集总参数滤波器的设计

集总参数滤波器的设计
集总参数滤波器的设计

集总参数滤波器的设计

李艳莉

(电子科技大学 成都学院 四川 成都 611731)

摘 要: 首先介绍集总参数滤波器的设计方法,设计一个集总参数带通滤波器,中心频率为200MHz,带宽20MHz,两个端口的特征阻抗为50Ω,带内插入损耗<3dB,带内波纹<0.5dB,在f<190MHz和f>210MHz处阻带衰减>15dB,利用ADS软件进行仿真和优化。

关键词: 集总参数;滤波器;ADS

中图分类号:TN713 文献标识码:A 文章编号:1671-7597(2012)1110051-02

微波通信电路中常用的是带通滤波器,因此本文以带通滤0 引言

波器(BPF)为例研究集总参数LC滤波器的设计和优化,下面给滤波器是是一种具有频率选择特性的无源器件,从各种不出由归一化低通滤波器设计带通滤波器的具体步骤如图1所示:

同频率的信号中,滤出有用信号,抑制掉无用或者有害的频率信1)设计一个归一化LPF,该滤波器的截止频率和BPF带宽号。在无线通信应用技术领域,无源滤波器作为一个重要器件,相同;

其指标往往直接影响整个通信系统的性能优劣。而且随着移动通2)按照LPF和BPF的基本单元,进行元件和电路变换。按信、雷达、微波毫米波通信、卫星通信、无线导航等民用、军事照对应关系将LPF的四种基本构成单元变换成对应的BPF基本单电子等各类通信系统的增加,使得电磁环境异常复杂,导致通信元[3-4];

系统中的频率资源越来越稀缺,所以通信系统频率间隔也变得越3)将设计得到的BPF电路模型建立ADS模型,仿真滤波器来越密集。如何在日益稀缺的频率资源内,无失真地取出通信系的性能曲线,如果指标不能达到要求需要返回第一步对滤波器统所在工作频率需要的信号,抑制其他无用或有害信号,为滤波进行优化,直至指标满足要求为止。

器提出了更为严格的要求。随着微波技术和电子器件的发展,各 2 带通滤波器的ADS仿真与性能优化

种滤波器层出不穷,但是如何在满足技术指标的前提下尽可能做出体积小、成本低并易于量产的滤波器是工程应用的核心问题。在实际的制作滤波器的过程中,由于理想的滤波器的特性为了满足上述要求,在百兆微波频段内,集总参数LC滤波器作为难以实现,因此设计中都是按照某个特定函数形式来设计的,首选应用在电子和通信设备中[1]。

各函数形式各有突出特点,主要反映在截止特性、通带内的衰减特性和相位特性等。其中切比雪夫型(又称等波纹滤波器)1 集总参数滤波器的设计方法

函数形式由于通带内有等波纹起伏,而且截止特性特别好,成按照对频率成分的过滤特性,滤波器可以分为低通、带了集总参数LC滤波器常用的电路类型。下面通过ADS软件仿真给通、高通和带阻滤波器四种类型,其中低通滤波器是其他类型出集总参数LC滤波器的设计和优化过程。

滤波器设计的基础,另外三种滤波器可以通过低通滤波器变换 2.1 滤波器指标

得到。

设计一个三阶切比雪夫型带通滤波器,中心频率为由于不需要内在的推测关系,网络综合法已经取代了传统200MHz,带宽20MHz,两个端口的特征阻抗为50Ω。

的镜像参数法,成为了集总参数LC滤波器的主要设计方法[2]。具体指标为:

其主要的设计步骤为:

带内插入损耗<3dB;1)根据技术指标确定所需原型低通滤波器(LPF)的元件带内波纹<0.5dB;

个数;根据所需求的滤波特性来得到低通滤波器的结构类型,在f<190MHz和f>210MHz处阻带衰减>15dB。通过查表得到LPF的阶数N;

2.2 ADS仿真

2)由LPF的阶数N得出原型低通滤波器的电路结构,然后查表得到归一化低通滤波器电路中各LC器件的值;

3)运用频率和元件变换关系反推出所需类型滤波器的电路结构及其各个元件参数值。

图1 带通滤波器的设计方法

首先要依据归一化的低通滤波器设计出一个通带宽度等于待设计带通滤波器带宽、特征阻抗等于待设计带通滤波器特征阻抗的低通滤波器,由于待设计带通滤波器的带宽是20MHz,特征阻抗是50Ω,所以这里所要设计的低通滤波器的截止频率应为20MHz,特征阻抗是50Ω。带通滤波器基本电路单元中各元件的值可由经验公式计算出来[5],得到所如图2的三阶切比雪夫型T形归一化低通滤波器ADS仿真模型。

图2 在ADS中仿真三阶切比雪夫带通滤波器

三阶切比雪夫带通滤波器采用标称值电感电容在ADS软件

中的仿真结果如图3所示:

滤波器主要参数

滤波器的主要参数(Definitions): 中心频率(CenterFrequency): 滤波器通带的频率f0,一般取f0=(f1+f2)/2,f 1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 截止频率(Cutoff Frequency): 指低通滤波器的通带右边频点及高通滤波器的通带左边频点。 通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为: 低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 通带带宽(BWxdB): 指需要通过的频谱宽度,BWxdB=(f2-f1)。f 1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X= 3、1、 0.5即BW3d B、BW1d B、BW 0.5dB表征滤波器通带带宽参数。分数带宽(fractionalbandwidth) =BW3dB/f0×100[%],也常用来表征滤波器通带带宽。 插入损耗(InsertionLoss):

由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 纹波(Ripple): 指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 带内波动(PassbandRiplpe): 通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 带内xx(VSWR): 衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR<1。对于一个实际的滤波器而言,满足VSWR<1 BWdBdiv>在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin,形成波节。其它各点的振幅值则介于波腹与波节之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波节处的电压幅值Vmin 之比。 回波损耗(Return Loss): 端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。 回波损耗,又称为反射损耗。是电缆链路由于阻抗不匹配所产生的反射,是一对线自身的反射。 从数学角度看,回波损耗为-10 lg [(反射功率)/(入射功率)]。 回波损耗愈大愈好,以减少反射光对光源和系统的影响。 阻带抑制度: 衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:

用微波仿真软件设计一个集总(或分布)参数 滤波器

绪论 微波(Microwave)是电磁波谱中介于超短波与红外线之间的波段,它属于无线电波中波长最短(即频率最高)的波段,其频率范围从300MHz(波长1m)至3000GHz(波长0.1mm)。通常又将微波段划分为分米波、厘米波、毫米波和亚毫米波四个分波阶段,在通信和雷达工程上还使用拉丁字母来表示微波更细的分波段。表1给出了常用微波分波段的划分。 表1 常用微波分波段的划分 波段符号频率/GHz 波段符号频率/GHz UHF 0.3--1.12 Ka 26.5--40.0 L 1.12--1.7 Q 33.0--50.0 LS 1.7--2.6 U 40.0--60.0 S 2.6--3.95 M 50.0--75.0 C 3.95--5.85 E 60.0--90.0 XC 5.85--8.2 F 90.0--140.0 X 8.2--12.4 G 140.0--220.0 Ku 12.4--18.0 R 220.0--325.0 K 18.0--26.5 对于低于微波频率的无线电波,其波长远大于电系统的实际尺寸,可用集总参数电路的理论进行分析,即为电路分析法;频率高于微波波段的光波、X射线、γ射线等,其波长远小于电系统的实际尺寸,甚至与分子、原子的尺寸相比拟,因此可用光学理论进行分析,即为光学分析法;而微波则由于其波长与电系统的实际尺寸相当,不能用普通电子学中电路的方法研究或用光学的方法直接去研究,而必须用场的观点去研究,即由麦克斯韦尔方程组出发,结合边界条件来研究系统内部的结构,这就是场分析法。 正因为微波波长的特殊性,所以它具有以下特点。 (1)似光性 微波具有类似光一样的特性,主要表现在反射性、直接传播性及集束性等几方面,即:由于微波的波长与地球上的一般物体(如飞机、轮船、汽车等)的尺寸相比要小得多,或在同一量级,因此当微波照射到这些物体上时会产生强烈的反射,基于此特性人们发明了雷达系统;微波如同光一样在空间直线传播,如同光可聚焦成光束一样,微波也可通过天线装置形成定向辐射,从而可以定向传输或接收由空间传来的微弱信号以实现微波通信或探测。 (2)穿透性 微波照射到介质时具有穿透性,主要表现在云、雾、雪等对微波传播的影响较小,这为全天候微波通信和遥感打下了基础,同时微波能穿透生物体的特点也为微波生物医学打下了基础;另一方面,微波具有穿越电离层的透射性,实验证明:微波波段的几个分波段,如1--10GHz、20--30GHz及91GHz附近受电离层的影响较小,可以较为容易的由地面向外层空间传播,从而成为人类探索外层空间的“无线电窗口”,它为空间通信、卫星通信、卫星遥感和射电天文学的研究提供了难得的无线电通道。 (3)宽频带特性 我们知道,任何通信系统为了传递一定的信息必须占有一定的频带,为传输某信息所需的频

阶有源带通滤波器设计及参数计算

滤波器是一种只传输指定频段信号,抑制其它频段信号的电路。 滤波器分为无源滤波器与有源滤波器两种: ①无源滤波器: 由电感L、电容C及电阻R等无源元件组成 ②有源滤波器: 一般由集成运放与RC网络构成,它具有体积小、性能稳定等优点,同时,由于集成运放的增益和输入阻抗都很高,输出阻抗很低,故有源滤波器还兼有放大与缓冲作用。 利用有源滤波器可以突出有用频率的信号,衰减无用频率的信号,抑制干扰和噪声,以达到提高信噪比或选频的目的,因而有源滤波器被广泛应用于通信、测量及控制技术中的小信号处理。 从功能来上有源滤波器分为: 低通滤波器(LPF)、高通滤波器(HPF)、 带通滤波器(BPF)、带阻滤波器(BEF)、 全通滤波器(APF)。 其中前四种滤波器间互有联系,LPF与HPF间互为对偶关系。当LPF的通带截止频率高于HPF的通带截止频率时,将LPF与HPF相串联,就构成了BPF,而LPF与HPF并联,就构成BEF。在实用电子电路中,还可能同时采用几种不同型式的滤波电路。滤波电路的主要性能指标有通带电压放大倍数AVP、通带截止频率fP及阻尼系数Q等。 带通滤波器(BPF) (a)电路图(b)幅频特性 图1 压控电压源二阶带通滤波器 工作原理:这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减或抑制。典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成。如图1(a)所示。 电路性能参数 通带增益 中心频率 通带宽度 选择性 此电路的优点是改变Rf和R4的比例就可改变频宽而不影响中心频率。 例.要求设计一个有源二阶带通滤波器,指标要求为: 通带中心频率 通带中心频率处的电压放大倍数: 带宽: 设计步骤: 1)选用图2电路。 2)该电路的传输函数: 品质因数: 通带的中心角频率: 通带中心角频率处的电压放大倍数: 取,则:

带通滤波器的设计

目录 一.设计概述 二.设计任务及要求 2.1 设计任务 2.2 设计要求 三.设计方案 3.1设计结构 3.2元件参数的理论推导 3.3仿真电路构建 3.4仿真电路分析四.所用器件 五.实验结果 5.1 实验数据记录 5.2 实验数据分析六.实验总结 6.1 遇到的主要问题 6.2 解决问题的措施 6.3 实验反思与收获 附图 参考文献

一.设计概述 根据允许的通过的频率范围,可以将滤波器分为低通滤波器,高通滤波器,带通滤波器和带阻滤波器4种。其中,带通滤波器是指允许某一频率范围内的频率分量通过,其他范围的频率分量衰减到极低水平的滤波器。 在滤波器中,信号能够通过的范围成为通频带或通带,信号受到很大衰减或完全被抑制的频率范围成为阻带,通带和阻带之间的界限称为截止频率。对于一个理想的带通滤波器,通带范围内则完全平坦,对传输信号基本没有增益的衰减作用,其次,通带之外的所有频率均能被完全衰减掉,通带和阻带之间存在一定的过渡带。 在带通滤波器的实际设计过程中,主要参数包括中心频率f0,频带宽度BW,上限截止频率fH和下限截止频率fL。一般情况下,为使滤波器在任意频段都具有良好的频率分辨能力,可采用固定带宽带通滤波器(如收音机的选频)。所选带宽越窄,则频率选择能力越高。但为了覆盖所要检测的整个频率范围,所需要的滤波器数量就很大。因此,在很多场合,固定带宽带通滤波器不一定做成固定中心频率的,而是利用一个参考信号,使滤波器中心频率跟随参考信号的频率而变化,其中,参考信号是由信号发生器提供的。上述可便中心频率的固定带宽带通滤波器,经常用于滤波和扫描跟踪滤波应用中。 二.设计任务及要求 1)设计任务 带通滤波器的设计方案有很多,本实验将采用高通滤波器和低通滤波器级联的设计方案实现一个带通滤波器,通过多级反馈,减少干扰信号对滤波器的影响。为了检测滤波电路的通带特性,设计一个带宽检测电路,通过发光二极管的亮灭近似检测电路的带宽范围。 设计要求 2)设计要求 (1)性能指标要求 1.输入信号:有效值为1V的电压信号。 2.输出信号中心频率f0通过开关切换,分别为500Hz 1.5KHz 3KHz 10KHz 误差10%。 3.带通滤波器带宽BW

各种滤波器

设计一个九级集总参数低通滤波器,电路结构如图所示,要求截止频率为450MHz,通带内增益大于-1dB,阻带内650M以上增益小于-50dB。通带内反射系数要求小于-15dB。要求优化参数Cost<0.5(最佳为 5(波长线长为相对值)。计算线长Z为2.5和3.5两处的输入阻抗、反射系数。并画出Z为2.5时的阻抗与导纳圆图。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-300MHz 增益参数S21:通带内0MHz-300MHz S21>-0.5dB ;阻带内420MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-300MHz S11<-10dB ; 2、为了节省成本,计划将该滤波器设计为7级结构。你能把它设计出来吗?根据你的优化仿真结果,探讨滤波器级数与其性能的关系。 低通滤波器===== 设计具体要求 ====== 通带频率范围:0MHz-350MHz 增益参数S21:通带内 S21>-1dB 阻带内550MHZ以上 S21<-45dB 反射系数S11:通带内 S11<-15dB 2、简述功分器的基本技术要求及其主要特性参数。

通带频率范围:0MHz-400MHz 增益参数S21:通带内0MHz-400MHz S21>-0.2dB 阻带内600MHZ以上 S21<-50dB 反射系数S11:通带内0MHz-400MHz S11<-10dB 要求优化参数 2、简述HFSS的特点及其主要应用的范围。 IVCURVEI来测量非线性器件——三极管GBJT3的特性曲线并加入调谐,分析其变化。 高通滤波器===== 设计具体要求 ====== 通带频率范围:550MHz以上 增益参数S21:通带内S21>-2dB ;阻带内0-400MHz,S21<-50dB 反射系数S11:通带内S11<-20dB; 2、你会添加Marker吗?试在S21曲线上,添加一横坐标为600MHz的Marker。添加后需请老师签字。 3、使用TXLine工具计算微带线εr=12.9,t/h=0.1,分别计算W/h=2.5,3.0以及3.5时的特性阻高通滤波器 ===== 设计具体要求 ====== 设计一个九级集总参数高通滤波器,电路结构如图所示,要求截止频率为550MHz,通带内增益大于-1dB,阻带内0-350MHz增益小于-45dB。通带内反射系数要求小于-15dB。 2、如果要设计低通滤波器,与前面相比,有哪些步骤需要变化?并画出结构简图。 MicrowaveOffice的Optimize功能选择框中的优化算法,并画出优化算法框图。

滤波器的主要特性指标

电子知识 1、特征频率: ①通带截频fp=wp/(2p)为通带与过渡带边界点的频率,在该点信号增益下降到一个人为规定的下限。 ②阻带截频fr=wr/(2p)为阻带与过渡带边界点的频率,在该点信号衰耗(增益的倒数)下降到一人为规定的下限。 ③转折频率fc=wc/(2p)为信号功率衰减到1/2(约3dB)时的频率,在很多情况下,常以fc作为通带或阻带截频。 ④固有频率f0=w0/(2p)为电路没有损耗时,滤波器的谐振频率,复杂电路往往有多个固有频率。 2、增益与衰耗 滤波器在通带内的增益并非常数。 ①对低通滤波器通带增益Kp一般指w=0时的增益;高通指w→∞时的增益;带通则指中心频率处的增益。 ②对带阻滤波器,应给出阻带衰耗,衰耗定义为增益的倒数。 ③通带增益变化量△Kp指通带内各点增益的最大变化量,如果△Kp以dB为单位,则指增益dB值的变化量。 3、阻尼系数与品质因数 阻尼系数是表征滤波器对角频率为w0信号的阻尼作用,是滤波器中表示能量衰耗的一项指标。 阻尼系数的倒数称为品质因数,是*价带通与带阻滤波器频率选择特性的一个重要指标,Q= w0/△w。式中的△w为带通或带阻滤波器的3dB带宽,w0为中心频率,在很多情况下中心频率与固有频率相等。 4、灵敏度 滤波电路由许多元件构成,每个元件参数值的变化都会影响滤波器的性能。滤波器某一性能指标y对某一元件参数x变

化的灵敏度记作Sxy,定义为:Sxy=(dy/y)/(dx/x)。 该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该灵敏度越小,标志着电路容错能力越强,稳定性也越高。 5、群时延函数 当滤波器幅频特性满足设计要求时,为保证输出信号失真度不超过允许范围,对其相频特性∮(w)也应提出一定要求。在滤波器设计中,常用群时延函数d∮(w)/dw*价信号经滤波后相位失真程度。群时延函数d∮(w)/dw越接近常数,信号相位失真越小。 IBIS模型是一种基于V/I曲线对I/O BUFFER快速准确建模方法,是反映芯片驱动和接收电气特性一种国际标准,它提供一种标准文件格式来记录如驱动源输出阻抗、上升/下降时间及输入负载等参数,非常适合做振荡和串扰等高频效应计算与仿真。 IBIS本身只是一种文件格式,它说明在一标准IBIS文件中如何记录一个芯片驱动器和接收器不同参数,但并不说明这些被记录参数如何使用,这些参数需要由使用IBIS模型仿真工具来读取。欲使用IBIS进行实际仿真,需要先完成四件工作:获取有关芯片驱动器和接收器原始信息源;获取一种将原始数据转换为IBIS格式方法;提供用于仿真可被计算机识别布局布线信息;提供一种能够读取IBIS和布局布线格式并能够进行分析计算软件工具。 IBIS模型优点可以概括为:在I/O非线性方面能够提供准确模型,同时考虑了封装寄生参数与ESD结构;提供比结构化方法更快仿真速度;可用于系统板级或多板信号完整性分析仿真。可用IBIS模型分析信号完整性问题包括:串扰、反射、振荡、上冲、下冲、不匹配阻抗、传输线分析、拓扑结构分析。

(整理)带通滤波器设计

实验八 有源滤波器的设计 一.实验目的 1. 学习有源滤波器的设计方法。 2. 掌握有源滤波器的安装与调试方法。 3. 了解电阻、电容和Q 值对滤波器性能的影响。 二.预习要求 1. 根据滤波器的技术指标要求,选用滤波器电路,计算电路中各元件的数值。设计出 满足技术指标要求的滤波器。 2. 根据设计与计算的结果,写出设计报告。 3. 制定出实验方案,选择实验用的仪器设备。 三.设计方法 有源滤波器的形式有好几种,下面只介绍具有巴特沃斯响应的二阶滤波器的设计。 巴特沃斯低通滤波器的幅频特性为: n c uo u A j A 21)(??? ? ??+= ωωω , n=1,2,3,. . . (1) 写成: n c uo u A j A 211) (??? ? ??+=ωωω (2) )(ωj A u 其中A uo 为通带内的电压放大倍数,ωC A uo 为截止角频率,n 称为滤波器的阶。从(2) 式中可知,当ω=0时,(2)式有最大值1; 0.707A uo ω=ωC 时,(2)式等于0.707,即A u 衰减了3dB ;n 取得越大,随着ω的增加,滤波器的输出电压衰减越快,滤波器的幅频特性越接近于理想特性。如图1所示。ω 当 ω>>ωC 时, n c uo u A j A ??? ? ??≈ωωω1 )( (3) 图1低通滤波器的幅频特性曲线

两边取对数,得: lg 20c uo u n A j A ωω ωlg 20)(-≈ (4) 此时阻带衰减速率为: -20ndB/十倍频或-6ndB/倍频,该式称为衰减估算式。 表1列出了归一化的、n 为1 ~ 8阶的巴特沃斯低通滤波器传递函数的分母多项式。 在表1的归一化巴特沃斯低通滤波器传递函数的分母多项式中,S L = c s ω,ωC 是低通 滤波器的截止频率。 对于一阶低通滤波器,其传递函数: c c uo u s A s A ωω+= )( (5) 归一化的传递函数: 1 )(+= L uo L u s A s A (6) 对于二阶低通滤波器,其传递函数:2 22)(c c c uo u s Q s A s A ωωω++ = (7) 归一化后的传递函数: 1 1)(2 ++= L L uo L u s Q s A s A (8) 由表1可以看出,任何高阶滤波器都可由一阶和二阶滤波器级联而成。对于n 为偶数的高阶滤波器,可以由2n 节二阶滤波器级联而成;而n 为奇数的高阶滤波器可以由2 1-n 节二

二阶有源滤波器参数计算

二阶有源滤波器设计 一.滤波器类型 按照在附近的频率特性,可将滤波器分为以下三种: 1.巴特沃兹响应 优点:巴特沃兹滤波器提供了最大的通带幅度响应平坦度,具有良好的综合性能,其脉冲响应优于切比雪夫,衰减速度优于贝塞尔。 缺点:阶跃响应存在一定的过冲和振荡。 2.切比雪夫响应 优点:与巴特沃兹相比,切比雪夫滤波器具有更良好的通带外衰减。 缺点:通带内纹波令人不满,阶跃响应的振铃较严重。 3.贝塞尔响应 优点:贝塞尔滤波器具有最优的阶跃响应——非常小的过冲及振铃。 缺点:与巴特沃兹相比,贝塞尔滤波器的通带外衰减较为缓慢。 (注意: 巴特沃兹及贝塞尔响应的3dB衰减位于截止频率处。 而切比雪夫响应的截止频率定义为响应下降至低于纹波带的频点频率。 对于偶数阶滤波器而言,所有纹波均高于0dB的直流响应,因此截止频点位于0dB衰减处;而对于奇数阶滤波器而言,所有纹波均低于 0dB的直流响应,因此截止频点定义为低于纹波带最大衰减点。)

二.最常用的有源极点对电路拓扑 1.MFB拓扑 也称为无限增益拓扑或Rauch拓扑; 适用于高Q值高增益电路; 其对元件值的改变敏感度较低。 2.Sallen-Key拓扑 下列情况时,使用效果更佳: 对增益精度要求较高; 采用了单位增益滤波器; 极点对Q值较低(如:Q<3); (特例:某些高Q值高频率滤波器若采用MFB拓扑,则C1值须很小以得到合适的电阻值。而由于寄生电容干扰使得低容值将导致极大干 扰)。 (注意: MFB拓扑不能用于电流反馈型运放,而S-K拓扑电压、电流反馈型运放均可; 差分放大器只能采用MFB拓扑; S-K拓扑的运放输出阻抗随频率增加而增加,故通带外衰减能力受限,而MFB拓扑则无此问题。)

有源带通滤波器设计

二阶有源模拟带通滤波器设计 摘要 滤波器是一种具有频率选择功能的电路,它能使有用的频率信号通过。而同时抑制(或衰减)不需要传送频率范围内的信号。实际工程上常用它来进行信号处理、数据传送和抑制干扰等,目前在通讯、声纳、测控、仪器仪表等领域中有着广泛的应用。 以往这种滤波电路主要采用无源元件R、L和C组成,60年代以来,集成运放获得迅速发展,由它和R、C组成的有源滤波电路,具有不用电感、体积小、重量轻等优点。此外,由于集成运放的开环电压增益和输入阻抗都很高,输出阻抗比较低,构成有源滤波电路后还具有一定的电压放大和缓冲作用。 通常用频率响应来描述滤波器的特性。对于滤波器的幅频响应,常把能够通过信号的频率范围定义为通带,而把受阻或衰减信号的频率范围称为阻带,通带和阻带的界限频率叫做截止频率。 滤波器在通带内应具有零衰减的幅频响应和线性的相位响应,而在阻带内应具有无限大的幅度衰减。按照通带和阻带的位置分布,滤波器通常分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器。文中结合实例,介绍了设计一个二阶有源模拟带通滤波器。 设计中用RC网络和集成运放组成,组成电路选用LM324不仅可以滤波,还可以进行放大。 关键字:带通滤波器 LM324 RC网络

目录 目录 (2) 第一章设计要求 (3) 1.1基本要求 (3) 第二章方案选择及原理分析 (4) 2.1.方案选择 (4) 2.2 原理分析 (5) 第三章电路设计 (7) 3.1 实现电路 (7) 3.2参数设计 (7) 3.3电路仿真 (9) 1.仿真步骤及结果 (9) 2.结果分析 (11) 第四章电路安装与调试 (12) 4.1实验安装过程 (12) 4.2 调试过程及结果 ..................................................................................................... 错误!未定义书签。 4.2.1 遇到的问题 .................................................................................................. 错误!未定义书签。 4.2.2 解决方法 ...................................................................................................... 错误!未定义书签。 4.2.3 调试结果与分析 (12) 结论 (13) 参考文献 (14)

射频分布参数滤波器的仿真

实验4 分布参数滤波器的仿真 实验目的: 通过仿真理解和掌握微带滤波器的实现方法。 实验原理: 1.理查德(Richards)变换 通过理查德(Richards)变换,可以将集总元器件的电感和电容用一段终端短路或终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元器件到分布参数元器件的变换。2.科洛达(Kuroda)规则 科洛达(Kuroda)规则是利用附加的传输线段,得到在实际上更容易实现的滤波器。例如,利用科洛达规则即可以将串联短截线变换为并联短截线,又可以将短截线在物理上分开。在科洛达规则中附加的传输线段称为单位元器件,单位 。 元器件是一段传输线,当f = f0时这段传输线长为8 3.设计步骤: 1.根据设计要求选择归一化滤波器参数 2.用λ/8传输线替换电感和电容 3.根据Kuroda规则将串联短线变换为并联短线 4.反归一化并选择等效微带线 实验内容: 1.设计一个微带短截线低通滤波器,该滤波器的截止频率为4GHz,通带内波纹为3dB,滤波器采用3阶,系统阻抗为50Ω。 实验步骤: 微带短截线低通滤波器设计举例 下面设计一个微带短截线低通滤波器,该滤波器的截止频率为4GHz,通带内波纹为3dB,滤波器采用3阶,系统阻抗为50Ω。设计微带短截线低通滤波器的步骤如下。 (1)滤波器为3阶、带内波纹为3dB的切比雪夫低通滤波器原型的元器件值为 集总参数低通原型电路如图11.29所示。 (2)利用理查德变换,将集总元器件变换成短截线,如图11.30(a)所示,图中短截线的特性阻抗为归一化值。 (3)增添单位元器件,然后利用科洛达规则将串联短截线变换为并联短截线,如图11.30(b)所示,图中短截线的特性阻抗为归一化值。

滤波器的主要参数

滤波器的主要参数 滤波器的主要参数(Definitions) 中心频率(Center Frequency):滤波器通带的中心频率f0,一般取f0=(f1+ f2)/2,f1、f2为带通或带阻滤波器左、右相对下降1dB或3dB边频点。窄带滤波器常以插损最小点为中心频率计算通带带宽。 截止频率(Cutoff Frequency):指低通滤波器的通带右边频点及高通滤波器的通带左边频点。通常以1dB或3dB相对损耗点来标准定义。相对损耗的参考基准为:低通以DC处插损为基准,高通则以未出现寄生阻带的足够高通带频率处插损为基准。 通带带宽(BWxdB):(下图)指需要通过的频谱宽度,BWxdB=(f2-f1)。f1、f2为以中心频率f0处插入损耗为基准,下降X(dB)处对应的左、右边频点。通常用X=3、1、0.5 即BW3dB、BW1dB、BW0.5dB 表征滤波器通带带宽参数。分数带宽(fractional bandwidth)=BW3dB/f0×100%,也常用来表征滤波器通带带宽。 插入损耗(Insertion Loss):由于滤波器的引入对电路中原有信号带来的衰耗,以中心或截止频率处损耗表征,如要求全带内插损需强调。 I=10lgPin/Pl

纹波(Ripple):指1dB或3dB带宽(截止频率)范围内,插损随频率在损耗均值曲线基础上波动的峰-峰值。 带内波动(Passband Riplpe):通带内插入损耗随频率的变化量。1dB带宽内的带内波动是1dB。 带内驻波比(VSWR):衡量滤波器通带内信号是否良好匹配传输的一项重要指标。理想匹配VSWR=1:1,失配时VSWR>1。对于一个实际的滤波器而言,满足VSWR <1.5:1的带宽一般小于BW3dB,其占BW3dB的比例与滤波器阶数和插损相关。 回波损耗(Return Loss):端口信号输入功率与反射功率之比的分贝(dB)数,也等于|20Log10ρ|,ρ为电压反射系数。输入功率被端口全部吸收时回波损耗为无穷大。 阻带抑制度:衡量滤波器选择性能好坏的重要指标。该指标越高说明对带外干扰信号抑制的越好。通常有两种提法:一种为要求对某一给定带外频率fs抑制多少dB,计算方法为fs处衰减量As-IL;另一种为提出表征滤波器幅频响应与理想矩形接近程度的指标——矩形系数(KxdB>1),KxdB=BWxdB/BW3dB,(X可

带通滤波电路设计

带通滤波电路设计一.设计要求 (1)信号通过频率范围 f 在100 Hz至10 kHz之间; (2)滤波电路在 1 kHz 电路的幅频衰减应当在 的幅频响应必须在± 1 kHz 时值的± 3 dB 1 dB 范围内,而在 范围内; 100 Hz至10 kHz滤波 (3)在10 Hz时幅频衰减应为26 dB ,而在100 kHz时幅频衰减应至少为16 dB 。 二.电路组成原理 由图( 1)所示带通滤波电路的幅频响应与高通、低通滤波电路的幅频响应进行比较, 不难发现低通与高通滤波电路相串联如图(2),可以构成带通滤波电路,条件是低通滤波电路的截止角频率 W H大于高通电路的截止角频率 W L,两者覆盖的通带就提供了一个带通响应。 V I V O 低通高通 图( 1) 1 W H低通截止角频率 R1C1 1 W L高通截止角频率 R2C2 必须满足W L

│A│ O │A│ O │A│ O 低通 W w H 高通 W w L 带通 W W w L H 图( 2) 三.电路方案的选择 参照教材 10.3.3 有源带通滤波电路的设计。这是一个通带频率范围为100HZ-10KHZ的带通滤波电路,在通带内我们设计为单位增益。根据题意,在频率低端f=10HZ 时,幅频响应至少衰减 26dB。在频率高端 f=100KHZ 时,幅频响应要求衰减不小于16dB。因此可以选择一个二阶高通滤波电路的截止频率fH=10KHZ,一个二阶低通滤波电路的fL=100HZ,有源器件仍选择运放 LF142,将这两个滤波电路串联如图所示,就构成了所要求的带通滤波电路。 由教材巴特沃斯低通、高通电路阶数n 与增益的关系知 A vf1 =1.586 ,因此,由两级串联的带通滤波电路的通带电压增益(Avf1 ) 2=( 1.586 )2=2.515, 由于所需要的通带增益为0dB, 因此在低通滤波器输入部分加了一个由电阻R1、 R2组成的分压器。

集总参数带通滤波器

课程设计Ⅳ报告 题目集总参数带通滤波器的设计 所在院(系) 学生姓名学号 指导教师 完成地点 年月日

基于ADS的集总参数带通滤波器的设计 摘要:滤波器在通信系统中应用较为广泛,利用滤波器的选频作用,可以滤除通信中的干扰噪声或测试中进行频谱分析。本文利用ADS软件设计一款带通滤波器,并对其进行优化和瞬态仿真分析。经过分析得出,在满足其他各项设计指标要求的前提下,优化后的滤波器选频特性得到明显提高。 关键词:带通滤波器;ADS;优化仿真;瞬时仿真

利用ADS软件设计一个集总参数带通滤波器,集总参数带通滤波器设计指标如下。 带通滤波器的中心频率为150MHz。 通带频率范围为140MHz到160MHz。 通带内最大衰减为3dB。 在100MHz和200MHz时衰减大于30dB。 特性阻抗选为50Ω。

引言.............................................................................................................................. - 1 - 一.创建原理图......................................................................................................... - 2 - 二.利用设计向导生成集总参数带通滤波器原理图........................................... - 2 - 三.观察原理图的仿真结果 .................................................................................... - 4 - 四.实现集总参数带通滤波器的原理图 ............................................................... - 7 - 1.创建新设计.................................................................................................... - 7 - 2.设计原理图.................................................................................................... - 7 - 3.原理图仿真与优化..................................................................................... - 11 - 参考文献.................................................................................................................... - 17 -

带通滤波器设计步骤

带通滤波器设计步骤 1、根据需求选择合适的低通滤波器原型 2、把带通滤波器带宽作为低通滤波器的截止频率,根据抑制点的频率距离带通滤波器中心频点距离的两倍作为需要抑制的频率,换算抑制频率与截止频率的比值,得出m 的值,然后根据m 值选择低通滤波器的原型参数值。 滤波器的时域特性 任何信号通过滤波器都会产生时延。Bessel filter 是特殊的滤波器在于对于通带内的所有频率而言,引入的时延都是恒定的。这就意味着相对于输入,输出信号的相位变化与工作的频率是成比例的。而其他类型的滤波器(如Butterworth, Chebyshev,inverse Chebyshev,and Causer )在输出信号中引入的相位变化与频率不成比例。相位随频率变化的速率称之为群延迟(group delay )。群延迟随滤波器级数的增加而增加。 模拟滤波器的归一化 归一化的滤波器是通带截止频率为w=1radian/s, 也就是1/2πHz 或约0.159Hz 。这主要是因为电抗元件在1弧度的时候,描述比较简单,XL=L, XC=1/C ,计算也可以大大简化。归一化的无源滤波器的特征阻抗为1欧姆。归一化的理由就是简化计算。 Bessel filter 特征:通带平坦,阻带具有微小的起伏。阻带的衰减相对缓慢,直到原理截止频率高次谐波点的地方。原理截止频率点的衰减具有的经验公式为n*6dB/octave ,其中,n 表示滤波器的阶数,octave 表示是频率的加倍。例如,3阶滤波器,将有18dB/octave 的衰减变化。正是由于在截止频率的缓慢变化,使得它有较好的时域响应。 Bessel 响应的本质截止频率是在与能够给出1s 延迟的点,这个点依赖于滤波器的阶数。 逆切比雪夫LPF 原型参数计算公式(Inverse Chebyshev filter parameters calculate equiations ) ) (cosh )(cosh 11Ω=--Cn n 其中 1101.0-=A Cn , A 为抑制频率点的衰减值,以dB 为单位;Ω为抑制频率与截止频率的比值 例:假设LPF 的3dB 截止频率为10Hz,在15Hz 的频点需要抑制20dB,则有: 95.91020*1.0==Cn ;Ω=15/10=1.5 1.39624.0988.2) 5.1(cosh )95.9(cosh 11===--n ,因此,滤波器的阶数至少应该为4

非常好的滤波器基础知识

非常好的滤波器基础知识 滤波器是射频系统中必不可少的关键部件之一,主要是用来作频率选择----让需要的频率信号通过而反射不需要的干扰频率信号。经典的滤波器应用实例是接收机或发射机前端,如图1、图2所示: 从图1中可以看到,滤波器广泛应用在接收机中的射频、中频以及基带部分。虽然对这数字技术的发展,采用数字滤波器有取代基带部分甚至中频部分的模拟滤波器,但射频部分的滤波器任然不可替代。因此,滤波器是射频系统中必不可少的关键性部件之一。滤波器的分类有很多种方法。例如:按频率选择的特性可以分为:低通、高通、带通、带阻滤波器等; 按实现方式可以分为:LC滤波器、声表面波/体声波滤波器、螺旋滤波器、介质滤波器、腔体滤波器、高温超导滤波器、平面结构滤波器。 按不同的频率响应函数可以分为:切比雪夫、广义切比雪夫、巴特沃斯、高斯、贝塞尔函数、椭圆函数等。 对于不同的滤波器分类,主要是从不同的滤波器特性需求来描述滤波器的不同特征。 滤波器的这种众多分类方法所描述的滤波器不同的众多特征,集中体现出了实际工程应用中对滤波器的需求是需要综

合考量的,也就是说对于用户需求来做设计时,需要综合考虑用户需求。 滤波器选择时,首先需要确定的就是应该使用低通、高通、带通还是带阻的滤波器。 下面首先介绍一下按频率选择的特性分类的高通、低通、带通以及带阻的频率响应特性及其作用。 巴特沃斯切比雪夫带通滤波器 巴特沃斯切比雪夫高通滤波器 最常用的滤波器是低通跟带通。低通在混频器部分的镜像抑制、频率源部分的谐波抑制等有广泛应用。带通在接收机前端信号选择、发射机功放后杂散抑制、频率源杂散抑制等方面广泛使用。滤波器在微波射频系统中广泛应用,作为一功能性部件,必然有其对应的电性能指标用于描述系统对该部件的性能需求。对应不同的应用场合,对滤波器某些电器性能特性有不同的要求。描述滤波器电性能技术指标有: 阶数(级数) 绝对带宽/相对带宽 截止频率 驻波 带外抑制 纹波 损耗

滤波器参数选择

1 单谐波滤波器参数选择方法 单谐波滤波器基本参数为U CN 、Q CN 、基波容抗X C1.它们之间满足关系式: CN CN C Q U X 2 1 3= (1-1) 其中,Q CN 为三相值,电容为三角形接法。 选择参数时考虑的基本原则:①过电压要求(1.1U N );②过电流要求(1.3I N );③容量平衡。 图1-1 单谐波滤波器电路 (1)按过电压要求考虑Q CN : CN Ch C U U U 1.11≤+ ∑ (1-2) 设母线实际运行电压上限为U 1M ,则有M L C C C U X X X U 11 11 1-= (1-3) 谐振时有211 h X X C L =,代入(1-3)有:M C U h h U 12211 -= (1-4) 假设谐波电流不放大且全部通过滤波器,滤波器处于全谐振状态,即fh fh R Z =,电容器中仅通过基波电流和h 次谐波电流,有: 1 1U R I U U HRU fh h h h = = (1-5) 因为hQ X R C fh 1 = ,其中Q 为品质因数。代入(1-5)有: Q U U hQ X U I HRU ch C h h 111= = (1-6) 因此有: Q U HRU U h ch 1= (1-7) 将(1-7)和(1-3)代入(1-2)有:

?? ????+-=Q U HRU U h h U h M CN 1122 11.11 (1-8) 因此有: 2 21233QhU HRU I U X U Q h h CN C CN CN = = (1-9) (2)按容量平衡选Q CN : ∑+ =h C CN Q Q Q 1 (1-10) 假设滤波器只有基波电流和h 次谐波电流流过,则: C U Q CN CN 123ω= C U Q C C 12113ω= C h I C h U Q h ch ch 12 1233ωω= = 将上面三式代入(1-10)有: 2 1222 2 13??? ? ??--= M CN CN h CN U h h U h U I Q (1-11) (3)按过电流选择Q CN : 其校验公式为:CN ch C I I I 3.122 1≤+ ∑ (1-12) 假设电容器只流过基次、h 次谐波电流 C U I c c 111ω= C h U I ch ch 1ω= 则有:()2 2 213.1CN ch c I I I =+ 因此有21 2 2 212169.1c CN ch c c x U I x U =+ 又因为CN CN c Q U x 2 13=,M c U h h U 12 2 11-= 故有: () () 222222 22 2 122 369.131CN CN CN ch CN CN M U Q U I U Q U h h =+???? ? ?-,则有: 2 12222169.13??? ? ??--= M CN ch CN CN U h h U I U Q (1-13) 最后由(1-9)、 (1-11)、(1-13)求的Q CN ,取其中较大的作为h 次单调谐滤波器电容器安装容量的下限。再由(1-1)确定电容值: 2 13CN CN U Q C ω= (1-14)

带通滤波器设计实验报告

电子系统设计实践 报告 实验项目带通功率放大器设计学校宁波大学科技学院 学院理工学院 班级12自动化2班 姓名woniudtk 学号12******** 指导老师李宏 时间2014-12-4

一、设计课题 设计并制作能输出0.5W功率的语音放大电路。该电路由带通滤波器和功率放大器构成。 二、设计要求 (1)电路采用不超过12V单(或双)电源供电; (2)带通滤波器:通带为300Hz~3.4kHz,滤波器阶数不限;增益为20dB; (3)最大输出额定功率不小于0.5W,失真度<10%(示波器观察无明显失真);负载(喇叭)额定阻抗为8?。 (4)功率放大器增益为26dB。 (5)功率放大部分允许采用集成功放电路。 三、电路测试要求 (1)测量滤波器的频率响应特性,给出上、下限截止频率、通带的增益; (2)在示波器观察无明显失真情况下,测量最大输出功率 (3)测量功率放大器的电压增益(负载:8?喇叭;信号频率:1kHz); 四、电路原理与设计制作过程 4.1 电路原理 带通功率放大器的原理图如下图1所示。电路有两部分构成,分别为带通滤波器和功率放大器。 图1 滤波器电路的设计选用LM358双运放设计电路。LM358是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。高输入阻抗使得运放的输入电流比较小,有利于增大放大电路对前级电路的索取信号的能力。在信号的输入的同时会不可避免的掺杂着噪声和温漂而影响信号的放大,因此高共模抑制比、低温漂的作用尤为重要。 带通滤波器的设计是由上限截止频率为3400HZ的低通滤波器和下限截止频率为300HZ 的高通滤波器级联而成,因此,设计该电路由低通滤波器和高通滤波器组合成二阶带通滤波器(巴特沃斯响应)。 功率放大电路运用LM386功放,该功放是一种音频集成功放,具有自身功耗低、电压增益可调整、电源电压范围大、外接元件少和总谐波失真小等优点,广泛应用于录音机和收音机之中。 4.2电路设计制作 4.2.1带通滤波电路设计 (1)根据设计要求,通带频率为300HZ~2.4KHZ,滤波器阶数不限,增益为 20dB,所以采取二阶高通和二阶低通联级的设计方案,选择低通放大十倍。高通不放大。

f.i.r.滤波器设计报告

一、设计指标: ● 设计一个16阶低通线性相位FIR 滤波器; ● 要求采样频率Fs 为80KHz ; ● 截止频率Fc 为10KHz ; ● 采用函数窗法设计,且窗口类型为Kaiser ,Beta 为0.5; ● 输入序列位宽为10位的有符号数(最高位为符号位); ● 输出序列位宽为10位的有符号数(最高位为符号位)。 二、线性相位fir 滤波器理论: 有限长脉冲响应(FIR )滤波器的系统函数只有零点,除原点外,没有极点,因而FIR 滤波器总是稳定的。如果他的单位脉冲响应是非因果的,总能够方便的通过适当的移位得到因果的单位脉冲响应,所以FIR 滤波器不存在稳定性和是否可实现的问题。它的另一个突出的优点是在满足一定的对称条件时,可以实现严格的线性相位。由于线性相位滤波器不会改变输入信号的形状,而只是在时域上使信号延时,因此线性相位特性在工程实际中具有非常重要的意义,如在数据通信、图像处理等应用领域,往往要求信号在传输和处理过程中不能有明显的相位失真,因而线性相位FIR 滤波器得到了广泛的应用。 长度为M 的因果有限冲激响应滤波器由传输函数H (z )描述: 1 0()()M k k H z h k z --==∑ (1) 它是次数为M-1的z -1的一个多项式。在时域中,上述有限冲激响应滤波器的输入输出关系为: 1 0()()()M k y n h k x n k -==-∑ (2) 其中y (n )和x (n )分别是输出和输入序列。 有限冲激响应滤波器的一种直接型实现,可由式(2)生成,M=5的情况如图2-1(a )所示。其转置,如图2-1(b )所示,是第二个直接型结构。通常一个长度为M 的有限冲激响应滤波器由M 个系数描述,并且需要M 个乘法器和(M-1)个双输入加法器来实现。

相关文档
最新文档