专题五:勾股定理的分类应用

专题五:勾股定理的分类应用
专题五:勾股定理的分类应用

勾股定理全章常考分类习题

方程思想的应用:

1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°,

,求、、的值。

2.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的

长.

3.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.

4. 如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长

5. 如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积

D

C

B A

F E

典型几何题

1.如图,Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.

2.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD 的长.

3.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.

4.已知:如图,△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足,求AD的长.

5、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB, BC=6,AC=8,求AB、CD的长

D

C

B

A

6.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =

CB 4

1

,求证:AF ⊥FE .

7.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.

8. 如图,已知:在

中,

. 求:BC 的长.

实际应用:

1.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .

1题图 2题图 3题图 2.长为4 m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m . 3.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米若楼梯宽2米,地毯每平

方米30元,那么这块地毯需花多少元

4.如下左图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需________米.

5..将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如右图所示,设筷子露在杯子外面的

长度h cm,则h的取值范围是()

A、h≤17cm

B、h≥8cm

C、15cm≤h≤16cm

D、7cm≤h≤16cm

6.种盛饮料的圆柱形杯(如上右图),测得内部底面半径为㎝,高为12㎝,吸管放进杯里,杯口外面至少要露出㎝,

问吸管要做㎝。

7、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。假设拖拉机行驶时,

周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒

典型证明题:

1.已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF2.

3.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿直线AD翻折,点C落在点C’的位置,BC=4,求BC’的长.

最短路径问题:

1.如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧

面爬行到点C,试求出爬行的最短路程.

2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B

处吃食,要爬行的最短路程是 cm

3.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.

4、小明要外出旅游,他带的行李箱长cm

40,宽cm

30,高cm

60,一把cm

70长的雨伞能

否装进这个行李箱

5.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少

A?

B

?A

B

C D

L

6.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少

小河

(完整版)八年级数学勾股定理的应用练习题

13.11勾股定理的应用练习(1) 第1题. 如图,△ABC 中,∠ACB =90o,CD 为AB 边上的高,若∠A =30o,AB =16,则BC =______,BD =______,CD =______. 答案:8,4 , 第2题. 如图是一种“牛头形”图案,其作法是:从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别 向外作正方形2,以此类推,若正方形1的边长为64cm ,则正方形7的边长为_________cm . 答案:8. 第3题. 甲、乙两人从同一地点出发,甲往东走了4km ,乙往南走了3km ,这时,甲、乙两人相距______. 答案:5km 第4题. 如果梯子底端离建筑物9m ,那么15m 长的梯子可达到建筑物的高度是______. 答案:12m 第5题. 如图,一扇宽为4米,高为3米的栅栏门,需要一根长______米的木条像图中那样固定. 答案:5 第6题. 一块土地的形状如图所示,90,20,15,7,B D AB BC CD ∠=∠=?===米米米求这块土地的面积? 答案:234平方米 第7题. 某菜农修建一个塑料大棚(如图),若棚宽a =4m ,高b =3m ,长d =35m ,求覆盖在顶上的塑料薄膜的面积. A B C D 4 4 3 3 2 2 1 3 A B C D a b c d

答案:175m 2 第8题. 一游泳池长48cm ,小方和小朱进行游泳比赛,从同一处出发,小方平均速度为3m/秒,小朱为3.1m/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14m .按各人的平均速度计算,谁先到达终点,为什么? 答案:小朱用16.13秒,小方用16秒,小方先到达终点 第9题. 如图,正方形ACDE 的面积为25cm ,测量出AB =12cm ,BC =13cm ,问E 、A 、B 三点在一条直线上吗?为什么? 答案:在一条直线上,理由略 第10题. 从A 到B 有两种路线,一种走直线由A 到B ,另一种走折线,先从A 直线到C ,再由C 直线到B ,其中ACB ∠成直角,已知A 到C 为600m ,C 到B 为800m ,问从A 到B 走直线比走折线少走多少米? 答案:400米 第11题. 如图,△ABC 中,90C ∠=o ,量出AC 、BC 的长,计算出AB (保留两个有效数字) 答案:略 第12题. 已知一个三角形的三边长分别是12cm ,16cm ,20cm ,你能计算出这个三角形的面积吗? 答案:96平方厘米 第13题. 某住宅小区的形状是如图所示的直角三角形,直角边AC ,BC 的长分别为600米、800米,DE 为小区的大门,大门宽5米,小区的周围用冬青围成了绿化带,问绿化带有多长? 答案:2395米 B A B C A D B E

勾股定理及常见题型分类

勾股定理及常见题型分类 一、知识要点: 1、勾股定理 2、勾股定理证明方法及勾股树 3、勾股定理逆定理 4、勾股定理常见题型回顾 二、典型题 题型一:“勾股树”及其拓展类型求面积 1. 右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ) A.13 B.26 C.47 D.94 2.如图,直线l 上有三个正方形a,b,c,若a,c 的边长分别为6和8,求b 的面积。 3. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 4、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 S 3 S 2 S 1 甲 乙 图1

5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 题型二:勾股定理与图形问题 1、已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 . 2.如图,求该四边形的面积 3.如图2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 . 4.某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由 . 5.如图是一块地,已知AD=8m ,CD=6m ,∠D=90°,AB=26m ,BC=24m ,求这块地的面积。 题型三:在直角三角形中,已知两边求第三边 A B C D E F G

勾股定理的分类应用

勾股定理常考分类习题 方程思想的应用: 1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°, ,求、、的值。 2.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长. 3.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长. 4. 如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长 5. 如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积 D C B A F E

典型几何题 1.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,求BC 的长. 2.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长. 3.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积. 4.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长. 5、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6,AC=8, 求AB 、CD 的长 6.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE = CB 4 1 ,求证:AF ⊥FE . D C B A

勾股定理的应用举例

勾股定理的应用举例 (一)教学目标 1.知识目标 (1)了解勾股定理的作用是“在直角三角形中已知两边求第三边”;而勾股逆定理的作用是由“三角形边的关系得出三角形是直角三角形”. (2)掌握勾股定理及其逆定理,运用勾股定理进行简单的长度计算. 2.过程性目标 (1)让学生亲自经历卷折圆柱. (2) 让学生在亲自经历卷折圆柱中认识到圆柱的侧面展开图是一个长方形(矩形). (3)让学生通过观察、实验、归纳等手段,培养其将“实际问题转化为应用勾股定理解直角三角形的数学问题”的能力. (二)教学重点、难点 教学重点:勾股定理的应用. 教学难点:将实际问题转化为“应用勾股定理及其逆定理解直角三角形的数学问题”. 原因分析: 1.例1中学生因为其空间想像能力有限,很难想到蚂蚁爬行的路径是什么,为此通过 制作圆柱模型解决难题. 2.例2中学生难找到要计算的具体线段.通过多媒体演示来启发学生的思维. 教学突破点:突出重点的教学策略: 通过回忆复习、例题、小结等,突出重点“勾股定理及其逆定理的应用”,(三)、教学过程

部分 答案:c=5. 例2、在Rt△ABC中,一直角边分别为5,斜边为 13,求另一直角边的长是多少? 答案:另一直角边的长是 12. 小结:在上面两个小题中,我们应用了勾股定理: 在Rt△ABC中,若∠C=90°,则 c2= a2+b2 . 加深定理的记忆理解,突出定理的 作用. 新 课 讲 解 勾股定理能解决直角三角形的许多问题,因此在 现实生活和数学中有着广泛的应用. 例1如图14.2.1,一圆柱体的底面周长为20cm, 高AB为4cm,BC是上底面的直径.一只蚂蚁从点 A出发,沿着圆柱的侧面爬行到点C,试求出爬行的 最短路程. 分析:蚂蚁实际上是在圆柱的半个侧面内爬 行.大家用一张白纸卷折圆柱成圆柱形状,标出A、 B、C、D各点,然后打开,蚂蚁在圆柱上爬行的距离, 与在平面纸上的距离一样.AC之间的最短距离是什 么?根据是什么?(学生回答) 通过动手作模型,培养学生的动 手、动脑能力,解决“学生空间想像能 力有限,想不到蚂蚁爬行的路径”的难 题,从而突破难点.

勾股定理 分类练习题

勾股定理常考习题 勾股定理的直接应用: 1、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :21 2、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为 ( ) A :3 B :4 C :5 D :7 3.在平面直角坐标系中,已知点P 的坐标是(3,4),点Q 的坐标是 (7,8),则线段PQ 的长为_____. 4、 若直角三角形两直角边的比是3:4,斜边长是20,求此 直角三角形的面积是_________. 5、直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积是___________. 6、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。 7.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______. 8.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______. 9.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______. 10、若等腰三角形的腰长为10,底边长为12,则底边上的高为( ) A 、6 B 、7 C 、8 D 、9 11.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41 (C)24 (D)24或7 12.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 13. 等边三角形的边长为2,它的面积是___________ 14、若直角三角形的三边长分别是n+1,n+2,n+3,则n____________。 15.在数轴上画出表示10-及13的点. 16、如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少? 17.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( ). (A)4 (B)6 (C)8 (D)102 18.如图18-2-5,以Rt △ABC 的三边为边向外作正方形,其面积分别为S 1、S 2、S 3,且S 1=4, S 2=8,则AB 的长为_________. 18题图 19题图 20题图 19.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( ). (A)150cm 2 (B)200cm 2 (C)225cm 2 (D)无法计算 20.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形 的边长是______. 21.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3, 水平放置的4个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______. 方程思想的应用: 1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°, , 求、、的值。 2.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长. 3.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长. 4. 如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。 (1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长 5. 如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积 典型几何题 1.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,求BC 的长. 2.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长. 3.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2, CD =2,AD =3,求四边形ABCD 的面积. 4.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长. 5、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6, AC=8, 求AB 、CD 的长 6.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE = CB 4 1 ,求证:AF ⊥FE . 7.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点, AD =5,BE =102求AB 的长.

(完整版)勾股定理应用题专项练习(经典)

勾股定理应用题 1.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架 2.5米长的 梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A.0.6米 B.0.7米 C.0.8米 D.0.9米 2.如图1所示,有一块三角形土地,其中∠C =90°,AB =39米,BC =36米,则其面积 是( ) A.270米2 B.280米2 C.290米2 D.300米 2 3.有一个长为40cm ,宽为30cm 的长方形洞口,环卫工人想用一个圆盖盖住此洞口,那么 圆盖的直径至少是( ) A.35cm B.40cm C.50cm D.55cm 4.下列条件不能判断三角形是直角三角形的是 ( ) A.三个内角的比为3:4:5 B.三个内角的比为1:2:3 C.三边的比为3:4:5 D.三边的比为7:24:25 5.若三角形三边的平方比是下列各组数,则不是直角三角形的是( ) A. 1:1:2 B. 1:3:4 C. 9:16:25 D. 16:25:40 6.若三角形三边的长分别为6,8,10,则最短边上的高是( ) A.6 B.7 C.8 D.10 7.如图2所示,在某建筑物的A 处有一个标志物,A 离地面9米,在离建筑物12米处有一 个探照灯B ,该灯发出的光正好照射到标志物上,则灯离标志物____米 8.小芳的叔叔家承包了一个长方形鱼塘,已知其面积是48平方米, 其对角线长为10米.若要建围栏,则要求鱼塘的周长,它的周长 是____米. 9.公园内有两棵树,其中一棵高13米,另一棵高8米,两树相距 12米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,则小鸟至少 要飞_____米. 10.若把一个直角三角形的两条直角边同时扩大到原来的3倍,则斜边扩大到原来的____倍. 11.若△ABC 的三边长分别是2,2,2===c b a ,则∠A =____,∠B =____,∠C =____. 12.某三角形三条边的长分别为9、12、15,则用两个这样的三角形所拼成的长方形的周长 是______,面积是_____. 13.如图4所示,AB 是一棵大树,在树上距地面10米的D 处有两只猴子,它们同时发现C 处有一筐桃子,一只猴子从D 往上爬到树顶A ,又沿滑绳AC 滑到C 处,另一只猴子从D 处下滑到B ,又沿B 跑到C ,已知两只猴子所通过的路程均为15米,求树高AB . C B 图1 B C 图4 A C 图3

勾股定理典型分类练习题

勾股定理典型分类练习题 题型一:直接考查勾股定理 例1.在ABC C ∠=?. ?中,90 ⑴已知6 BC=.求AB的长 AC=,8 ⑵已知17 AC=,求BC的长 AB=,15 变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC 是等腰三角形。 变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗? 题型二:利用勾股定理测量长度 例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0. 5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.

题型三:勾股定理和逆定理并用 例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 那么 △DEF 是直角三角形吗?为什么 题型四:旋转中的勾股定理的运用: 例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能及 △ACP ′重合,若AP=3,求PP ′的长。 变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长. 分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形. 题型五:翻折问题 例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长. P A P C B

勾股定理的应用

卓邦教育勾股定理应用练习 1.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)() A、3 B、5 C、4.2 D、4 1题2题3题4题 2.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为() A、10米 B、6米 C、7米 D、8米 3.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺. A、10 B、12 C、13 D、14 4.如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树断裂之前的高度为() A、10米 B、16米 C、15米 D、14米 5.如图,高速公路上有A、B两点相距25km,C、D为两村庄,已知DA=10km,CB=15km.DA⊥AB 于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则AE的长是()km. A、5 B、10 C、15 D、25 6.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=8m,AD=6m,CD=24m,BC=26m,又已知∠A=90°.求这块土地的面积. 7.如图,某地方政府决定在相距50km的两站之间的公路旁E点,修建一个土特产加工基地,且C、D两村到点E的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?

《勾股定理的应用》专项训练题及答案

八年级数学暑期集训练习 勾股定理的应用 1.一旗杆在其的B处折断,量得AC=5米,则旗杆原来的高度为() A.米B.2米C.10米D.米 第1题第2题第3题 2.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为() A.60海里B.45海里C.20海里D.30海里 3.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的顶端B下降至B′,那么BB′() A.小于1m B.大于1m C.等于1m D.小于或等于1m 4.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距() A.25海里B.30海里C.40海里D.50海里 第4题第5题 5.如图,学校有一块长方形花坛,有极少数人为了避开拐角走“捷径”,在花坛内走出了一条“路”,他们仅仅少走了()步,却踩伤了花草(假设2步为1米) A.2 B.4 C.5 D.6

6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要()米. A.5 B.7 C.8 D.12 7.如图是一个长为4,宽为3,高为12矩形牛奶盒,从上底一角的小圆孔插入一根到达底部的直吸管,吸管在盒内部分a的长度范围是(牛奶盒的厚度、小圆孔的大小及吸管的粗细均忽略不计)() A.5≤a≤12 B.12≤a≤3C.12≤a≤4D.12≤a≤13 8.小红在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如图)拉到岸边,花柄正好与水面成60°夹角,测得AB长1m,则荷花处水深OA为() A.1m B.2m C.3m D.m 9.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4.5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1.5m的学生要走到离墙多远的地方灯刚好发光?() A.4米B.3米C.5米D.7米 10.如图,在△ABC中,已知∠C=90°,AC=60cm,AB=100cm,a,b,c…是在△ABC内部的矩形,它们的一个顶点在AB上,一组对边分别在AC上或与AC平行,另一组对边分别在BC上或与BC平行.若各矩形在AC上的边长相等,矩形a的一边长是72cm,则这样的矩形a、b、c…的个数是()

勾股定理及其应用

第五次课勾股定理及其应用 本章知识要点 A. 勾股定理及其逆定理。 B. 验证、证明勾股定理及其依据(面积法)。 C. 勾股数组、基本勾股数组及勾股数的推算公式。 D. 勾股定理及其逆定理的应用。 E. 感受“方程”思想、“数形结合”思想、“化归与转化”思想等数学思想。

重点知识勾股定理的验证 验证方法验证过程 (美)伽菲尔德总统拼图如右图,直角梯形的面积等于三个直角三角形的面积之和,所以()()2 2 1 2 1 2 2 1 c ab b a b a+ ? = + ? +,即 2 2 2c b a= + 赵爽弦图如右图,用四个全等的直角三角形可得到一个以()a b-为边长的小正方形和一个边长为c的大正方形,因为大正方形的边长为c,所以面积为2c,又因为大正方形被分割成了四个全等的直角边长分别为b a,的直角三角形和一个 边长为()a b-的正方形,所以其面积为 ()2 2 1 4a b ab- + ?所以()2 2 2 1 4a b ab c- + ? =, 从而2 2 2b a c+ =. 刘徽:青朱出入图如右图,通过拼图,以c为边长的正方形面积等于分别以b a,为边长的两个正方形的面积之和 名师提示用拼图法验证勾股定理的思路:①图形经过割补拼接后,只要没有重叠、没有空隙,那么面积就不会改变;②根据同一种图形面积的不同表示方法(简称面积法)列出等式,推导勾股定理

重点知识确定几何体上的最短路线 描述示意图 几何体的侧面展开图长 方 体 将长方体相邻 侧面展开,转 化成一个长方 形 圆 柱 圆柱的侧面展 开图是一个长 方形 2 2 2B B A B AB' + ' = 名师提示(1)对于长方体相邻两个面的展开图,一定要注意打开的是哪一个侧面,比较三种打开方式的路径长度,得到最短路径. (2)勾股定理是直角三角形的一个重要性质,它把三角形有一个直角的“形”的特征,转化为三边“数”的关系,是数形结合的一个典范 (3)直角三角形的判别条件可以应用到实际生活中,也就是把一些实际问题转化为数学问题来解决。 9 E D B A C F 7 D A E B C F 展开 5 甲 A E F D 丙 D A E B F 乙 B A B' B A 展开

勾股定理及其应用

勾股定理及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第五次课勾股定理及其应用 本章知识要点 A. 勾股定理及其逆定理。 B. 验证、证明勾股定理及其依据(面积法)。 C. 勾股数组、基本勾股数组及勾股数的推算公式。 D. 勾股定理及其逆定理的应用。 E. 感受“方程”思想、“数形结合”思想、“化归与转化”思想等数学思想。 重点知识勾股定理的验证

(美)伽菲尔德总统拼图 如右图,直角梯形的面积等于三个直角三角形的面积之和,所以 ()()22121221 c ab b a b a +?=+? +,即222c b a =+ 赵爽弦图 如右图,用四个全等的直角三角形可得到一个以()a b -为边长的小正方形和一个边长为c 的大正方形,因为大正方形的边长为c ,所以面积为2c ,又因为大正方形被分割成了四个全等的直角边长分别为b a ,的直角三角形和一个边长为()a b -的正方形,所以其面积为 ()2 2 14a b ab -+?所以()2 22 14a b ab c -+?=,从而222b a c +=. 刘徽:青朱出入图 如右图,通过拼图,以c 为边长的正方形面积等于分别以b a ,为边长的两个正方形的面积之和 名师提示 用拼图法验证勾股定理的思路:①图形经过割补拼接后,只 要没有重叠、没有空隙,那么面积就不会改变;②根据同一种图形面积的不同表示方法(简称面积法)列出等式,推导勾股定理 重点知识 确定几何体上的最短路线 描述 示意图 9 E D B A C F 7 D A E B C F 展开 5 甲 F D E F

(完整版)勾股定理的实际应用题

18.如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树12m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,那么这只小鸟至少几秒才可能到达小树和伙伴在一起? 19.(2007?义乌市)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长. (1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处; (2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处; (3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120°,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A. 20.(2013?贵阳模拟)请阅读下列材料: 问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线: 路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π) (1)设路线1的长度为L1,则=_________.设路线2的长度为L2,则=_________.所以选择路线_________(填1或2)较短. (2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:= _________.路线2:=_________.所以选择路线_________(填1或2)较短. (3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.

初中数学初中数学 勾股定理的实际应用

第2课时勾股定理的实际应用 1.熟练运用勾股定理解决实际问题;(重点) 2.勾股定理的正确使用.(难点 ) 一、情境导入 如图,在一个圆柱形石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近? 二、合作探究 探究点一:勾股定理在实际生活中的应用 【类型一】勾股定理在实际问题中的简单应用 如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子是直的,结果保留根号)? 解析:开始时,AC=5米,BC=13米,即可求得AB的值,6秒后根据BC、AC长度即可求得AB的值,然后解答即可. 解:在Rt△ABC中,BC=13米,AC =5米,则AB=BC2-AC2=12米,6秒后,BC=13-0.5×6=10米,则AB=BC2-AC2=53米,则船向岸边移动距离为(12-53)米. 方法总结:在实际生产生活中有很多图形是直角三角形或可构成直角三角形,在计算中常应用勾股定理. 【类型二】含30°或45°等特殊角的三角形与勾股定理的综合应用 由于过度采伐森林和破坏植被,我国许多地区频频遭受沙尘暴的侵袭,今日A市测得沙尘暴中心在A市的正西方向300km的B处,以107km/h的速度向南偏东60°的BF方向移动,距沙尘暴中心200km的范围是受沙尘暴影响的区域,问:A市是否会受到沙尘暴的影响?若不会,说明理由;若会,求出A市受沙尘暴影响的时间. 解析:过点A作AC⊥BF于C,然后求出∠ABC=30°,再根据直角三角形30°角所 对的直角边等于斜边的一半可得AC=1 2AB,从而判断出A市受沙尘暴影响,设从D点开始受影响,此时AD=200km,利用勾股定理列式求出CD的长,再求出受影响的距离,然后根据时间=路程÷速度计算即可得解. 解:如图,过点A作AC⊥BF于C,由

勾股定理的应用专项训练题及答案

勾股定理的应用专项训练 题及答案 Prepared on 24 November 2020

八年级数学暑期集训练习 勾股定理的应用 1.一旗杆在其的B处折断,量得AC=5米,则旗杆原来的高度为() A.米 B.2米 C.10米 D.米 第1题第2题第3题 2.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为() A.60海里 B.45海里 C.20海里 D.30海里 3.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的顶端B下降至B′,那么BB′() A.小于1m B.大于1m C.等于1m D.小于或等于1m 4.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距() A.25海里 B.30海里C.40海里 D.50海里 第4题第5题 5.如图,学校有一块长方形花坛,有极少数人为了避开拐角走“捷径”,在花坛内走出了一条“路”,他们仅仅少走了()步,却踩伤了花草(假设2步为1米) A.2 B.4 C.5 D.6 6.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要 ()米. A.5 B.7 C.8 D.12 7.如图是一个长为4,宽为3,高为12矩形牛奶盒,从上底一角的小圆孔插入一根到达底部的直吸管,吸管在盒内部分a的长度范围是(牛奶盒的厚度、小圆孔的大小及吸管的粗细均忽略不计)()A.5≤a≤12 B.12≤a≤3C.12≤a≤4D.12≤a≤13 8.小红在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如图)拉到岸边,花柄正好与水面成60°夹角,测得AB长1m,则荷花处水深OA为() A.1m B.2m C.3m D. m

《勾股定理》专题总结及应用

《勾股定理》专题总结及应用 本章概述 本章主要学习勾股定理、勾股定理的逆定理及它们的应用.通过从特殊到一般的探索过程过程验证了直角三角形三边之间的数量关系——勾股定理,又由生活实例及三角形全等方法验证由三边关系得到直角三角形——勾股定理的逆定理.学习时应注意区分并把它们运用到实际问题中,同时了解定理、互逆命题、互逆定理的相关内容. 本章学习重难点 【本章重点】会灵活运用勾股定理进行计算及解决一些实际问题;掌握勾股定理的逆定理的内容及其证明过程,并会应用其解决一些实际问题. 【本章难点】掌握勾股定理探索过程,并掌握其适用范围;理解勾股定理及其逆定量. 【学习本章注意的问题】 在学习本章内容的过程中,主要注意勾股定理及其逆定理的应用.在解决实际问题的过程中常用下列方法:(1)直接法;(2)转化法;(3)构造图形法(即构造直角三角形以达到解题的目的); (4)图形结合法;(5)数形结合法;(6)方程的思想方法. 中考透视 本节知识在中考中以考查已知直角三角形的两边求第三边,运用勾股定理解决实际问题为主.其中定理在实际生活中的应用是热点,一般以选择题、填空题或解答题的形式出现,有时也与其他知识一起综合命题. 知识网络结构图 一、知识性专题 专题1 勾股定理及其逆定理的应用 【专题解读】要证明以三条线段(或线段所在的直线)为边的三角形是直角三角形,应设法求出三边的长或关系式,利用勾股定理的逆定理证明. 例1 如图18-69所示,在等腰直角三角形ABC 的斜边上取两点M ,N , 使∠MCN =45°,设AM=a ,MN=x,BN=b ,判断以x,a,b 为边长的三角形的形状. 分析 要判断三角形的形状,就应设法将x,a,b 放到一个三角形中,由于 ∠MCN =45°,因此可过点C 作CD ⊥MC ,截取CD=CM ,这样就可以得到 全等的三角形,并把x,a,b 放到一个三角形中,进而利用勾股定理的逆定理 判断三角形的形状. 解:作CD ⊥CM ,且CD=CM ,连接ND ,BD , ∵AC ⊥BC ,CD ⊥CM ,∴∠ACB =∠MCD =90°.∴∠ACM =∠BCD . 又∵AC=BC ,CM=CD ,∴△CAM ≌△CBD . ∴∠CBD=∠A =45°,AM=BD=a . ∴CM=CD ,∠MCN =∠DCN =45°,CN=CN , ∴△MCN ≌△DCN . ∴ND=MN=x . 直角三角形 勾股定理 拼图法验证 应用 勾股定理的逆定理 判断直角三角形 勾股数 应用

专题五:勾股定理的分类应用

勾股定理全章常考分类习题 方程思想的应用: 1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°, ,求、、的值。 2.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的 长. 3.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长. 4. 如图,在长方形ABCD 中,将?ABC 沿AC 对折至?AEC 位置,CE 与AD 交于点F 。(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长 5. 如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积 D C B A F E

典型几何题 1.如图,Rt △ABC 中,∠C =90°,∠A =30°,BD 是∠ABC 的平分线,AD =20,求BC 的长. 2.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长. 3.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积. 4.已知:如图,△ABC 中,∠CAB =120°,AB =4,AC =2,AD ⊥BC ,D 是垂足,求AD 的长. 5、如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6,AC=8, 求AB 、CD 的长 D C B A

勾股定理及常见题型分类

勾股定理及常见题型分类 一、知识要点: 1勾股定理 2、勾股定理证明方法及勾股树 3、勾股定理逆定理 4、勾股定理常见题型回顾 二、典型题 题型一: “勾股树”及其拓展类型求面 1. 右图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是 直角三角形.若正方形A、B、C、D的边长分别是3、5、2、3 ,则最大正方形 E 的面积是 () A.13 B.26 C.47 D.94 2. 如图,直线I上有三个正方形a,b,c,若a,c的边长分别为6和8,求b的面积。 3. 如图,以Rt △ ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系. 4、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是系是( ) A. S i- S 2= S3 B. S ι+ S2= S3 C. S 2+S3< S1 D. S 2- S 3=S1 S i、S、S3,则它们之间的关 甲乙 图1

5、在直线 上依次摆放着七个正方形(如图 4所示)。已知斜放置的三个正方形的面积分别是 正放置的四个正方形的面积依次是 题型二:勾股定理与图形问题 1、已知△ ABc 是边长为1的等腰直角三角形, 以Rt △ ABC 的斜边AC 为直角 边,画第二个等腰 Rt △ ACD 再以Rt △ ACD 的斜边AD 为直角边,画第三个 等腰Rt △ ADE …,依此类推,第n 个等腰直角三角形的斜边长是 ____________ 4.某公司的大门如图所示,其中四边形ABCD 是长方形 ,上部是以AD 为直径的半圆, 其中AE =2.3 m,BC =2m ,现有一辆装满货物的卡车,高为2.5 m ,宽为1.6 m ,问这辆 卡车能否通过公司的大门 ?并说明你的理由 5. 如图是一块地,已知 AD=8m CD=6m ∠ D=90°, AB=26m BC=24m 求这块地的面积。 题型三:在直角三角形中,已知两边求第三边 2.如图,求该四边形的面积 _________________ 3.如图2,已知,在△ ABC 中,∠ A = 45 BC 的长为 _______________ . ,AC = 2, AB = .3+1,则边 1、2 、3 ,

勾股定理经典分类练习题

勾股定理常考习题 勾股定理的直接应用: 1、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A :26 B :18 C :20 D :21 2、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :7 3.在平面直角坐标系中,已知点P 的坐标是(3,4),点Q 的坐标是(7,8),则线段PQ 的长为_____. 4、 若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积是_________. 5、直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积是___________. 6、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。 | 7.在△ABC 中,若∠A +∠B =90°,AC =5,BC =3,则AB =______,AB 边上的高CE =______. 8.在△ABC 中,若AC =BC ,∠ACB =90°,AB =10,则AC =______,AB 边上的高CD =______. 9.等腰直角三角形的斜边为10,则腰长为______,斜边上的高为______. 10、若等腰三角形的腰长为10,底边长为12,则底边上的高为( ) A 、6 B 、7 C 、8 D 、9 11.若等腰三角形两边长分别为4和6,则底边上的高等于( ). (A)7 (B)7或41 (C)24 (D)24或7 12.在△ABC 中,若∠ACB =120°,AC =BC ,AB 边上的高CD =3,则AC =______,AB =______,BC 边上的高AE =______. 13. 等边三角形的边长为2,它的面积是___________ 14、若直角三角形的三边长分别是n+1,n+2,n+3,则n____________。 ; 15.在数轴上画出表示10 及13的点. 16、如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少 17.如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( ). (A)4 (B)6 (C)8 (D)102 。 18.如图18-2-5,以的三边为边向Rt △ABC 外作正 方形,其面积分别为S 1、S 2、S 3,且S 1=4,S 2=8,则AB 的长 为_________. 18题图 19题图 20题图 19.如图,Rt △ABC 中,∠C =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积和为( ). 】 (A)150cm 2 (B)200cm 2 (C)225cm 2 (D)无法计算 20.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的 边长是______. 21.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3, 水平放置的4个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______. 方程思想的应用: 1、 如图所示,已知△ABC 中,∠C=90°,∠A=60°, , 求、、的值。 ,

下勾股定理典型例题归类总结

勾股定理典型例题归类总结 题型一:直接考查勾股定理 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长 跟踪练习: 1.在ABC ?中,90C ∠=?. (1)若a=5,b=12,则c= ; (2)若a:b=3:4,c=15,则a= ,b= . (3)若∠A=30°,BC=2,则AB= ,AC= . 2. 在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 分别对的边为a ,b ,c ,则下列结论正确的是( ) A 、 B 、 C 、 D 、 3.一个直角三角形的三边为三个连续偶数,则它的三边长分别为( ) A 、2、4、6 B 、4、6、8 C 、6、8、10 D 、3、4、5 4.等腰直角三角形的直角边为2,则斜边的长为( ) A 、 B 、 C 、1 D 、2 5.已知等边三角形的边长为2cm ,则等边三角形的面积为( ) A 、 B 、 C 、1 D 、 6.已知直角三角形的两边为2和3,则第三边的长为___________. 7.如图,∠ACB=∠ABD=90°,AC=2,BC=1,,则BD=___________. 8.已知△ABC 中,AB=AC=10,BD 是AC 边上的高线,CD=2,那么BD 等于( ) A 、4 B 、6 C 、8 D 、 9.已知Rt △ABC 的周长为,其中斜边,求这个三角形的面积。 10. 如果把勾股定理的边的平方理解为正方形的面积,那么从面积的角度来说,勾股定理可以推广. (1)如图,以Rt △ABC 的三边长为边作三个等边三角形,则这三个等边三角形的面积1S 、2S 、3S 之间有何关系?并说明理由。 (2)如图,以Rt △ABC 的三边长为直径作三个半圆,则这三个半圆的面积1S 、2S 、3S 之间有何关系? (3)如果将上图中的斜边上的半圆沿斜边翻折180°,请探讨两个阴影部分的面积之和与直角三角形的面积之间的关系,并说明理由。(此阴影部分在数学史上称为“希波克拉底月牙”)

相关文档
最新文档