等。) 核技术(非动力核技术)——同位素与辐射技术 核农学核农学主要研究核素和核辐射及相关核技术在农业科学和农业生产中的应用及其作用机理 核医学核医学—将核素(包括放射性核素和稳定核素)标记的示踪剂用于医学和生物医疗和研究用途的学科。 核分析 (工业)核检测 辐射加工辐射加工—广义的辐射加工包括一切利用粒子、光波和射线来从事辐射化学及技术研究、开发和生产的技术等。 食品、卫生 核检测技术基本原理 利用射线(β、X、γ、n)与物质相互作用时产生的吸收、散射或活化反应等现象,通过测定射线的强度或能谱的变化来测定被测物质的基本物理(或化学)量(如:密度、浓度、厚度(高度)、水份、流量、挥发分等)。 特点 现场、非接触、无损(无破坏性); 可在线、载流连续监测; 抗干扰能力强。 安全、无污染(无废气、废液排放); 经济、高效。 相对测量——标定难、测量精度容易受物料成分变化的影响。 问题 灵敏度和响应时间; 精密度和准确度; 非线性问题与校正技术; 多参数测量与数据处理; 辐射与安全; 认可(认证)与推广; 规范化、标准化 核子密度计 各种料液浓度的在线检测和控制。也可通过密度而间接测定出料液中某种成分的含量、以及两种物料的本比等。核子(皮带)秤 利用物料对γ射线的吸收原理。放射源发出的γ射线穿过穿透输送机上的物料后,强度减弱,物料越多,减弱的程度越大,探测器接受的射线强度也减少,根据探测器输出脉冲数变化,就可以测出输送机上物料的多少。如果同时测出输送速度,则物料对速度之积分就是单位时间传送物料的重量。 测量原理 放射源稳定的放出射线。在支架构成的范围内呈扇形,照射到输送机上,输送机上的物料吸收一部分射线,其余的照射到探测器上,因放射源发出的射线为常数,因此探测器探测的射线的多少,可反映输送机上物料的多少。 基本应用测量工业输送系统、测量管道和斜槽中处于“自由下落”状态的物流的质量流量 料位计及料位开关 原理: 检测γ射线穿透料仓或管道中物料后的强度,根据射线强度的变化来计算、判断物料的料面水平,控制物料的输

酶在生活和生产当中的应用

酶在生活和生产当中的应用 1.洗涤剂工业: 加酶洗衣粉——碱性蛋白酶类易于洗去衣物上的血渍、奶渍等污渍。 2.乳制品工业: 凝乳酶——奶酪生产的凝结剂,并可用于分解蛋白质。 乳糖酶——降解乳糖为葡萄糖和半乳糖,获得没有乳糖的牛乳制品,有利于乳品的消化吸收。 3.纺织工业: 淀粉酶——广泛地应用于纺织品的褪浆,其中细菌淀粉酶能忍受100~110℃的高温操作条件。 纤维素酶——代替沙石洗工艺处理制作牛仔服的棉布,提高牛仔服质量。 4.医疗和药品工业: 胰蛋白酶——用于促进伤口愈合和溶解血凝块,还可用于去除坏死组织,抑制污染微生物的繁殖。 5.酿酒工业: 麦芽中的淀粉酶、蛋白酶、葡聚糖酶——将酿酒原料淀粉和蛋白质降解成能被酵母利用的单糖、氨基酸和肽,从而提高乙醇的产量。 1.洗涤剂和个人用品工业用酶: 洗涤剂是工业用酶最大的应用领域。在洗衣、洗碗、公共清洗及隐形眼镜等的清洗中,酶无处不在。蛋白酶、淀粉酶、脂肪酶、可除去衣领、袖口处的污渍及血渍、菜渍、油渍等一系列生活污垢;而纤维毒酶的参与则通过对棉织物纤维的修复作用而达到“织物复新” 的效果。 含有淀粉葡萄糖和葡萄糖氧化酶的牙膏及漱口液可防止牙菌班的形成,减少口臭。将来,多酚氧化酶在合适的介质中可完成生物染化的工作。这将使爱美人进一步心再的心为美丽而付出受化学品毒害的代价。 2酶在食品工业的应用: 3酶在纺织品整理中的应用:

4.饲料工业用酶: 5啤酒工业酿造用酶:传统方法将谷物转化成啤酒的酶的来自麦芽。如要麦芽汗中酶活性变化或过低可能导致一系列质量问题:提取率低,麦汗分离时间长,发酵慢,啤酒的口味及稳定性差等。 工业酶可用来补充麦芽天然含有的酶,用辅料(玉米、小麦、大米、等淀粉类原料)酿啤酒,大麦酿啤酒时分别加入α淀粉酶、β-葡聚糖酶及蛋白酶可确保酿造质量。 麦芽汗分离和啤酒过滤是酿酒工艺两个常见的难关。在糖化过程中的β葡聚糖酶和戊聚糖酶的应用可解决这些问题。 啤酒发酵初期酵母产生的双乙酰使啤酒有一种类似乳酪味道。当啤酒中双乙酰的含量下降到某一水平(大约0.07PPM)时,则标志着啤酒的成熟。发酵早期加入α乙酰乳酸脱羧酶可促进双乙酰分解,缩短啤酒发酵时间并确保良好的风味 6酶与燃料酒精: 7淀粉糖工业用酶;20世纪60年代,糖化酶的应用很使快大多数葡萄糖生产工艺都由酸水解变成酶小解。由于酶瓜的高效性和专一性,人们可以大规模地生产纯度更高、更易结晶的产品。1973年,固定化葡萄糖异构酶的开发使得高果糖浆的工业化生产成为可能。这一工业还迅速采用了由分子生物学和遗传工程学得到的新酶,使工艺不断得到优化和突破。 淀粉(主要来源于小麦、玉米、木薯和马铃薯等)制糖的主要转化步骤是液化、糖化和异构化。 在淀粉悬浮液中加入耐温型的α-淀粉酶,搅拌后通过喷射液化器在105110C的温度下经一系列管道统停留约5MIN,使淀粉完全糊化。部分液化了的淀粉经板式换热所产生的麦芽糊精经糖化酶或真菌α-淀粉酶进一步糖化,可生产各种不同甜度的甜味剂,如麦芽糖浆及高转化糖浆。应用α-淀粉酶、糖化酶及普鲁兰酶可生产高麦芽糖浆和中转化糖浆,其麦芽糖含量接近80%。 另外,淀粉经酶水解后还可发酵生产酒精、多元醇、维生素C和青毒素及其他抗生素等8发酵工业与酶:中华民族早在5000年前就开始利用微生物发酵生产食品、酿造调味品和饮用酒类,是世界上最早应用发酵技术的民族之一。 随着人类对微生物生理活动规律认识的加深,利用外源的高活力工业酶制剂将淀粉分解成为菌种利用效率最高的葡萄糖,并加入到发酵培养基中。形成了在时间与空间上均可分别进行的糖化和发酵工艺。这种工艺将工业化的α淀粉酶和葡萄糖淀粉酶(即糖化)的应用引入发酵工业,并立即带来发酵工业技术进步的巨大飞跃。 时至今日,仅仅是淀粉分解为葡萄糖的酶制剂已远远不能满足发酵工业的需求,具备以下特征的酶越来越受到发酵工业的青睐:更宽的PH、温度适应范围;更少的副产物生成;减少化学品使用以处于环境保护。 除了上述两种酶的应用外,越来越多的酶被不断地引入到发酵工业中以使人们可利用更多的原料来源,或使生产过程更环保和便利。 9制革工业用酶:

相关文档
最新文档