T型接头焊接温度场ANSYS仿真分析

T型接头焊接温度场ANSYS仿真分析
T型接头焊接温度场ANSYS仿真分析

焊缝凝固过程的温度场分析

初始条件:焊接件的初始温度为25度,焊缝温度为3000;

对流边界条件:表面传热系数为5e-4,比热容0.2,材料密度0.28,空气温度为25度;求2000s后整个焊接件的温度分布

1、选择网格单元类型

Preprocessor>Element Type>Add/Edit/Delete>Add>Thermal Mass>Solid>Brick 8 node 70

图1-1 定义单元类型

2、设置钢板及焊缝材料属性

Preprocessor>Material Props>Material Models>Material Model Number 1>Thermal

a.设置焊件材料密度、热传导系数、比热容,设置焊缝材料密度、热传导系数、比热容及与温度相关的涵参数,如下图所示。

b.设置左右两道焊缝的焓参数,焓参数随温度变化曲线如图2-5所示。

图2-1 钢板热导率设置

图2-2 设置钢板比热容

图2-3 设置钢板密度

图2-4 焊缝焓参数设置

图2-5 左右焊缝焓参数

3、建立几何模型

Preprocessor>Modeling>Create>V olumes>Block>By Dimensions 建立焊件几何模型。

Preprocessor>Modeling>Create>V olumes>Cylinder>By Dimensions 建立焊缝几何模型。建模过程如图3-1所示。

图3-1 几何模型建模过程1

图3-2 几何模型建模过程2

通过Reflect建立完整的几何模型,之后运用布尔运算中glue使整个模型成为一个

整体,如图3-3所示。

焊接模型几何参数:横板:2*1.2*0.4

竖板:0.4*1.2*1

焊缝:R0.2*1.2

图3-3 焊件几何模型

设置焊件及左右焊缝网格属性

Preprocessor>Meshing>Mesh Attributes>Picked 选择焊件或是焊缝,分别对其进行设置。

图3-4 焊件和焊缝的属性划分

4、划分网格

4.1 设置网格单元密度

Preprocessor>Meshing>Size Cntrls>Manual Size>Global>Size设置网格单元密度为0.05。

图4-1 网格单元密度设置

4.2 划分网格结果

图4-2 网格划分结果

5、求解

5.1 划分网格后杀死左焊缝单元

Solution>Load Step Opts>Other>Birth&Death>Kill Elements

图5-1 杀死左焊缝

5.2 设置温度偏移量

Solution>Analysis Type>Analysis Options,在体内弹出的对话框Toffst中输入460,如图5-2所示。

图5-2 温度偏移量设置

5.3 稳态求解

a. 设置焊缝初始温度

Solution>Define Loads>Apply>Thermal>Temperature>On Nodes

图5-3 焊缝初始温度设置1

图5-4 焊缝初始温度设置2

b. 对两钢板施加初始温度

Solution>Define Loads>Apply>Thermal>Temperature>On Nodes

图5-5 钢板初始温度设置1

图5-6 钢板初始温度设置2

5.5 设置求解选项—时间

Solution>Load Step Opts>Time/Frequence>Time-Time Step

图5-7 求解时间设置

5.6 运算结果

Solution>Solve>Current LS

图5-8 1s稳态求解云图结果

5.7 右焊缝液固相变瞬态求解

进行瞬态求解,分析右焊缝液固相变过程,时间设置1~100s

删除焊缝温度载荷

Solution>Define Loads>Delete>Thermal>Temperature>On Nodes>TEMP>OK

图5-9 删除稳态载荷

施加对流换热载荷

Solution>Define Loads>Delete>Thermal>Temperature>On Nodes

图5-10 施加对流换热载荷

瞬态求解设置

Solution>Load Step Opts>Time/Frequence>Time-Time Step

图5-11 施加对流换热载荷

求解

Solution>Solve>Current LS

5.8 右焊缝凝固过程分析

Solution>Load Step Opts>Time/Frequence>Time-Time Step

图5-12 右焊缝凝固过程时间步设置

运行结果

Solution>Solve>Current LS

图5-13 右焊缝1000s云图显示

六、左焊缝固液相变过程分析

6.1 左焊缝凝固过程

左焊缝固液相变过程、凝固过程、求解过程同右焊缝设置和分析过程,在此之前应先将左焊缝激活Solution>Load Step Opts>Other>Birth&Death>Kill Element,然后进行节点设置、节点温度设置、瞬态求解设置。

Solution>Solve>Current LS

图6-12 a.1001s的温度云图b.1002s的温度云图c.1100s的温度云图d.2000s的温度云图

七、结果后处理

7.1 选择时间节点

General Postproc>Read Results>By pick

图7-1 左焊缝节点选择

General Postproc>Plot Results>Contour Plot>Nodal Solution>DOF Solution> Nodal Temperature 查看应变结果。

图7-2 左焊缝节点随时间的温度变化曲线

Ansys计算温度场操作流程学习资料

Instruction of Ansys temperature field calculation Question 1: Consider an infinite (in one direction) plate with initial temperature T0. One end of the plate is exposed to the environment of which the temperature is T e (III type boundary condition). Analyze the temperature distribution in the plate during the period of 2000s. 问题1:考虑一个方向无限长的平板,初始温度为T0,一段暴露在温度为T e的环境中,分析其在2000s内温度分布情况。 Basic parameters基本物性参数 Geometry几何:a=1 m, b=0.1 m Material材料:λ=54 W/m·o C, ρ=7800 kg/m3, c p=465 J/kg·o C Loads载荷:T0=0 o C, T e=1000 o C, h=50 W/m2·o C Jobname and directory settings设置文件名、存储路径 Menu | File | Change Jobname Menu | File | Change Directory Preprocessing前处理 (1) Define Element Type定义单元类型 Preprocessor | Element Type | Add/Edit/Delete Add: Thermal Mass | Solid | Quad 4node 55 (2) Set Material Properties设置材料属性 Preprocessor | Material Props | Material Models Thermal: Conductivity: Isotropic KXX=54 Thermal: Density=7800 Thermal: Specific Heat=465

ANSYS温度场例题分析

短圆柱体的热传导过程 问题:一短圆柱体,直径和高度均为1m,现在其上端面施加大小为100℃的均匀温度载荷,圆柱体下端面及侧面的温度均为0℃,试求圆柱体内部的温度场分布(假设圆柱体不与外界发生热交换)。圆柱体材料的热传导系数为30W/(m·℃)。 求解: 第一步:建立工作文件名和工作标题 在ANSYS软件中建立相应的文件夹,并选择Thermal复选框。 第二部:定义单元类型 在单元类型(element type)中选择thermal solid和quad 4node 55,在单元类型选择数字(element type reference number)输入框中输入1,在单元类型选择框里选择Axisymmetric,其余默认即可。 第三步:定义材料性能参数 在材料性能参数对话框中输入圆柱体的导热系数30. 第四步:创建几何模型、划分网格 创建数据点,输入点坐标。在第一个输入框中输入关键点编号1,并输入第一个关键点坐标0、0、0,重复输入第二个、第三个、第四个关键点,相应的坐标分别为2(0.5,0,0);3(0.5,1,0);4(0,1,0)。结果如下图1所示:

在模型中创建直线,选择编号为1、2的关键点生成一条直线,在选取2、3生成一条直线,同样选择编号为3、4和编号为4、1的关键点生成另外两条直线。 结果如下图2所示: 之后在plot numbering controls对话框,分别打开KP Keypoint numbers、LINE line numbers、AREA Area numbers,建立直线L1、L2、L3、L4线段。生成几 何模型,如下图所示:

(完整word版)焊接接头的种类及接头型式

焊接接头的种类及接头型式 焊接中,由于焊件的厚度、结构及使用条件的不同,其接头型式及坡口形式也不同。焊接接头型式有:对接接头、T形接头、角接接头及搭接接头等。 (一)对接接头 两件表面构成大于或等于135°,小于或等于18 焊接中,由于焊件的厚度、结构及使用条件的不同,其接头型式及坡口形式也不同。焊接接头型式有:对接接头、T形接头、角接接头及搭接接头等。 (一)对接接头 两件表面构成大于或等于135°,小于或等于180°夹角的接头,叫做对接接头。在各种焊接结构中它是采用最多的一种接头型式。 钢板厚度在6mm以下,除重要结构外,一般不开坡口。 厚度不同的钢板对接的两板厚度差(δ—δ1)不超过表1—2规定时,则焊缝坡口的基本形式与尺寸按较厚板的尺寸数据来选取;否则,应在厚板上作出如图1—8所示的单面或双面削薄;其削薄长度L≥3(δ—δ1)。 图1—8 不同厚度板材的对接 (a)单面削薄,(b)双面削薄

表1-2 (二)角接接头 两焊件端面间构成大于30°、小于135°夹角的接头,叫做角接接头,见图1—9。这种接头受力状况不太好,常用于不重要的结构中。 图1—9 角接接头 (a)I形坡口;(b)带钝边单边V形坡口 (三)T形接头

一件之端面与另一件表面构成直角或近似直角的接头,叫做T形接头,见图1—1 0。 图1—10 T形接头 (四)搭接接头 两件部分重叠构成的接头叫搭接接头,见图1—11。 图1—11 搭接接头 (a)I形坡口,(b)圆孔内塞焊;(c)长孔内角焊 搭接接头根据其结构形式和对强度的要求,分为不开坡口、圆孔内塞焊和长孔内角焊三种形式,见图1—11。

焊接形式

焊接形式 一、焊接接头形式 焊接接头形式:对接接头、角接接头及T字形接头、搭接接头。 (a)对接接头;(b)角接接头;(c)搭接接头 图4-44 焊接接头的三种形式 1.对接接头 结构:两个相互连接零件在接头处的中面处于同一平面或同一弧面内进行焊接的接头。 特点:受热均匀,受力对称,便于无损检测,焊接质量容易得到保证。 应用:最常用的焊接结构形式。 2.角接接头和T型接头 结构:两个相互连接零件在接头处的中面相互垂直或相交成某一角度进行焊接的接头。两构件成T字形焊接在一起的接头,叫T型接头。角接接头和T字接头都形成角焊缝。 特点:结构不连续,承载后受力状态不如对接接头,应力集中比较严重,且焊接质量也不易得到保证。 应用:某些特殊部位:接管、法兰、夹套、管板和凸缘的焊接等。 3.搭接接头 结构:两个相互连接零件在接头处有部分重合在一起,中面相互平行,进行焊接的接头。 特点:属于角焊缝,与角接接头一样,在接头处结构明显不连续,承载后接头部位受力情况较差。应用:主要用于加强圈与壳体、支座垫板与器壁以及凸缘与容器的焊接。 二、坡口形式 焊接坡口——为保证全熔透和焊接质量,减少焊接变形,施焊前,一般将焊件连接处预先加工成各种形状。不同的焊接坡口,适用于不同的焊接方法和焊件厚度。 坡口形状 基本坡口形状:Ⅰ形、V形、单边V形、 U形、J形。 组合形状 特例:一般接头应开设坡口,而搭接接头无需开坡口即可焊接。双V形坡口由两个V形坡口和一个I形坡口组合而成 图4-45 坡口的基本形式

图4-46 双V形坡口 三、压力容器焊接接头分类 目的:为对口错边量、热处理、无损检测、焊缝尺寸等方面有针对性地提出不同的要求,GB150根据位置,根据该接头所连接两元件的结构类型以及应力水平,把接头分成A、B、C、D四类,如图4-47。 图4-47 压力容器焊接接头分类 A类:圆筒部分的纵向接头(多层包扎容器层板层纵向接头除外)、球形封头与圆筒连接的环向接头、各类凸形封头中的所有拼焊接头以及嵌入式接管与壳体对接连接的接头。 B类:壳体部分的环向接头、锥形封头小端与接管连接的接头、长颈法兰与接管连接的接头。但已规定为A、C、D类的焊接接头除外。 C类:平盖、管板与圆筒非对接连接的接头,法兰与壳体、接管连接的接头,内封头与圆筒的搭接接头以及多层包扎容器层板层纵向接头。 D类:接管、人孔、凸缘、补强圈等与壳体连接的接头。但已规定为A、B类的焊接接头除外。 注意:焊接接头分类的原则仅根据焊接接头在容器所处的位置而不是按焊接接头的结构形式分类,所以,在设计焊接接头形式时,应由容器的重要性、设计条件以及施焊条件等确定焊接结构。这样,同一类别的焊接接头在不同的容器条件下,就可能有不同的焊接接头形式。 四、压力容器焊接结构设计的基本原则 1.尽量采用对接接头,易于保证焊接质量,所有的纵向及环向焊接接头、凸形封头上的拼接焊接接头,必须采用对接接头外,其它位置的焊接结构也应尽量采用对接接头。 举例:角焊缝,改用对接焊缝[图48(a)改为8(b)和(c)]。减小了应力集中,方便了无损检测,有利于保证接头的内部质量。

基于ANSYS的焊接参数对其温度场的影响分析

基于ANSYS的焊接参数对其温度场的影响分析 发表时间:2009-6-2 作者: 李乡武来源: e-works 关键字: CAE ansys 焊接温度场 本文使用ansys研究了平板堆焊中,焊接速度和高斯有效热源半径对其焊接温度场的影响。经过计算表明:焊接速度越快,平板在焊接过程中的最高温度越低;热源有效半径越小,平板在焊接过程中的最高温度越高。这一结论对焊接优化控制参数有着重要的指导意义。 1 引言 焊接温度场的准确计算或测量,是焊接冶金分析和焊接应力、应变热弹塑性动态分析的前提。关于焊接热过程的分析,苏联科学院的助Rykalin院士对焊接过程传热问题进行了系统的研究,建立了焊接传热学的理论基础。为了求热传导微分方程的解,他把焊接热源简化为点、线、面三种形式的理想热源,且不考虑材料热物理性质随温度的变化以及有限尺寸对解的影响。实际上焊接过程中除了包含由于温度变化和高温引起的材料热物理性能和变化而导致传热过程严重的非线性外,还涉及到金属的熔化、凝固以及液固相传热等复杂现象,因此是非常复杂的。由于这些假定不符合焊接的实际情况,因此所得到的解与实际测定有一定的偏差,尤其是在焊接熔池附近的区域,误差很大,而这里又恰恰是研究者最为关心的部位。 本文利用ansys建立了平板焊接的三维模型,并研究焊接速度和高斯热源的有效半径对其温度场的影响。为实际的焊接工程了提供了一定的指导意义。 2 模型建立与计算讨论 模型尺寸为100mm×50mm×6mm,材料为20号钢,电弧沿焊件中心移动。由于模型的对称性,本文只选取半模型进行计算,其有限元模型图图1所示。 图1 平板焊接的有限元模型图2 有限元模型中考察的点 本文使用solid70单元来模拟焊接过程的动态温度场,为了提高计算的精度又要节省计算时间,在靠近焊缝中心处即从焊缝中心到距离其5mm的区域内网格控制在1mm,然后其网格密度一次减小;在厚度方向划分为两层。 计算参数:焊接的电压U=20;焊接电流I=160;热效率为0.7。表1给出了平板的温度场计算参数。由于材料缺乏高温材料数据,因此1500度以上的数据采用外插得到。 表1 平板的材料参数

焊接接头及坡口形式

焊接接头及坡口形式 一、 接头的分类 接头是由两个或两个以上零件用焊接方法连接的,焊接 结构通常由若干个焊接接头组成。 型接头(十字) 端接接头 在结构中的作用: (1)工作接头:工作力的传递; (2)联接接头:更主要的作用是作焊接的办法使更多的焊接连接成整体,起连接作用。通常不做强度计算。 (3)蜜封接头:防止泄漏是其主要作用。 1.对接接头 搭接接头角接接头

从受力的角度看,受力状况好,应力集中程度小,材料消耗少,变形也较小。往往在接头开坡口。 2.T型和十字接头 将相互垂直的焊件用角焊缝边接起来的接头,分焊透、 不焊透两种,接头焊透,要根据坡口的T型和十字接头承受 动载能力而定,不焊透的T型和十字接头承受力是不周的。 3.搭接接头。 是指两个焊接部分重叠在一起。搭接接头应力分布不均 匀,强度较低。 4.角接头 是指两个焊件的端面构成大于30。、小于是135。夹角,用焊接连接起来的接头。 5.端接接头 是指将两构件重叠放置或两焊件之间的夹角不大于 30°,用焊接边接起来的接头。 二、坡口的形式和坡口尺寸 1.坡口的形式 主要是保证焊接接头的质量和方便焊接、使焊缝根部焊 透。 选用何种坡口形式,主要取决于焊接的方法、焊接的位置、焊件的厚度、焊缝熔透要求。

选择坡口应注意如下问题: 1)坡口的加工条件; 2)可焊接性; 3)焊接材料的消耗生产成本; 4)焊接变形如何; 常用的坡口形式: 1)I型 2)V型 3)双丫型 4)U型 5)双丫形 2.坡口的作用 1)确保焊接电源深入到坡口根部间隙处; 2)操作清除焊渣; 3)调节熔敷金属比例,提高焊接接头综合性能; 3.坡口的加工 加工方法的选择: (1)剪边:用剪板机剪切加工; 工亦£頊

T型接头焊接温度场ANSYS仿真分析报告

焊缝凝固过程的温度场分析 初始条件:焊接件的初始温度为25度,焊缝温度为3000; 对流边界条件:表面传热系数为5e-4,比热容0.2,材料密度0.28,空气温度为25度;求2000s后整个焊接件的温度分布 1、选择网格单元类型 Preprocessor>Element Type>Add/Edit/Delete>Add>Thermal Mass>Solid>Brick 8 node 70 图1-1 定义单元类型 2、设置钢板及焊缝材料属性 Preprocessor>Material Props>Material Models>Material Model Number 1>Thermal a.设置焊件材料密度、热传导系数、比热容,设置焊缝材料密度、热传导系数、比热容及与温度相关的涵参数,如下图所示。 b.设置左右两道焊缝的焓参数,焓参数随温度变化曲线如图2-5所示。

图2-1 钢板热导率设置 图2-2 设置钢板比热容 图2-3 设置钢板密度

图2-4 焊缝焓参数设置 图2-5 左右焊缝焓参数 3、建立几何模型 Preprocessor>Modeling>Create>V olumes>Block>By Dimensions 建立焊件几何模型。 Preprocessor>Modeling>Create>V olumes>Cylinder>By Dimensions 建立焊缝几何模型。建模过程如图3-1所示。

图3-1 几何模型建模过程1 图3-2 几何模型建模过程2 通过Reflect建立完整的几何模型,之后运用布尔运算中glue使整个模型成为一个

焊缝基本知识

焊缝基本常识 一、焊接接头及类型 用焊接方法连接的接头称为焊接接头(简称为接头)。它由焊缝、熔合区、热影响区及其邻近的母材组成。在焊接结构中焊接接头起两方面的作用,第一是连接作用,即把两焊件连接成一个整体;第二是传力作用,即传递焊件所承受的载荷。根据GB/T3375—94《焊接名词术语》中的规定,焊接接头可分为10种类型,即对接接头、T形接头、十字接头、搭接接头、角接接头、端接接头、套管接头、斜对接接头、卷边接头和锁底接头,示于图1。其中以对接接头和T形接头应用最为普遍。 二、焊缝坡口基本形式 根据设计或工艺需要,将焊件的待焊部位加工成一定几何形状的沟槽称为坡口。开坡口的目的是为了得到在焊件厚度上全部焊透的焊缝。坡口的形式由 GB985—88《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》、GB986—88《埋弧焊焊缝坡口的基本形式及尺寸》标准制定的:常用的坡口形式有I形坡口、Y型坡口、带钝边U形坡口、双Y形坡口、带钝边单边V形坡口等,见图2。

三、坡口几何尺寸的参数及作用 1)坡口面,焊件上所开坡口的表面称为坡口面,见图3。 2)坡口面角度和坡口角度,焊件表面的垂直面与坡口面之间的夹角称为坡口面角度,两坡口面之间的夹角称为坡口角度,见图4。

开单面坡口时,坡口角度等于坡口面角度;开双面对称坡口时,坡口角度等于两倍的坡口面角度。坡口角度(或坡口面角度)应保证焊条能自由伸入坡口内部,不和两侧坡口面相碰,但角度太大将会消耗太多的填充材料,并降低劳动生产率。 3)根部间隙,焊前,在接头根部之间预留的空隙称为根部间隙。亦称装配间隙。根部间隙的作用在于焊接底层焊道时,能保证根部可以焊透。因此,根部间隙太小时,将在根部产生焊不透现象;但太大的根部间隙,又会使根部烧穿,形成焊瘤。 4)钝边,焊件开坡口时,沿焊件厚度方向未开坡口的端面部分称为钝边。钝边的作用是防止根部烧穿,但钝边值太大,又会使根部焊不透。 5)根部半径,U形坡口底部的半径称为根部半径。根部半径的作用是增大坡口根部的横向空间,使焊条能够伸入根部,促使根部焊透。 四、Y形、带钝边U形、双Y形三种坡口各自的优缺点 当焊件厚度相同时,三种坡口的几何形状见图5。 Y形坡口:1)坡口面加工简单。2)可单面焊接,焊件不用翻身。3)焊接坡口空间面积大,填充材料多,焊件厚度较大时,生产率低。4)焊接变形大。 带钝边U形坡口:1)可单面焊接,焊件不用翻身。2)焊接坡口空间面积大,填充材料少,焊件厚度较大时,生产率比Y形坡口高。3)焊接变形较大。4)坡口面根部半径处加工困难,因而限制了此种坡口的大量推广应用。 双Y形坡口:1)双面焊接,因此焊接过程中焊件需翻身,但焊接变形小。2)坡口面加工虽比Y形坡口略复杂,但比带钝边U形坡口的简单。3)坡口面积介于Y形坡口和带钝边U形坡口之间,因此生产率高于Y形坡口,填充材料也比Y形坡口少。 五、常用的垫板接头形式及优缺点 在坡口背面放置一块与母材成分相同的垫板,以便焊接时能得到全焊透的焊缝,根部又不致被烧穿,这种接头称为垫板接头。常用的垫板接头形式有:I形带垫板坡口、V形带垫板坡口、Y形带垫板坡口、单边V形带垫板坡口等见图6。

焊接接头基本形式及尺寸

表1焊接接头基本形式及尺寸 序号接头 类型 坡口 形式 图形 焊 接方 法a 焊件厚 度 (mm) 接头结构尺寸 适用范 围 b ( mm) P (mm ) R ( mm) 1 对 接 Ⅰ 形 D s Q s R b M z <3 ≤3 8~16 8~16 —— 1 ~2 1 ~2 ~1 ~1 —— 容器 和一般钢结 构 2 对 接 V 形 D s Q s R b M z ≤6 ≤16 16~20 16~20 30 °~ 35° —b ~2 1~ 2 7 7 — 各类 承压管子,压 力容器和中、 薄件承重结 构 3 对 接 U 形 D s W s ≤60 10 °~ 15° — 2 ~5 ~2 5 中、厚 壁汽水管道4 对 接 双 V 形 水 平 管 D s W s >16 30 °~ 40° 8 °~ 12° 2 ~5 1~ 2 5 中、厚 壁汽水管道 表1(续) 序 号 接 头类 型 坡 口 形 式 图形 焊 接方 法a 焊件 厚度 (mm) 接头结构尺寸 适用 范围 b ( mm) P (mm ) R ( mm)

5 对 接 双 V 形 垂 直 管 D s W s c >16 1= 35°~ 40° 2= 20°~ 25° 1= 15 °~ 20° 2= 5 °~ 10° 1 ~4 1~ 2 5 中、 厚壁汽水 管道 6 对 接 综 合形 D s W s >60 20 °~ 25° 5 ° 2 ~5 25 厚 壁汽水管 道 7 对 接 X 形 D s M z >16 >20 30 °~ 35° — 2 ~3 ~1 2~ 4 7 — 双 面焊接的 大型容器 和结构 8 对 接 封 头 D s W s 管径 不限 同厚壁管坡口加工要求 汽 水管道或 联箱封头 9 对 接 堵 头 D s W s 直径 ≥ 23 同厚壁管坡口加工要求 汽 水管道或 联箱堵头 1 0T 型接 管 座 D s W s 管径 ≤ 76 50 °~ 60° 30 °~ 35° 2 ~3 1~ 2 按 壁厚 差取 汽 水、仪表取 样等接管 座 1 1T 型接 管 座 D s W s 管径 76~ 133 50 °~ 60° 30 °~ 35° 2 ~3 1~ 2 — 一 般汽水管 道或容器 的接管座 或接头 表1(续) 序号接 头类型 坡 口 形 式 图形 焊 接方 法a 焊件 厚度 (mm) 接头结构尺寸 适用 范围 b ( mm) P (mm ) R ( mm)

建筑工程常见钢筋焊接接头形式及要求

建筑工程常见钢筋焊接接头形式及要求 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

建筑工程常见钢筋焊接接头形式及要求 1、电弧焊机:电弧焊用的是焊丝 电弧焊机:用于焊接不锈钢薄壁构建、电弧焊可以焊接薄一点的铁板、铁皮 2、电焊机:电焊机用的是焊条电焊机:适用于直径 10~40MM 的Ⅰ~Ⅲ级钢筋 和直径 10~25MM 的余热处理Ⅲ级钢筋,焊接时宜采用双面焊,焊接长度为 5D, 不能进行双面焊时,也可采用单面焊,焊接长度为10D;也是施工中常用的焊 接方法。试件:双面焊试件长度不小于(8d+焊缝长度+240)mm;单面焊试件长度不小于 (5d+焊缝长度十240)mm。 3、电渣压力焊电渣压力焊:适用于现浇 钢筋混凝土结构中竖向或斜向(倾斜度在4:1范围内)钢筋的连接,特别是 对于高层建筑的柱、墙钢筋,应用尤为广泛。电渣压力焊试件:一组3根,每根500-600mm ;不小于(8d+240mm) 4、闪光对焊机:闪光对焊:一般用于 梁钢筋的搭接闪光对焊是用在纵向受力钢筋的接长的,理论上说也允许用在柱的钢筋连接,但实际上闪光对焊用来柱子钢筋连接很不好操作,还要考虑接头数控制,工地上一般用电渣压力焊或绑扎连接柱子钢筋。闪光焊试件:一组 抗拉三根300_400mm .一组抗弯三根500_600mm ;不小于(8d+240mm) 说明: 1、对焊是两根钢筋沿着整个接角面连接的方法,它适用 于水平钢筋非施工现场连接;对钢筋端面要求不严格,可以免去钢筋端面磨平工序,因而简化了操作,提高了工效,所以是目前普遍采用的焊接方法; 2、搭接电弧焊适用于直径10~40MM的Ⅰ~Ⅲ级钢筋和直径10~25MM的余热处理Ⅲ 级钢筋,焊接时宜采用双面焊,焊接长度为5D,不能进行双面焊时,也可采用 单面焊,焊接长度为10D;也是施工中常用的焊接方法。 3、电渣压力焊是近 年来兴起的一项新的钢筋竖向连接技术,因其生产率高,施工简单、节能、节材、接头质量可靠

温度ansys分析

4 汽车内饰压制成型模具温度场模拟与分析 温度在汽车内饰压制成型过程中是一个极其重要的参数,无论是模压料的充模流动阶段还是固化阶段,都是在一定的温度下进行的;如果在充模阶段温度控制的不当将直接影响制品的表面质量和力学性能,具体的说,若模具温度过低则会导致模压料流动性降低,难以充满模腔,若模具温度过高则会引起模压料在模具内未完全成型前就开始固化,并且有可能使制品表面的树脂发生分解,同样得不到合格的汽车内饰制品;另一个重要方面就是在压制的过程中要尽量保持模具温度的均匀分布,如果温度分布不均匀就会导致模压料局部提前固化,还会使制品固化度不均匀甚至发生局部树脂分解,同时也会使得制品脱模后产生较大的翘曲变形。因此有必要对模具的加热过程及其温度场进行模拟,根据分析结果对模具的加热设计进行优化。 在世界计算机辅助工程领域中有许多CAE软件都具有热分析的功能,我们以目前使用最为广泛的大型通用有限元软件ANSYS来分析汽车顶篷内饰压制成型模具的加热过程及其温度场分布。 4.1 ANSYS有限元分析软件 4.1.1 ANSYS简介 ANSYS是一种应用广泛的大型通用有限元软件,具有完备的预处理器和后处理器(又称前处理模块和后处理模块)。目前已广泛应用于核工业、石油化工、航空航天、机械制造、能源、汽车交通、国防、军工、电子、土木工程、造船、轻工、日用家电等工业及科学研究中. ANSYS软件含有多种分析能力。包括简单线性静态分析和复杂非线性动态分析。可用来求解结构、流体、电力、电磁场及碰撞等问题。它包含了前处理器、求解器及后处理器和优化等模块,将有限元分析、计算机图形学和优化技术相组合,已成为解决现代工程学问题必不可少的有力工具。 4.1.2 ANSYS热分析模块 ANSYS在处理热分析问题方面具有强大的功能,其不但具有快速的网格划分能力和强大的结果后处理功能,而且还具有非常友好的人机交互界面。在ANSYS 软件中有五个模块可以进行热分析,如图4.1所示,包括:ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/Flotran和ANSYS/ED。 ANSYS提供两类热分析类型,即稳态热分析和瞬态热分析。 稳态传热,即系统的温度场不随时间变化。如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:qax+q生成一q漉出=o,则系统处于热稳态。在稳态热分析中任一节点的温度不随时间变化。稳态热分析的能量平衡方程为

焊接接头及坡口形式

焊接接头及坡口形式 一、接头的分类 接头是由两个或两个以上零件用焊接方法连接的,焊接结构通常由若干个焊接接头组成。 T 对接焊头; 型接头(十字) 角接接头搭接接头 端接接头; 在结构中的作用:1()工作接头:工作力的传递;联接接头:更主要的作用是作焊接的办法使更多的焊2()接

连接成整体,起连接作用。通常不做强度计算。)(3蜜封接头:防止泄漏是其主要作用。对接接头.1. 从受力的角度看,受力状况好,应力集中程度小,材料消耗少,变形也较小。往往在接头开坡口。 2.T型和十字接头 将相互垂直的焊件用角焊缝边接起来的接头,分焊透、不焊透两种,接头焊透,要根据坡口的T型和十字接头承受动载能力而定,不焊透的T型和十字接头承受力是不周的。 3.搭接接头° 是指两个焊接部分重叠在一起。搭接接头应力分布不均匀,强度较低。 4.角接头 是指两个焊件的端面构成大于30°、小于是135°夹角,用焊接连接起来的接头。 5.端接接头 是指将两构件重叠放置或两焊件之间的夹角不大于30°,用焊接边接起来的接头。 二、坡口的形式和坡口尺寸 1.坡口的形式 主要是保证焊接接头的质量和方便焊接、使焊缝根部焊透。选用何种坡口形式,主要取决于焊接的方法、焊接的位置、

焊件的厚度、焊缝熔透要求。.选择坡口应注意如下问题: 1)坡口的加工条件; 2)可焊接性; 3)焊接材料的消耗生产成本; 4)焊接变形如何; 常用的坡口形式: 1)I型 2)V型 3)双Y型 4)U型 5)双Y形

2.坡口的作用 1)确保焊接电源深入到坡口根部间隙处; 2)操作清除焊渣; 3)调节熔敷金属比例,提高焊接接头综合性能; 坡口的加工.3. 加工方法的选择: (1)剪边:用剪板机剪切加工; (2)刨边:用刨床或刨边机加工; (3)车边:用车床和专用管贡上加工; (4)热切割:用气体火焰或等离子弧加工; (5)碳弧切割:清理焊根时开坡口; (6)铲削或磨削:手工或风动工具铲削坡口; 4.坡口尺寸 1)坡口角度:两坡面之间的夹角;符号a表示。 2)坡口面角度:焊接待加工坡口的端面与坡口面之间的夹角;符号B表示。 3)钝边:钝边的作用是防止焊接根部焊穿;符号p表示。4)根部间隙:是确保焊缝根部焊透;符号b表示。 5)根部半径:是增大坡口的空间;符号R表示 6)坡口深度:主要是保证焊件在厚度方向上全部焊透。符号H表示。

焊接接头形式有哪些【汇总】

焊接接头形式有哪些 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 焊接接头 焊接接头是指两个或两个以上零件要用焊接组合的接点。或指两个或两个以上零件用焊接方法连接的接头,包括焊缝、熔合区和热影响区。熔焊的焊接接头是的由高温热源进行局部加热而形成。焊接接头由焊缝金属、熔合区、热影响区和母材金属所组成。 焊接接头形式是由相焊的两焊件相对位置所决定的,主要有对接接头、搭接接头和角接接头等。对接接头所形成的结构基本上是连续的,能承受较大的静载荷和动载荷,是焊接结构中最完善和最常用的结构形式。搭接接头、角接接头所形成的焊缝都是角焊缝,承压后,角焊缝及其四周应力状态比较复杂。所以锅炉、压力容器的主体焊接接头中不采用搭接接头和角接接头。 接头形式一般根据焊缝在结构中的受力状态及部位选择。对锅炉、压力容器上的焊接接头形式主要有以下要求: (1)锅炉、压力容器主要受压元件的主焊缝(锅筒、炉胆和集箱的纵向和环向焊缝,封头、管板和下脚圈的拼接焊缝等)应采用全焊透的对接接头形式。 (2)对于额定蒸汽压力大于或即是3.82MPa的锅炉,集中下降管管接头与筒体的连接必须采用全焊透的接头形式。对于额定蒸汽压力大于或即是9.81MPa的锅炉,管子或管接头与锅筒、集箱、管道角焊连接时,应在管端或锅筒、集箱、管道上开坡口,以利焊透。

(3)当凸形封头与筒体的连接因条件限制不得不采用搭接时,应双面搭接,搭接的长度不应小于封头厚度的3倍,且不应小于25mm。 (4)当必须采用角焊结构时,要选用公道的焊接坡口形式,尽量双面焊接,保证焊透。在任何情况下,焊角尺寸都不得小于6mm。对平封头和管板,还应采用必要的加强结构。(5)压力容器接管(凸缘)与筒体(封头)、壳体连接,平封头与筒体连接,有下列情况之一的,原则上采用全焊透形式:介质为易燃或毒性程度为极度危害和高度危害的压力容器;作气压试验的压力容器;第三类压力容器;低温压力容器;按疲惫准则设计的压力容器;直接受火焰加热的压力容器。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

基于ANSYS的温度场计算

基于ANSYS的温度场计算 ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS 开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAD 工具之一。 应用ansys分析软件对一个具体的对象进行分析和计算时,完整的ansys 分析过程可分成三个阶段:即前处(Preprocessing),前处理是建立有限元模型,完成单元网格剖分:求解(Solution)和后处理(Postprocessing),后处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。下面分别进行说明。 Ansys的前处理 Ansys的前处理技术一般由两部分组成:一、对求解场域进行离散,生成有限元网格;二、区域物理参数的处理。网格剖分主要是实现对求解场域单元的自动剖分,自动把各个单元和节点进行编号,确定各节点的坐标、边界节点的编号等数据,形成一个数据文件,作为有限元程序的输入数据。为了方便查看各单元剖分情况,判断合理性,还要绘制网格剖分图。自适应网格剖分(Adaptive Mesh Generation)及其加密技术是近年来ansys温度场计算中发展比较快和比较完整的内容,它也属于ansys的前处理范畴。 前处理程序是定义问题的程序,它安排所有必须进行汇编的实体数据。它由可分开的两部分组成。第一部分是几何图形和拓扑结构的描述,即该实体有一定几何形状和材料性质,这是对原型样机的结构仿真,我们通过第一部分的工作建立有限元分析实体模型。第二部分可以认为是对原型样机进行仿真的实验描述,包括边界条件、激励和时间变化情况的处理。 一个恰当的、剖分质量好的有限元网格,对计算的作用是致关重要的。网格单元的数量、形状与密度分布,将会对计算结果的精确度、计算效率和计算资源的利用产生直接的影响。而对于复杂的几何体,网格的划分相当费时且容易出错。现在,为了适应分析对象的大型化、高精度的计算结果要求和运行处理自动化的需要,必须实现有限元网格的自动生成,来解决手工操作时存在的工作量大、处理过程繁琐和出错率高等问题。随着有限元数值计算技术的日益成熟,网格生成

焊缝和焊接接头的相关知识

焊缝和焊接接头的概念 焊缝和焊接接头是两个不同的概念,通常考虑较多的是焊接接头焊接接头对焊缝是一个包含关系。 焊缝是焊肉形状,接头是焊件的连接形式。 对接接头可能焊肉是角焊缝,角接接头可能焊肉是对接焊缝。 按焊缝本身截面形式不同,焊缝分为对接焊缝和角焊缝。 ●对接焊缝:按焊缝金属充满母材的程度分为焊透的对接焊缝和未焊透的对接焊缝。焊透的对接焊缝 简称对接焊缝。 ●角焊缝:连接板件板边不必精加工,板件无缝隙,焊缝金属直接填充在两焊件形成的直角或斜角的 区域内。 ●对接焊缝定义:在焊件的坡口面间或一零件的坡口面与另一零件表面间焊接的焊缝。 ●角焊缝定义:沿两直交或近直交零件的交线所焊接的焊缝。 基本上区别这两种,可以用有没有倒坡口来确定,有坡口的是对接焊缝,没有的是角焊缝; 也非尽然,如图所示——利用零件厚度与另一零件间形成的填充结构,这时应结合GB/T3375-94定义进行判别属于对接焊缝还是角焊缝,上图标识的是对接焊缝。

角焊缝和对接焊缝 1、焊接接头型式主要有对接接头、T形接头、角接接头、搭接接头4种,其次还有十字接头、 卷边接头、端接接头、锁底接头、套管接头等。 ◆对接接头:两焊件表面构成大于或等于135o,小于或等于180o夹角的接头。 ◆角接接头:两焊件端部构成大于30o、小于135o夹角的接头。 2、焊件经焊接后所形成的结合部分,即填充金属与熔化的母材凝固后形成的区域,称为焊缝。 焊缝型式分为对接焊缝(坡口焊缝)和角焊缝。 对接焊缝:在焊件的坡口面间或一焊件的坡口面与另一焊件端(表)面间焊接的焊缝,称为对接焊缝,(ASME法规称坡口焊缝)。 角焊缝:两焊件结合面构成直交或接近直交所焊接的焊缝,称为角焊缝如果一个焊接接头即有对接焊缝,又有角焊缝,这样的焊缝称为组合焊缝 对接接头的焊缝形式可以是对接焊缝,也可以是角焊缝或组合焊缝,但以对接焊缝居多。 有的对接接头的焊缝形式是角焊缝,有的角接接头的焊缝形式是对接焊缝(详见 GB/T3375-94标准)

基于ANSYS软件焊接温度场应力场模拟研究

本文由geyongyahoo贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 第 2 卷第 5 期 0 Vl2 o5 o .0N . [ 文章编号] 0 3-4 8 (0 5 1-0 10 10 6 4 2 0 )00 8-4 湖 北 工 业 大 学 学 报 Junl fH biU ies yo eh ooy or a o ue nvr t fTc nlg i 20 年1 月 05 0 Ot2 0 c .0 5 ================================================== 基于 AN d 软件焊接温度场应力场模拟研究 S S 李冬林 ( 湖北工业大学机械工程学院,湖北武汉 4 0 6 ) 308 [ 摘要]阐述了如何运用有限元软件 AN d 对焊接温度场、应力场进行数值模拟计算, 出在计算过程中指SS 要注意的环节, 并对平板堆焊问题进行实例计算 . 总结出模拟计算中的难点问题和未来的研究发展方向 . [ 关键词]温度场;应力场;AN d ;数值模拟 SS [ 中图分类号]T 4 G [ 文献标识码] A : 焊接温度场的准确计算是焊接质量控制、接焊冶金和力学分析的前提, 对焊接过程应力场的动而态变化及焊后残余应力和变形进行准确预见, 减是 . 通过实验的方法来获得焊接过程的温度和应力值虽然比较可靠, 但往往需要花费很长的时间和大量的经费 . 运用有限元软件在计算机上进行焊接过程的数值模拟, 可以在较短的时间内获得不同参数条件下的各项数据 . 因此, 计算机模拟技术有其独特的优点. 笔者在查阅大量文献并反复试验的基础上, 总结出了一套如何采用有限元软件 AN d 对焊接温 S S 度场、应力场的动态变化过程进行数值模拟的方法, 并提出了模拟计算中的难点问题和未来重点的研究方向 . 少焊接裂纹和提高接头强度与性能的重要手段 [] 1 需给定随温度变化的各物理性能参数值 . 般高温一时的物理性能参数比较缺乏, 它对计算结果有较但大的影响, 可采取实验和插值等方法获得 . 焊接热应力的计算属于热弹塑性问题, 算时应指定塑性分计析选项为双线性等向强化, 定义随温度变化的屈并服应力和切变模量值 . 焊接过程中存在两种相变潜热: 态相变潜热固和熔化潜热 . 由于前者一般比后者小得多, 通常可以忽略 . 关于熔化潜热的处理, S S 中在定义材料 AN d 属性时通过给定热焓的值加以考虑 . 依 1. 2 建模和划分网格建模时, 据焊件的形 1. 状、尺寸、载荷的形式等综合考虑几何模型的形状 . 对于对称、反对称或轴对称焊件结构, 尽量运用其对称性来简化模型 . 在焊接过程中, 由于高度集中的热源输入, 必须将焊缝处的网格划分得极为细密, 单元网格最好故在 2mm 以下, 以提高计算精度 . 远离焊缝的地方网格划分得可以稀疏些, 以减少整个模型的节点数, 进而

焊接接头形式和焊缝符号

焊接接头型式和焊缝符号 焊接接头即用焊接方法联结的接头。它由焊缝、熔合区和热影响区组成。 一、焊接接头型式 在手工电弧焊中,由于焊件厚度,结构形状以及对质量要求的不同、其接头型式也不相同。 根据国家标准 GB 9 85一8 0规定,焊接接头的型式主要可分为四种,即对接接头、角接接头、搭接接头、T形接头)如图1-11所示。 图1-11焊接接头的基本类型 a)对接接头b)角接接头c)搭接接头d)T形接头 1.对接接头两焊件端面相对平行的接头称为对接接头,如图1-11a 所示。这种接头能承受较大的载荷,是焊接结构中最常用的接头。 2.角接接头两焊件端面间构成大于30°,小于135°夹角的接头称为角接接头,如图1-11b所示。角接接头多用于箱形构件,其焊缝的承载能力不高,所以一般用于不重要的焊接结构中。 3.搭接接头两焊件重叠放置或两焊件表面之间的夹角不大于30°构成的端部接头称为搭接接头,如图1-11C所示。搭接接头的应力分布不均匀,接头的承载能力低,在结构设计中应尽量避免采用塔接接头。 4.T形接头一焊件端面与另一焊件表面构成直角或近似直角的接头

称为T形接头,如图1-11d所示。,这种接头在焊接结构中是较常用的,整个接头承受载荷、特别是承受动载荷的能力较强。 二、坡口形式 根据设计或工艺的需要,在焊件的待焊部位加工成一定几何形状 的沟槽称坡口。 1、坡口的作用其主要作用是为了保证焊缝根部焊透,使焊接热源能深入接头根部,以保证接头质量。坡口还能起到调节基本金属与填充金属比例的作用。 2、坡口的尺寸名称及标注坡口的主要尺寸名称及标注方法如图1-12所示。钝边是为了防止烧穿,钝边尺寸要保证第一层焊缝焊透。根部间隙在打底焊时,能保证报部焊透。坡口角度是用来使电弧能深入焊缝的根部,使得钝边焊透,且便于清渣,以获得美观的焊缝。 3、常见的坡口形式手工电弧焊常见的波口形式见表1-2。 4、焊接坡口的选择焊接坡口的选择一般遵循以下原则: ①能够保证工件焊透,(手弧焊熔深一般为2~4mm),且便于焊接 操作。如在容器内部不便焊接的情况下,要采用单面坡口即在容 器的外面焊接。 ②坡口形状应容易加工。 ③尽可能提高焊接生产率和节省焊条。 ④尽可能减小焊后工件的变形。

焊接接头与坡口形式

焊接接头和坡口形式 焊接接头形式可分为:对接接头、T形接头、角接接头和搭接接 头。 一、对接接头 将两块钢板对在一起焊接,称为对接;一块钢板卷成圆筒后对在一起焊接,也属对接。对接接头容易焊透,受力情况好,应力分布均匀,联接强度高,因而焊接接头质量容易保证。 为了保证焊接质量,必须在焊接接头处开适当的坡口。坡口的主要作用是保证焊透,此外,坡口的存在还可形成足够容积的金属液熔池,以便焊渣浮起,不致造成夹渣。坡口的几何尺寸必须设计好,以便减少金属填充量、减少焊接工作量和减少变形。 对接接头形式如图2-14所示。对于钢板厚度在6 mm以下的双 面焊,因其手工焊的熔深可达4 mm故可以不开坡口,如图2-14 (a)所示。 对于厚度在6-40 mm的钢板,可采用如图2-14 (b)所示的V 形坡口,进行双面焊。在无法进行双面焊时,也可采用带垫板(厚度》3mm的单面焊。由于垫板的存在,不易被烧穿。

当板厚为12-60mnS寸,可采用如图2-14 (c)示的X形坡口。在板厚相同的情况下,采用X形坡口可减少焊条金属量二分之一左右,而且焊件的变形及所产生的内应力相应小些,因此它多用于厚度较大并变形要求较小的工件。X形坡口有对称的;还有不对称的,即一侧深另一侧浅。较浅的一侧焊接工作量小些 图2-14(d)(e)分别为单U形坡口及双U形坡口,这类坡口的填敷金属量均较V形坡口少些,焊件变形也较小,但其坡口加工较困难,故一般只在较重要的焊接结构时采用。 当对接的两块钢板厚度不相等时,为了防止焊接时薄的一边金属过热,而厚的一边金属难于熔化的现象,避免焊不透或烧穿;为了减少由于接头处厚度不等、刚度不一而产生焊接变形与裂纹的可能性,应采用如图2-15所示的厚度过渡开坡口的形式。

基于ANSYS的温度场模拟

龙源期刊网 https://www.360docs.net/doc/8810395171.html, 基于ANSYS的温度场模拟 作者:欧青华 来源:《西部论丛》2018年第07期 1 引言 传统的针对军用装备的焊接维修方式已经明显不能适应现代战争的需要,战争对装备的毁坏是巨大的,因此,需要在技术上有大幅度提高,保证维修过程的迅速准确。随着现代科技的发展,数学模型和数值模拟技术的应用越来越广泛。倘若对工程装备的焊接能够通过计算机进行模拟,我们就能够通过计算机系统来确定焊接的最佳设计、最佳参数和最佳工艺。 通过数值模拟可以在很大程度上节约战场人力、物力和拓展战场时间,特别是面对复杂的大型军用装备,该类型军用装备结构复杂,焊接过程中需要更精确的参数,随着计算机技术的发展以及有限元法的建立,越来越多的焊接工作者利用数值模拟技术研究焊接问题,并取得了丰富的成果。 本文在总结前人工作的基础上,全面系统地论述了焊接温度场的基本理论,并应用有限元分析软件ANSYS对平板堆焊温度场进行了军用工程机械数值模拟计算。本文主要内容为: 1.通过对高斯热源的焊接温度场进行模拟,讨论了焊接参数对温度场的影响。 2.用直接法模拟计算焊接温度场,得出最佳参数。 军用工程机械焊接数值模拟的现实意义在于,根据对焊接现象和过程的数值模拟,可以优化工艺参数,从而减少不必要工作,提高焊接质量和效能。 2 有限元分析的理论基础 有限元法(Finite Element Method, FEM),又称为有限单元法或有限元素法,基本思想是将求解区域离散为一组有限个、且按一定方式相互连接在一起的单元的组合体。它是随着电子计算机技术的发展而迅速发展起来的一种新型现代计算方法。 2.1 有限元法介绍 将物理结构分割成不同类型、不同大小的区域,这些区域就称为单元。根据不同进行科学分析,推导出每一个单元的作用力方程,集成整个结构的系统方程,最后求解该系统方程并得出结论的方法,就是有限元法。简单地说,有限元法是一种离散化的数值方法。离散后的单元与单元间只通过节点相联系,将所有力和位移都进行简化,通过节点进行计算。对每个相应单元,选取合适的插值函数,使得该函数在子域内部、自语分界面上以及子域与外界分界面上都

相关文档
最新文档