聚合物转变与松弛

聚合物转变与松弛
聚合物转变与松弛

第五章聚合物的转变与松弛

一、概念

1、玻璃化转变(温度): 玻璃态与橡胶态之间的转变称为玻璃化转变,对应的转变温度称

为玻璃化转变温度。从分子运动机理看,玻璃化转变温度是高分子链段运动被激发的温度。

2、次级转变:在玻璃化温度以下,比链段更小的运动单元所发生从冻结到运动或从运动到冻结的变化过程也是松弛过程,通常称这些过程为高聚物的次级转变,以区别于发生在玻璃化转变区的主转变过程。

3、均相成核与异相成核:

(1)均相成核:由熔体中高分子链依靠热运动而形成有序排列的链束为晶核,因而有时间的依赖性,时间维数为1。

(2)异相成核:由外界引入的杂质或自身残留的晶种形成,它与时间无关,故其时间维数为零。

4、内增塑作用与外增塑作用

(1)内增塑作用:当聚合物中存在柔性侧基时,随着侧基的增大,在一定范围内,由于柔性侧基使分子间距离增大,相互作用减弱,既产生“内增塑”作用

(2)外增塑作用:添加某些低分子组分使聚合物的玻璃化温度下降的现象

二、选择答案

1D 2B 3A 4C 5A 6C 7D 8B 9D 10C 11A 12D

三、填空题

1、三,玻璃态、高弹态,粘流态

2、平衡

3、b分子运动的时间依赖性,c分子运动的温度依赖性。

4、自由体积理论,等自由体积分数

5、量热法,热机械法。

四、回答下列问题

1、由于玻璃化转变不是热力学的平衡过程,测量Tg时,随着升温速度的提高,所得数值偏高。因此所得Tg愈高。玻璃化温度是链段运动松弛时间与实验的观察时间相当的温度,快速升温,观察时间短,松驰时间也短,故在高温发生玻璃化转变。

2、(1)膨胀计法:玻璃化转变前后,热膨胀系数有显著的变化,用膨胀计法测量聚合物的体积或比容随温度的变化,从体积或比容对温度曲线两端的直线部分外推,其交点对应的温度为T g。

(2)量热法:玻璃化转变时,比热容发生突变,在DSC曲线上表现为基线向吸热方向偏移,产生一个台阶,出现台阶点对应的温度为T g。

(3)温度一形变法(热机械法):玻璃化转变时,模量有显著的变化。将一定尺寸的非晶态聚合物在一定应力作用下,以一定速度升高温度,同时测定样品形变随温度的变化,可以得到温度-形变曲线(也称为热-机械曲线),确定出T g。

3、(略)

4、结构式(略)

熔点高低顺序:C> D> A>B

熔融为一级相转变△G =△H -T △S =0

∴ △H 熔融热与分子间作用力强弱有关,分子间作用力大,△H 越大→Tm 越高;△S 为溶解前后分子混乱程度的变化,与分子链柔顺性有关。分子链柔性差,△S 越小→Tm 越高。

C 、

D 有氢键,分子间作用力大,故熔点较A 和B 高;

C 的氢键密度更大,故C 的熔点高于

D ;

B 有孤立双键,链的柔性更大,故B 的熔点小于A 。

5、可把Tg 与Tm 之间的温度范围分成几个区域:

I 区:熔点以下10—30℃范围内,是熔体由高温冷却时的过冷温度区。成核速度极小,结晶速度实际等于零; II 区:在这个区域中,成核过程控制结晶速度,结晶速度不高; III 区:最大结晶速度出现于此区域,是熔体结晶生成的主要区域;

Ⅳ区:结晶速度随温度降低迅速下降。

结晶速度主要由晶粒生长过程控制。

结晶速度-温度曲线分布示意图

获得小晶粒结构的方法:一方面可采用加入成核剂,使晶核数目增加,晶

粒变小;另一方面可采用将熔化的聚合物急速冷却(淬火)。

高温慢速结晶,得到晶粒较大;低温快速结晶,得到晶粒较小。

五、计算题 1、已知聚丙烯的熔点C T m 176=,结构单元融化热136.8-?=?mol kJ H u ,试计算:

(1)平均聚合度分别为DP =6、10、30、1000的情况下,由于链段效应引起的m T 下降为多大?

(2)若用第二组分和它共聚,且第二组分不进入晶格,试估计第二组分占10%摩尔分数时共聚物的熔点为多少?

解:(1)DP

H R T T u m m ??=-2110 式中,K C T m 4491760== ,1131.8--?=K mol J R ,用不同DP 值代入公式计算得到:

C K T m 1183911==,降低值176-118=58C

C K T m 1394122==,降低值176-139=37C

C K T m 1634363==,降低值176-163=13C C K T m .1764494==,降低值176-176=0C

可见,当DP >1000时,端链效应开始可以忽略。

S H m T ??=θ结晶速度

Tg T ma T m Ⅰ Ⅱ Ⅲ Ⅳ 晶粒生长过程控制 成核过程控

聚合物材料表征测试题库

高分子研究方法题库 1 在对聚合物进行各种光谱分析时,红外光谱主要来源于分子振动-转动能级间的跃迁;紫外-可见光谱主要来源于分子的电子能级间的跃迁;核磁共振谱主要来源于置于磁场中的原子核能级间的跃迁,它们实际上都是吸收光谱。 2、SEM 和TEM的三要素是分辨率、放大倍数、衬度。 2、在有机化合物中,解析谱图的三要素为谱峰的位置、形状和强度。 2 苯、乙烯、乙炔、甲醛,其1H化学位移值最大的是甲醛,最小的是乙炔,13C的化学位移值最大的是甲醛最小的是乙炔。 4、紫外光谱主要决定于分子中发色和助色基团的特性,而不是整个分子的特性。 3 差示扫描量热仪分功率补偿型和热流型两种。第107页 4 产生核磁共振的首要条件是核自旋时要有磁距产生。 5 当原子核处于外磁场中时,核外电子运动要产生感应磁场,核外电子对原子核的这种作用就是屏蔽作用. 6 分子振动可分为伸缩振动,弯曲振动 7 傅里叶红外光声光谱英文简称为FTIR-PAS.P28 8 干涉仪由光源,定镜,分束器,检测器等几个主要部分组成。P19 9 高聚物的力学性能主要是测定材料的强度和模量以及变形. 10 共混物的制样方法有流延薄膜法热压薄膜法溴化钾压片法P11 11 光声探测器和红外光谱技术结合即为红外声光谱技术. P27 12 核磁共振普与红外、紫外一样,实际上都是吸收光谱。红外光谱来源于分子振动-转动能级间的跃迁,紫外-可见吸收光谱来源于分子的电子能级间的跃迁。[P46] 13 核磁共振谱图上谱峰发生分裂,分裂峰数是由相邻碳原子上的氢数决定的,若分裂峰数为n,则邻碳原子氢数为n-1。 P50 15 红外光谱在聚合物研究中占有十分重要的位置,能对聚合物的化学性质、立体结构、构象、序态、取向等提供定性和定量的信息。P6 16 红外光谱中,波动的几个参数为波长、频率、波数和光速。 17 红外光谱中,在1300~1400cm,基团和频率的对应关系比较明确,这对确定化合物中的官能团很有帮助,称为官能团区. 18 红外活性振动能引起分子偶极矩变化P8 19 红外区是电磁总谱中的一部分,波长在0.7~1000之间。 20 红外吸收光谱是直接地反映分子中振动能级的变化;而拉曼光谱是间接地反映分子中振动能级的变化。 21 记录X射线的方法有照相法和计数器法。P68 22 解析谱图三要素为谱峰位置形状和强度P/13 2 在紫外光谱中不同浓度的同一种物质,在某一定波长下的λmax处吸光度A的差异最大.所以测定最灵敏 23 聚合物的一般制样方法主要有流延薄膜法,热压薄膜法,溴化钾压片法 24 拉曼光谱研究高分子样品的最大缺点是:荧光散射。 25 拉曼位移的大小与入射光的频率无关,只与分子的能级结构有关。P30 26 凝胶渗透色谱对分子链分级的原理是体积排除理论。P96 27 凝胶渗透色谱仪的组成:系统自动进样系统加热恒温系统分离系统检测系统 28 强迫非共振法是研究聚合物粘弹动力学性能有效、普遍、重要的方法。P146 29 斯托克斯线或反斯托克斯线与入射光频率之差称为拉曼位移。P30 30 温度由低到高时,高聚物历经三种状态,即玻璃态,高弹态和粘流态。P2 31 现代热分析是指在程序控温之下,测量物质的物理性质随温度变化的一类技术P105

聚合物相容性的表征和测定

聚合物相容性的表征和测定 聚合物共混物是指两种或两种以上聚合物的混合物,正如合金一样,共混高聚物可以使材料得到单一的等聚物所不具有的性能,因此其合成具有很重要的意义。聚合物之间的相容性是选择适宜共混方法的重要依据,也是决定共混物形态结构和性能的关键因素。以下就聚合物之间相容性的基本特点,相容性的表征参数和测定方法进行简单的阐述。 从热力学角度来看,聚合物的相容性就是聚合物之间的相互溶解性,是指两种聚合物形成均相体系的能力。若两种聚合物可以任意比例形成分子水平均匀的均相体系,则是完全相容;如硝基纤维素-聚丙烯酸的甲脂体系。若是两种聚合物仅在一定的组成范围内才能形成稳定的均相体系,则是部分相容。如部分相容性很小,则为不相容,如聚苯乙烯-聚丁二烯体系。 相容与否决定于混合物的混合过程中的自由能变化是否小于0。即要求△G=△H-T△S<0.对于聚合物的混合,由于高分子的分子量很大,混合时熵的变化很小,而高分子-高分子混合过程一般都是吸热过程,即△H为正值,因此要满足△G<0是困难的。△G往往是正的,因而绝大多数共混高聚物都不能达到分子水平的混合,或者是不相容的,形成非均相体系。但共混高聚物在某一温度范围内能相容,像高分子溶液一样,有溶解度曲线,具有最高临界相容温度(UCST)和最低临界相容温度(LCST),这与小分子共存体系存在最低沸点和最高沸点类似。大部分聚合物共混体系具有最低临界相容温度,这是聚合物之间相容性的一个重要特点。 还应指出,聚合物之间的相容性还与分子量的分布有关。一般,平均分子量越大,聚合物之间的相容性就越小。 以上定性地描述了影响相容性的一些因素,那么在实际中如何判断聚合物之间的相容性呢?最常用的判据是溶度参数和Huggins-Flory相互作用参数。 聚合物合金作为一种多组分复合体,各组分间的相容性以及如何改善组分间的相容性是聚合物合金研究的重点内容,众所周知,大多数聚合物之间是不相容或部分相容 的,聚合物合金是多相结构体系,多相结构体系中,相形态结构和界面性质在某种程度上反映了合金中各组分间的相容性程度,而相容性好坏与合金性能有着密切关系。 (1)关于聚合物相容性的判据—溶解度参数根据溶解度参数预测有机化合物之间的相容性。 一般来说,两聚合物的溶解度参数差小于0.5时,相容性较好。 溶解度参数理论仅仅考虑到分子间的色散力,只适合于非极性分子的情况。 对于分子间有极性作用的情况,S.Chen.提出了三维溶解度参数的概念。 三维溶解度参数考虑聚合物间色散力、偶极力和氢键的作用。但由于三维溶解度参数测定较复杂,尚未普遍使用。 (2)玻璃化温度(T g)的评价法聚合物共混物的玻璃化转变温度与两种聚合物分子级的混合程度有直接关系。若两种聚合物组分相容,共混物为均相体系,只有一个玻璃化温度,若两组分完全不溶,则形成界面明显的两相结构,则有2个玻璃化温度,而且分别为两组分的T g,如果部分相容,所测的T g介于两种极限情况之间。两聚合物达到一定程度的分子级混合时,仍有两个T g,但相互靠近,靠近的程度取决于分子级混合的程度。 因此,我们可根据测定共混物的T g结果来判断体系各组分相容的程度。T g测定的方法有多种,较为简单的是热分析法(DSC)。

铜及铜合金弯曲应力松弛试验方法

《铜及铜合金弯曲应力松弛试验方法》 国家标准送审稿编制说明 一、任务来源 根据国标委综合[2017]128号及全国有色金属标准化技术委员会下发的有色标委[2018]2号《关于转发2018年第一批有色金属国家标准制(修)订项目计划》文件,《铜及铜合金弯曲应力松弛试验方法》国家标准(计划号:20173798-T-610),由宁波兴业盛泰集团有限公司、宁波兴业鑫泰新型电子材料有限公司、安徽鑫科铜业有限公司、凯美龙精密铜板带(河南)有限公司、山西春雷铜材有限责任公司、江西金品铜业科技有限公司、中色(宁夏)东方集团有限公司、国家铜铝冶炼及加工产品质量监督检验中心(山东)负责起草,项目于2019年完成。 二、工作简况 1立项目的 随着电子元器件向着微型化、薄型化、高密度和高度集成化发展,电子元器件在长时间使用中产生的热效应不断增加,部分元器件还可能在更高的温度下长时间使用,为了保持端子连接器弹片的嵌合力,这就要求材料具有优良的抗应力松弛性能。国内接插件市场占有率比较高,但均以中低端市场为主,而高端的汽车连接器、精密接插件及大规模集成电路等产品则长期依赖进口。造成这种现象的原因主要有两个方面,一方面是我国对于高弹铜基合金的基础研究起步较晚,且我国铜合金制备加工能力与发达国家相比还有一定差距,工艺条件、装备水平等方面都有待进一步提高;另一方面是随着客户对铜基弹性材料性能的要求不断提高,许多客户对材料提出了具有抗应力松弛特性的隐性需求,而国内应力松弛试验方法标准少,限制了我国对高端连接器及精密接插件等材料进行更深层次的研发工作。 国外对应力松弛试验方法已制定相应的标准,主要有美国ASTM E328“材料和结构的应力松弛试验标准推荐方法”、日本伸铜协会技术标准JCBA-T309-2004 薄板条弯曲应力松弛缓和试验方法等。报据以上国外标准可以看出,评价材料松弛性能的主要方法两种,一种是拉伸应力松弛,另外是弯曲应力松弛。而目前国内仅有GB/T 10120-2013“金属材料拉伸应力松弛试验方法”,缺少相应的弯曲应力松弛试验方法,且此标准中对测试样的要求较高、试验周期长、效率低,对设备的要求比较高,且绝大多数铜基弹性材料的下游企业,并未配备检测机器和具有检测能力。目前各种弹性接插件的工作环境,更与弯曲应力松弛试验条件相接近,采用弯曲应力松弛试验方法,更能代表实际材料的工作条件,更可满足多元条件下的应力松弛试验要求;另外,由于各企业也只是独立地进行应力松弛试相关的简单的试验性工作,试验方法五花八门,但由于缺乏统一评价标准,致使更多企业未对其进行展开系统地、深层次的研究,限制着其高端方面的使用。因此,制定铜及铜合金弯曲应力松弛试验方法就显得十分重要,对规范弯曲应力松弛试验,统一数据评价标准,有利于我国中高端连接器、集成电路用材料的研发,具有良好的现实意义。为满足国内外市场对铜及铜合金应力松弛性能的需求,更有效的确保产品质量,因此制定本标准。

聚合物的相容性-高分子物理化学(高聚物结构和性能)论文

聚合物的相容性 高莉丽PB02206235 摘要:从共混来研究聚合物的基本特点,相容性的表征方法和测定方法。 关键词:相容,共聚,溶度参数,Huggins-Flory相互作用参数。 聚合物共混物是指两种或两种以上聚合物的混合物,正如合金一样,共混高聚物可以使材料得到单一的等聚物所不具有的性能,因此其合成具有很重要的意义。聚合物之间的相容性是选择适宜共混方法的重要依据,也是决定共混物形态结构和性能的关键因素。以下就聚合物之间相容性的基本特点,相容性的表征参数和测定方法进行简单的阐述。 从热力学角度来看,聚合物的相容性就是聚合物之间的相互溶解性,是指两种聚合物形成均相体系的能力。若两种聚合物可以任意比例形成分子水平均匀的均相体系,则是完全相容;如硝基纤维素-聚丙烯酸的甲脂体系。若是两种聚合物仅在一定的组成范围内才能形成稳定的均相体系,则是部分相容。如部分相容性很小,则为不相容,如聚苯乙烯-聚丁二烯体系。 相容与否决定于混合物的混合过程中的自由能变化是否小于0。即要求△G=△H-T△S<0.对于聚合物的混合,由于高分子的分子量很大,混合时熵的变化很小,而高分子-高分子混合过程一般都是吸热过程,即△H为正值,因此要满足△G<0是困难的。△G往往是正的,因而绝大多数共混高聚物都不能达到分子水平的混合,或者是不相容的,形成非均相体系。但共混高聚物在某一温度范围内能相容,像高分子溶液一样,有溶解度曲线,具有最高临界相容温度(UCST)和最低临界相容温度(LCST),这与小分子共存体系存在最低沸点和最高沸点类似。大部分聚合物共混体系具有最低临界相容温度,这是聚合物之间相容性的一个重要特点。 还应指出,聚合物之间的相容性还与分子量的分布有关。一般,平均分子量越大,聚合物之间的相容性就越小。 以上定性地描述了影响相容性的一些因素,那么在实际中如何判断聚合物之间的相容性呢?最常用的判据是溶度参数和Huggins-Flory相互作用参数。 1.溶度参数 对于非极性分子体系,混合过程无热效应或吸热。由Hildebrand的推导,混合焓 △Hm =Vm(∑12/1-∑22/1)2&1&2 ∑1,∑2分别为溶剂与高聚物的内聚能密度,&1,&2分别为溶剂与高聚物的体积分数,Vm为混合后的总体积。 定义溶度参数δ=∑2/1,则上式可写为: △Hm =Vm(δ1-δ2)2&1&2 当δ1与δ2越接近,则△H越小,△G越小,越有利于相容,据此可以根据溶度参数来选择聚合物的溶剂,但以上溶度参数仅考虑了分子之间的色散力,仅适用于非极性分子的情况。当聚合物之间有强的极性作用或氢键时上述规则不适用。鉴于这种情况,采用三维溶度参数。即假定液体的蒸发能为色散力、偶极力和氢键三种力的贡献,这三种力对蒸发能的贡献分别为Ea, Ep和Ed。即 E=Ea+Ep+Ed.于是有:δ2=δ2 a +δ2 p +δ2 d 仅当两种聚合物的δa,δp和δn都分别相近是才能很好地溶解。如PVC的δ值与氯仿和四氢呋喃的δ值都很相近,但PVC与氯仿的δp和δn相差较大,所以两者不相容,PVC与四氢呋喃的δp,δa,δn都相近,所以可以很好地相容。 2 Huggins-Flory作用参数Χ1,2

铜及铜合金弯曲应力松弛试验方法国家标准讨论稿编制说明

《铜及铜合金弯曲应力松弛试验方法》国家标准讨论稿编制说明 一、工作简况 1立项目的 随着电子元器件向着微型化、薄型化、高密度和高度集成化发展,电子元器件在长时间使用中产生的热效应不断增加,部分元器件还可能在更高的温度下长时间使用,为了保持端子连接器弹片的嵌合力,这就要求材料具有优良的抗应力松弛性能。国内接插件市场占有率比较高,但均以中低端市场为主,而高端的汽车连接器、精密接插件及大规模集成电路等产品则长期依赖进口。造成这种现象的原因主要有两个方面,一方面是我国对于高弹铜基合金的基础研究起步较晚,且我国铜合金制备加工能力与发达国家相比还有一定差距,工艺条件、装备水平等方面都有待进一步提高;另一方面是随着客户对铜基弹性材料性能的要求不断提高,许多客户对材料提出了具有抗应力松弛特性的隐性需求,而国内应力松弛试验方法标准少,限制了我国对高端连接器及精密接插件等材料进行更深层次的研发工作。 国外对应力松弛试验方法已制定相应的标准,主要有美国ASTM E328“材料和结构的应力松弛试验标准推荐方法”、日本伸铜协会技术标准JCBA-T309-2004 薄板条弯曲应力松弛缓和试验方法等。报据以上国外标准可以看出,评价材料松弛性能的主要方法两种,一种是拉伸应力松弛,另外是弯曲应力松弛。而目前国内仅有GB/T 10120-2013“金属材料拉伸应力松弛试验方法”,缺少相应的弯曲应力松弛试验方法,且此标准中对测试样的要求较高、试验周期长、效率低,对设备的要求比较高,且绝大多数铜基弹性材料的下游企业,并未配备检测机器和具有检测能力。目前各种弹性接插件的工作环境,更与弯曲应力松弛试验条件相接近,采用弯曲应力松弛试验方法,更能代表实际材料的工作条件,更可满足多元条件下的应力松弛试验要求;另外,由于各企业也只是独立地进行应力松弛试相关的简单的试验性工作,试验方法五花八门,但由于缺乏统一评价标准,致使更多企业未对其进行展开系统地、深层次的研究,限制着其高端方面的使用。因此,制定铜及铜合金弯曲应力松弛试验方法就显得十分重要,对规范弯曲应力松弛试验,统一数据评价标准,有利于我国中高端连接器、集成电路用材料的研发,具有良好的现实意义。为满足国内外市场对铜及铜合金应力松弛性能的需求,更有效的确保产品质量,因此制定本标准。 2任务来源 全国有色金属标准化技术委员会在广泛征求意见的基础上下发了有色标委[2018]2号《关于转发2018年第一批有色金属国家标准制(修)订项目计划》文件,正式下达了《铜及铜合金弯曲应力松弛试验方法》国家标准(计划号:20173798-T-610)的起草任务。宁波兴业盛泰集团有限公司为负责起草单位。 3项目编制组单位简况 3.1编制组成员单位 本标准由宁波兴业盛泰集团有限公司、宁波兴业鑫泰新型电子材料有限公司、安徽鑫科铜业有限公司、北京有色金属研究总院、中铝华中铜业有限公司、山西春雷铜材有限责任公司、江西金品铜业科技有限公司、中色(宁夏)东方集团有限公司、国家铜冶炼及加工产品质量监督检验中心(山东)、凯美龙精密铜带(河南)有限公司、西北有色金属研究院等共同起草,以上编制组成员单位均是《铜及铜合金弯曲应力松弛试验方法》的应用单位。

最新聚合物材料表征与测试考点

一、红外光谱中,什么是特征频率区、指纹区?二者的频率范围是多少?三键、 双键和单键分别在哪个频率范围内会产生吸收峰? 能代表某种基团存在并具有较高强度的吸收峰所在的频率位置称为基团特征吸收频率。一些同系物或结构相似的化合物,在这个区域的谱带往往存在一定的区分,可以区别开来,如同人的指纹,因此称为指纹区 三键在2400-2100cm-1处产生吸收峰 双键在1900-1500cm-1处产生吸收峰 单键在1300cm-1以下产生吸收峰 二、什么是热分析?常用的热分析方法有哪些?(至少三种) 热分析是在受控程序温度条件下和规定的气氛测量物质的物理性质随温度或时间变化的技术。常用的热分析方法有差式扫描量热和差热分析、热重分析和动态力学分析 三、核磁共振氢谱图可以提供哪些主要信息? 峰的数目:标志分子中磁不等性质子的种类,多少种; 峰的强度(面积)比:每类质子的数目(相对),多少个; 峰的位移值(δ):每类质子所处的化学环境、化合物中位置; 峰的裂分数:相邻碳原子上质子数; 偶合常数(J):确定化合物构型。 四、X射线衍射谱图物相分析的基本思想是什么?说出晶态、非晶态、半晶态衍射谱图的特征分别是什么?(p78) 1)

2) 3)区分晶态与非晶态(鉴别是否有结晶) 聚合物鉴定 识别晶体类型 尖锐峰——结晶存在 弥散“隆峰”——样品中有非晶态 不尖锐不弥散的“突出峰”——有结晶存在,但不完善 五、拉曼与红外 一般说来极性基团的振动和分子非对称振动使分子的偶极矩变化,所以是红外活性的。非极性基团的振动和分子的全对称振动使分子极化率变化,所以是拉曼活性的。 拉曼光谱最适用于研究同种原子的非极性健如S-S,N=N,C=C,C≡C等的振动。 红外光谱适用于研究不同种原子的极性键如C=O,C—H,N—H,O-H等的振动。 名词解释: 1双折射现象: 光束入射到各向异性的晶体上时,入射光分解为两束光而沿不同方向折射的现象。它们为振动方向互相垂直的线偏振光。 2化学位移: 由于原子核外电子运动产生了感应磁场,对外磁场产生屏蔽作用(σ屏蔽常数,反映核所处的化学环境),使质子的共振频率发生变化,在谱图上反映出谱峰的位置移动了

聚合物测试表征复习重点

第一章:红外吸收光谱法 1.红外吸收法的基本原理及仪器组成; 2.样品的制备方法; 3.红外吸收光谱法在高聚物定性分析中的应用,熟悉高聚物红外吸收谱图横、 纵坐标表示的物理意义,熟悉常见官能团吸收峰位置,能够给出红外图谱上主要吸收峰的归属,从而判断该聚合物的种类;能够通过红外图谱中可反应官能团的消失或新官能团的出现来判断高聚物化学反应的进程。 第二章:热分析 1.热分析方法的种类; 2-1.差示量热扫描法(DSC)的基本原理、实验技术和主要影响因素; 2-2.DSC在高分子材料领域的应用,分物理转变的研究和化学反应的研究两类。物理转变包括结晶/熔融、液晶转变等相转变以及玻璃化转变等;化学反应包括聚合、交联等。可以用来测定聚合物的结晶度、反应热,研究结晶动力学和反应动力学。 2-3.重点:用DSC研究聚合物结晶行为时常采用的两种测试方法(非等温结晶法和等温结晶法):熟悉结晶聚合物的升温曲线和降温曲线中各个参数的物理意义,掌握熔点和结晶点的确定方法,能够通过熔融峰面积计算聚合物的结晶度。 2-4.玻璃化转变温度的确定。如何通过熔融DSC曲线判断两相聚合物共混物的相容性好坏?(玻璃化转变温度、熔点间位置的变化) 3-1.热重法(TG)的基本原理、实验技术和主要影响因素; 3-2.TG的应用-广泛应用于高分子材料的组成分析、热稳定性测定、氧化或分解反应及其动力学研究、失去低分子物的缩聚反应研究和材料老化研究等; 3-3.重点:熟悉TG曲线各项参数的物理含义;如何通过TG曲线判断聚合物耐热性能的好坏(失重百分数温度1%、5%、50%);如何通过TG曲线分析材料的组成。 第三章:X射线法(大角X射线衍射法-WAXD、小角X射线散射法-SAXS) 1.X射线在晶体中衍射的基本原理及测定方法-布拉格方程:nλ=2dsinθ,其中 θ为掠射角,晶面间距d,n为正整数(1,2,3……),称衍射级数; 2.了解X射线衍射法在聚合物中的应用;

高聚物结构与性能的答案

高聚物结构与性能 试题参考答案 一、名词解释(2.5×12 =30分) 构型:由化学键决定的原子基团间的空间排列方式 分子链柔顺性:高分子链能够改变其构型的性质 高斯链:又名高斯线团,是末端距分布符合Gauss分布函数的线团。 熔限:高分子晶体的熔融发生在一个温度范围内,称为熔限。 多分散指数:描述高分子的分子量多分散性大小的参数,通常是Mw/Mn或Mz/Mw 取向:高分子的链段、整链或其晶体结构沿外力方向所作的优先排列。 粘弹性:高分子固体的力学性质兼具纯弹性和纯粘性的特征,称为粘弹性。 溶度参数:定义为(CED)1/2,用于指导非极性聚合物的溶剂选择。 冷拉:高分子材料在拉伸条件下,发生应力屈服,出现细颈、细颈扩展所导致的大形变行为。 增韧:即增加聚合物材料韧性,所采用的技术路线有弹性体和刚性粒子增韧力学损耗:高分子材料在动态力学条件下,应力与应变出现滞后所导致的机械能损耗 银纹:由于应力或环境因素的影响,聚合物表面所产生的银白色条纹 二、简答题(8×5=40 分) 1.分别写出顺丁橡胶、聚丙烯、聚异丁烯、聚甲醛、聚氯乙烯的结构式,比较其玻璃化温度的高低,并说明原因。

2.高聚物熔体的流动机理是什么?其流动行为上有什么特征? 答:流动机理:高分子链的重心移动采用高分子链段的协同跃迁的方式完成,通常称为“蠕动”。 熔体流动的特征有三: 1,高粘度,缘自高分子巨大的分子量; 2,剪切变稀:高分子链受剪切作用时,发生构象变化。 3,弹性效应:高分子流动变形中包含可逆的构象变化,导致其表现出Barus效应、爬杆效应等现象。 3.何为θ溶液?θ条件下,Huggins参数取何值?此时溶液中高分子链的构象有何特征? 答:处于θ状态,即高分子链段间作用等于高分子链段与溶剂分子作用的状态的高分子溶液,称为θ溶液。 此时,Huggins参数为1/2;溶液中高分子链的构象与同温度条件下的高聚物本体的非晶区构象相同。 4.请说明聚乙烯、尼龙-66和交联顺丁橡胶溶解行为上的差异。 答:PE:非极性、结晶性,需要在高温下采用非极性溶剂溶解; Nylon-66:极性、结晶性,常温下采用极性溶剂溶解; 交联顺丁:只有熔胀过程,而不溶解 5.试从结晶热力学的角度分析天然橡胶的拉伸结晶现象。 答:天然胶NR,主体成分是顺式聚异戊二烯,具有规整性,可以结晶。 晶体的熔点:Tm=△H / △S。由于NR柔顺性大,结晶中的熵变巨大,导致熔点低,常温下不能结晶; 拉伸条件下,NR分子链的构象变化,结晶的熵变减小,使熔点高于室温,所以NR在拉伸条件下可以结晶。

高分子聚合物的表征方法及常用设备

高分子聚合物的表征方法及常用设备 高分子聚合物的结构形貌分为微观结构形貌和宏观结构形貌。微观结构形貌指的是高分子聚合物在微观尺度上的聚集状态,如晶态,液晶态或无序态(液态),以及晶体尺寸、纳米尺度相分散的均匀程度等。高分子聚合物的的微观结构状态决定了其宏观上的力学、物理性质,并进而限定了其应用场合和范围。宏观结构形貌是指在宏观或亚微观尺度上高分子聚合物表面、断面的形态,以及所含微孔(缺陷)的分布状况。观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。 高分子聚合物结构形貌的表征方法及设备包括: 1.偏光显微镜(PLM) 利用高分子液晶材料的光学性质特点,可以用偏光显微镜观测不同高分子液晶,由液晶的织构图象定性判断高分子液晶的类型。 2.金相显微镜 金相显微镜可以观测高分子聚合物表面的亚微观结构,确定高分子聚合物内和微小缺陷。体视光学显微镜通常被用于观测高分子聚合物体表面、断面的结构特征,为优化生产过程,进行损伤失效分析提供重要的信息。 3、体视显微镜 使用体视显微镜时需要注意在取样时不得将进一步的损伤引入受观测的样品。使用金相显微镜时,受测样品需要首先在模具中固定,然后用树脂浇铸成圆柱形试样。圆柱的地面为受测面。受测面在打磨、抛光成镜面后放置于金相显微镜上。高分子聚合物亚微观结构形貌的清晰度取决于受测面抛光的质量。 4.X射线衍射 利用X射线的广角或小角度衍射可以获取高分子聚合物的晶态和液晶态组织结构信息。有关内容参见高分子聚合物的晶态和高分子聚合物液晶态栏目。 5.扫描电镜(SEM) 扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。 用SEM可以观察聚合物表面形态;聚合物多相体系填充体系表面的相分离尺寸及相分离图案形状;聚合物断面的断裂特征;纳米材料断面中纳米尺度分散相的尺寸及均匀程度等有关信息。 6.透射电镜(TEM) 透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,

高聚物结构与性能

1.聚合物表面改性 聚合物表面改性方法可以分为以下几种:化学改性、光化学改性、表面改性剂改性、力化学处理、火焰处理与热处理、偶联剂改性、辐照与等离子体表面改性。 (1)化学改性是通过化学手段对聚合物表面进行改性处理,其具体方法包括化学氧化法、化学浸蚀法、化学法表面接枝等。 化学氧化法是通过氧化反应改变聚合物表面活性。常用的氧化体系有:氯酸-硫酸系、高锰酸-硫酸系、无水铬酸-四氯乙烷系、铬酸-醋酸系、重铬酸-硫酸系及硫代硫酸铵-硝酸银系等,其中以后两种体系最为常用。 化学浸蚀法是用溶剂清洗可除去聚烯烃表面的弱边界层,例如通过用脱脂棉蘸取有机溶剂,反复擦拭聚合物表面多次等。 聚合物表面接枝,是通过在表面生长出一层新的有特殊性能的接枝聚合物层,从而达到显著的表面改性效果。 (2)光化学改性主要包括光照射反应、光接枝反应。 光照射反应是利用可见光或紫外光直接照射聚合物表面引起化学反应,如链裂解、交联和氧化等,从而提高了表面张力。 光接枝反应就是利用紫外光引发单体在聚合物表面进行的接枝反应。 (3)表面改性剂改性 采用将聚合物表面改性剂与聚合物共混的方式是一种简单的改性办法,它只需要在成型加工前将改性剂混到聚合物中,加工成型后,改性剂分子迁移到聚合物材料的表面,从而达到改善聚合物表面性能的目的。 (4)力化学处理是针对聚乙烯、聚丙烯等高分子材料而提出来的一种表面处理和粘接方法,该方法主要是对涂有胶的被粘材料表面进行摩擦,通过力化学作用,使胶黏剂分子与材料表面产生化学键结合,从而大大提高了接头的胶接强度。力化学粘接主要是通过外力作用下高分子键产生断裂而发生化学反应,包括力降解、力化学交联、力化学接枝和嵌段共聚等。(5)火焰处理就是在特别的灯头上,用可燃气体的热氧化焰对聚合物表面进行瞬时处理,使其表面发生氧化反应而达到表面改性的效果。热处理是将聚合物暴露在热空气中,使其表面氧化而引入含氧基团。 (6)偶联剂是一种同时具有能分别与无机物和有机物反应的两种性质不同官能团的低分子化合物。其分子结构最大的特点是分子中含有化学性质不相同的两个基团,一个基团的性质亲无机物,易于与无机物表面起化学反应;另一个基团亲有机物,能与聚合物起化学反应,生成化学键,或者能互相融合在一起。偶联剂主要包括硅烷偶联剂、钛酸酯偶联剂两大类,其作用机理同表面活性剂的改性机理相同。 (7)辐照改性是聚合物利用电离辐射(直接或间接的导致分子的激发和电离)来诱发一些物理化学变化,从而达到改性的目的。等离子体表面改性是通过适当选择形成等离子体的气体种类和等离子体化条件,对高分子表面层的化学结构或物理结构进行有目的的改性。2.哪些物质能形成液晶,判断、表征 形成液晶物质的条件: (1)具有刚性的分子结构。 (2)分子的长宽比。棒状分子长宽比>4左右的物质才能形成液晶态;盘状分子轴比<1/4左右的物质才能呈现液晶态。 (3)具有在液态下维持分子的某种有序排列所必需的凝聚力。这种凝聚力通常是与结构中的强极性基团、高度可极化基团、氢键等相联系的。 液晶相的判断:各种液晶相主要是通过它们各自的光学形态即织构来识别的,即在正交偏光显微镜下可观察到各种不同的由双折射产生的光学图像,这些图像是由“畴”和向错构成的。

高分子聚合物的主要表征方法

摘要 本文主要综述了高分子聚合物及其表征方法和检测手段。首先,从不同角度对高分子聚合物进行分类,并对高分子聚合物的结构,生产,性能做了一个简单的介绍。其次,阐述了表征和检测高分子聚合物的常用方法,例如:凝胶渗透色谱、核磁共振(NMR)、红外吸收光谱(IR)、激光拉曼光谱(LR)等。最后,介绍了检测高分子聚合物的常用设备,例如:偏光显微镜、金相显微镜、体视显微镜、X射线衍射、扫描电镜、透射电镜、原子力显微镜等。 关键词:聚合物;表征方法;检测手段;常用设备

ABSTRACT This paper mainly summarizes the polymer and its detection means.First of all, this paper made a simple introduction of the polymer structure, production performance. Secondly, it describes the detection methods of polymers, such as: gel permeation chromatography, nuclear magnetic resonance (NMR), infrared absorption spectroscopy (IR), laser Raman spectroscopy (LR).Finally, it describes the common equipment used to characterize and detection of polymers, such as: polarizing microscope, metallographic microscope, microscope, X ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy. Key words:Polymer; Characterization; Testing means; common equipment

反气相色谱法表征聚合物表面性质的方法比较

【摘要】以聚甲基丙烯酸甲酯 丙烯酸丁酯 苯乙烯基七环戊基多面齐聚倍半硅氧烷三元共聚物为模型聚合物,全面介绍了反气相色谱技术表征聚合物表面性质的方法,探讨了不同的计算方法对测定结果的影响。结果表明:Schultz方法和Dorris/Gray方法均可用于计算聚合物的表面能的色散分量γDs,但两者测得的γDs值存在一定的差异,且随温度的升高,差异逐渐增大,Dorris/Gray方法更适合于计算聚合物的γDs;而Sawyer、Schultz和Papirer 3种方法都能表征聚合物表面与极性探针的特殊相互作用以及聚合物表面的酸碱特征,其中以溶剂探针的沸点作参照点的Sawyer计算方法更具有简单、快捷的优点,更具有实用性。 【关键词】反气相色谱表面性质聚合物 1 引言 高分子材料因其独特的性能,已广泛应用于工业、农业、航空航天、国防、民用生活等各个领域。对于聚合物片材、薄膜、纤维等,其表面性质甚至比其本体性质更重要[1]。 反气相色谱(Inverse Gas Chromatography, IGC)所采用的气相色谱实验技术成熟、操作简便、设备简单,而且可得到的数据量大,在研究聚合物的热转变、结晶行为、溶液的热力学性质以及聚合物共混的热力学相溶性等方面获得了广泛应用[2~5]。特别是20世纪90年代以来,IGC技术在聚合物表面性质的表征中同样获得了成功的应用[6~8],能够从理论上为聚合物材料的共混和复合提供有价值的实验依据。因此,IGC技术可能成为表征聚合物表面性质的常用方法。 IGC技术表征聚合物的表面性质包括:溶剂分子与聚合物表面分子间的相互作用参数、聚合物表面能的色散分量以及表面的酸性常数和碱性常数等。计算过程中,同一参数可以采用不同的处理方法得到。本研究以聚甲基丙烯酸甲酯 丙烯酸丁酯 苯乙烯基七环戊基多面 为模型聚合物,采用 齐聚倍半硅氧烷三元共聚物(poly(MMA co BA co styryl POSS)) IGC技术测定聚合物表面能的色散分量以及表面的酸性常数和碱性常数等物理化学参数,介绍了数据的计算方法,并比较了不同计算方法的可行性和实用性。 2 实验部分 2.1 仪器与试剂 GC 16A型气相色谱仪(日本岛津公司);色谱工作站:N2000(南京千谱公司)。 探针分子:正己烷(Hexane)、正庚烷(Heptane)、正辛烷(Octane)、正壬烷(Nonane)、乙酸乙酯(Ethylacetate, EtAc)、二氯甲烷(Dichloromethane, DCM)、三氯甲烷(Trichloromethane, TCM )、乙醚(Diethylether)、四氢呋喃(Tetrahydrofuran, THF)、丙酮(Acetone)均为分析纯,其物理化学性质见表1,硅藻土载体(60~80目),以上试剂均购于上海化学试剂厂;甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、苯乙烯基七环戊基多面齐聚倍半硅氧烷(styryl POSS)三元共聚物(自制,制备方法及表征见文献[8])。

高聚物结构与性能的关系

高聚物结构与性能的关系 1. 高聚物的结构 按研究单元的不同分类,高聚物结构可分为两大类:一类为高聚物的链结构,即分子内的结构,是研究一个分子链中原子或基团之间的几何排列;另一类为高聚物的分子聚集态结构,即分子间的结构,是研究单位体积内许多分子链之间的几何排列。对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。 高聚物链结构 高聚物的链结构包括近程结构和远程结构。近程结构是指结构单元的化学组成、立体异构、连接顺序、以及支化、交联等;远程结构是指高分子链的构象、分子量等。 高聚物链结构是决定高聚物基本性质的主要因素,各种高聚物由于链结构不同其性质则完全不同。例如,聚乙烯柔软容易结晶,聚苯乙烯硬而脆不能结晶;全同立构聚丙烯在常温下是固休,可以结晶,而无规立构聚丙烯在常温下则为粘稠的液体等。 高聚物的聚集态结构 高聚物的分子聚集态结构包括晶态、非晶态、液晶态、取向态等;高聚物的分子聚集态结构是在加工成型过程中形成的,是决定高聚物制品使用性能的主要因素。即使具有相同链结构的同一种高聚物,由于加工成型条件的不同,其成型品的使用性能就有很大差别。例如,结晶取向程度不同直接影响纤维和薄膜的力学性能;结晶大小和形态不同可影响塑料制品的耐冲击强度,开裂性能和透明性。 因此对高聚物材料来说,链结构只是间接影响其性能,而分子聚集态结构才是直接影响其性能的因素。研究高聚物分子聚集态结构的意义就在于了解高聚物分子聚集态结构的特征,形成条件及其与材料性能之间的关系,以便人为地控制加工成型条件得到具有预定结构和性能的材料,同时为高聚物材料的物理改性和材料设计建立科学基础。 2.高聚物结构与力学性能的关系 链结构与力学性能的关系 不同的高聚物,有不同的分子结构,当然会显示出不同的材料性能出来。聚

预应力钢材拉伸应力松弛实验作业指导书

预应力钢绞线应力松弛性能试验作业指导书 一目的 明确预应力钢绞线松弛试验程序、操作流程、工艺要点以及控制标准,检测预应力钢绞线应力松弛性能,指导检测员按规程正确操作,保证检测结果科学、准确。 二适用范围 本作业指导书适用于钢绞线松弛性能任务。 三预应力钢绞线选用 a、预应力钢绞线符合1×7-15.2-1860-GB/T5224-2003的要求。供应商提供每批钢绞线的实际弹性模量值,质量保证单。 b、每批钢绞线附有出厂合格证,由同一批号、同一强度等级的钢绞线组成。实验前,外观检查合格后,再按GB/T228-2002的要求做钢绞线应力松弛性能试验和最大应力试验,合格后方可使用。 c、钢绞线的力学性能 ①见钢绞线尺寸及力学性能指标表。 表4-1 钢绞线尺寸及力学性能指标表 钢绞线结构钢绞线公 称直径mm 抗拉强 度MPa 整根钢绞 线的最大 力KN 规定非比 例延伸力 KN 最大力 总伸长 率% 应力松弛性能 初始负荷相 当于公称最 大力的百分 数(%) 1000h后应力松 弛率,(%) 不大于 1×7 标 准 型 15.20 不小于 1860 260 234 3.5 80 4.5 注:①规定非比例延伸力值不小于整根钢绞线公称最大力的90%。 ②每一交货批钢绞线的实际强度不能高于其抗拉强度级别200MPa。

③钢绞线弹性模量为(195±10)GPa。 ④采用推算法确定1000h松弛率。 d、表面质量:钢绞线表面不得有油、润滑脂等物质,允许有轻微的浮锈,但不 得有目视可见的锈蚀麻坑,表面允许存在回火的颜色。 f、取样数量 序号检验项目取样数量取样部位检验方法要求 1 表面逐盘卷目视见表面质量要求 2 应力松弛性能不小于1根/ 每合同批 [注] 2.5m 在每 (任)盘 卷中任意 一端截取 按TB10120执行 注:合同批为一个订货合同的总量。在特殊情况下,松弛试验可以由工厂连续检验提供同一原料、同 一生产工艺的数据所代替。 四预应力试验设备及工具配置 试验设备、工具配置及性能指标 序号设备及工具名称型号单位数量性能指标要求 1 微机控制拉伸应力松弛 试验机 WSC-300 台 1 2 卷尺把 1 3 砂轮切割机台 1 五检测步骤 1、将钢绞线套上夹具,放在试验机上(试验温度20±2℃,试样置于此环境中足够时间,确保 达到温度平衡后施加初始力试验) 2、打开软件,依照委托信息设定好钢绞线直径和强度等信息。 3、启动试验(除非相关标准或协议另作规定,应在3—5分钟内均与施加全部初始应力) 4、达到100小时后,试验结束,记录推算的1000小时应力松弛率 5、打印试验记录,关闭计算机和电源 6、取出试验机上的钢绞线,填写仪器使用记录。

高分子聚合物的取向表征

高分子聚合物的取向表征 用途 高分子和它的链段本身具有较大的长度,因此在空间上必然指向一定的方向。当高分子链段在空间随机取向时,由概率论可知,此时分子或分子链段指向各个方向的几率是相同的。在宏观上,高分子的这种取向方式使高分子聚合物在各个方向上呈现相同的品质,即各向同性性质。高分子链段也可能沿某些方向规整地周期性排列,从而形成高分子晶体。在一些条件下,如外力,流动等,相当数量的高分子链段会平行指向同一方向,由此形成的高分子聚集态结构被称作取向态结构。高分子链段平行地向同一方向排列的现象叫做高分子聚合物的取向。 表征方法及原理 1.高分子聚合物中分子链的取向度 1.1 高分子聚合物的取向 由于高分子聚合物取向后多数分子链段指向同一个方向,在这一方向上,高分子聚合物的宏观性能显然与其他方向存在差异,材料呈各项异性性质。在力学性能上,取向方向的强度、刚度会明显提高,而与之垂直方向上的强度和刚度则可能会降低。在光学性能上,高分子聚合物的取向导致双折射现象的出现。热性能上,热膨胀系数在取向和非取向方向上不同。高分子聚合物在外力作用下的取向有两种方式: l 单轴取向 l 双轴取向 单轴取向:高分子聚合物在单一方向上被外力拉伸;聚合物的长度增加,厚度和宽度减小。分子链受外力的影响指向受力方向。 双轴取向:外力在两个互相垂直的方向拉伸高分子聚合物。聚合物的在受力方向的长度增加,厚度减小,高分子链段相对于拉伸平面平行排列,在拉伸平面内则为随机排列。可见,双轴取向后,高分子聚合物在拉伸平面内的性能呈各项同性。 1.2 取向度 高分子聚合物中分子链段向特定方向排列的程度叫做取向度。取向度一般用取向函数F表示: F=0.5 (3cos2θ —1) 在定义取向函数时,通常取一特定的方向(如拉伸方向)作为参考方向,取分子的链轴方向与参考方向的夹角为取向角,θ。对于实际的高分子聚合物,θ不是一个定值,而是按一定的方式分布,因此取向函数方程中的θ往往采用实际取向角的平均值。 2.取向度的测定方法 2.1 广角X射线衍射法(W AXS) 选定取向单元(例如高分子主链轴、高聚物结晶主轴),然后选择取向度的参考方向,如拉伸方向。用广角X射线衍射仪获取样品的衍射图,取赤道线上Debye环(常用最强环)的强度分布曲线的半高宽(单位为“度”),计算聚合物样品中高分子链及微晶体的取向度: 式中,Π为聚合物样品中高分子链及微晶体沿样品被拉伸方向的取向度,H°为赤道线上Debye环强度分布曲线的半高宽度。Π值没有明确物理意义,只能做相对比较的参考数据。 2.2 双折射法表征纤维的取向度。 用偏光显微镜观测浸于油中的纤维。“浸油”是已知折光指数的油剂。变换不同折光指数的油

应力松弛试验机

应力松弛试验机 微机控制预应力松驰试验机 一、产品简介 WD-RE300型微机控制松弛试验机在设计过程中,吸收了德国、意大利等著名松弛试验机公司的设计理念和结构特点,并依据螺纹钢松弛试验、钢绞线松弛试验、PC钢棒松弛试验的相关国家标准研制而成的,专用于钢绞线、PC钢棒、镀锌钢丝及螺纹钢筋等材料的松弛试验。是专门针对制造、使用厂家而设计。该系列试验机主要用于螺纹钢筋、钢绞线、PC钢棒的松弛试验,可检测金属线材的单轴拉伸松弛强度等特性。可广泛用于质检部门、建筑施工单位、钢铰线和钢筋生产企业,是现代建筑力学试验的新型试验设备。满足 GB/T20065-2006《预应力混凝土用螺纹钢筋》,GB/T10120-1996《金属应力松弛试验方法》。技术参数 1.试验力 最大试验力:300kN 有效测量范围:2%~100%FS 示值相对误差:±1% 2.试验速度 调速范围:0.001-25mm/min 示值相对误差: ±0.5% 3.主机 试验机主机形式: 卧式结构 拉伸最大空间:1000-1200mm 同轴度:15%以内 4.试样规格 Φ11.10;Φ12.70;Φ15.24mm(公称直径) 5.保护功能: 超过最大试验力2%-5%时自动停机 6.主机尺寸(长*宽*高): 1800x710x1500mm 三、功能特点:

1.PC机实现了控制模式的闭环控制以及试验过程的程序控制,各种控制方式之间可无冲击切换。计算机自动完成试验过程的控制、数据采集、显示和保存(主要参数:试验力、松弛力、松弛率或对数松弛率),试验完成后可以对数据进行分析和处理,并打印输出用户要求的试验曲线及试验报告,可选择标准要求的各种试验曲线(可绘制剩余试验力或对数剩余力、松弛力或对数松弛力、松弛率或对数松弛率、温度等跟时间或对数时间的关系曲线)。 2. 计算机软件基于Windows98/Windows2000/Windows XP平台开发,界面美观,操作方便;试验力、变形显示采用组态仪表方式显示,十分醒目;内嵌数据库,便于数据历史追溯及联网要求;报表采用模板方式操作,用户只需简单培训即可掌握,整个软件封装性强,操作方便、功能全面;设有标准试验程序,按下快捷键,试验系统就可以按照标准要求在3-5分钟内将钢绞线加载公称最大力的70%或80%,保持1分钟内自动开始记录试验数据、到达设定时间后自动终止试验。试验曲线与理论拟合曲线的相关系数达到99%以上,因此计算机能以100小时以内的试验数据推算1000小时的试验结果,也可以进行1000小时的连续试验,缩短了实际实验时间。

相关文档
最新文档