6.3 变压变频调速系统中的脉宽调制(PWM)技术.

6.3 变压变频调速系统中的脉宽调制(PWM)技术.
6.3 变压变频调速系统中的脉宽调制(PWM)技术.

6.3 变压变频调速系统中的脉宽调制(PWM)技术

本节提要

正弦波脉宽调制(SPWM)技术

电流滞环跟踪PWM(CHBPWM)控制技术

电压空间矢量PWM(SVPWM)控制技术(或称磁链跟踪控制技术)

PWM技术就是利用半导体器件的开通和关断

把直流电压变成一定形状的电压脉冲序列,以实现变频、变压并有效控制和消除谐波的一门技术。

我们把PWM技术分为三类1、正弦PWM技术(电压、电流、磁通为正弦目的各种PWM方案)2、优化PWM技术3、随机PWM技术

一、正弦波脉宽调制(SPWM)技术

1. PWM调制原理

以正弦波作为逆变器输出的期望波形,以频率比期望波高得多的等腰三角波作为载波(Carrier wave),并用频率和期望波相同的正弦波作为调制波(Modulation wave),当调制波与载波相交时,由它们的交点确定逆变器开关器件的通断时刻,从而获得在正弦调制波的半个周期内呈两边窄中间宽的一系列等幅不等宽的矩形波。

按照波形面积相等的原则,每一个矩形波的面积与相应位置的正弦波面积相等,因而这个序列的矩形波与期望的正弦波等效。这种调制方法称作正弦波脉宽调制(Sinusoidal pulse width modulation,简称SPWM),这种序列的矩形波称作SPWM波。

2. SPWM控制方式

如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM 波也只处于一个极性的范围内,叫做单极性控制方式。

如果在正弦调制波半个周期内,三角载波在正负极性之间连续变化,则SPWM波也是在正负之间变化,叫做双极性控制方式。

规则采样法原理

三角波两个正峰值之间为一个采样周期Tc

自然采样法中,脉冲中点不和三角波一周期的中点(即负峰点)重合

规则采样法使两者重合,每个脉冲的中点都以相应的三角波中点为对称,使计算大为简化在三角波的负峰时刻tD对正弦信号波采样得D点,过 D作水平直线和三角波分别交于A、B 点,在A点时刻 tA和B点时刻 tB控制开关器件的通断

脉冲宽度d 和用自然采样法得到的脉冲宽度非常接近

根据上述采样原理和计算公式,可以用计算机实时控制产生SPWM波形。

规则采样法容易实现控制线性度好,但是电压利用率低(输出电压的有效值只有进线电压的0.864倍)现在常用的,是三次谐波注入法是在正弦调制波上叠加3的整数倍的谐波作为调制波。之所以添加3的整数倍的谐波,利用一个事实变频器输出的三相线电压相位差是120度,即使输出线电压中3的整数倍数次的谐波相互抵消了。以3次谐波为例调制比和输出电压仍为线性,m=1.2时电压利用率提高了20%,m大于1.2时控制规律不是线性。

4.PWM调制方法

载波比——载波频率 fc与调制信号频率 fr 之比N,既 N = fc / fr

根据载波和信号波是否同步及载波比的变化情况,PWM调制方式分为异步调制和同步调制。

(1)异步调制

异步调制——载波信号和调制信号不同步的调制方式。

通常保持 fc 固定不变,当 fr 变化时,载波比 N 是变化的;

在信号波的半周期内,PWM波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称;

(2)同步调制

同步调制——N 等于常数,并在变频时使载波和信号波保持同步。

基本同步调制方式,fr 变化时N不变,信号波一周期内输出脉冲数固定;

三相电路中公用一个三角波载波,且取 N 为3的整数倍,使三相输出对称;

(3)分段同步调制

把 fr 范围划分成若干个频段,每个频段内保持N恒定,不同频段N不同;

在 fr 高的频段采用较低的N,使载波频率不致过高;

在 fr 低的频段采用较高的N,使载波频率不致过低;

二、电流正弦PWM控制技术

应用PWM控制技术的变压变频器一般都是电压源型的,它可以按需要方便地控制其输出电压,为此前面两小节所述的PWM控制技术都是以输出电压近似正弦波为目标的。

但是,在电流电机中,实际需要保证的应该是正弦波电流,因为在交流电机绕组中只有通入三相平衡的正弦电流才能使合成的电磁转矩为恒定值,不含脉动分量。因此,若能对电流实行闭环控制,以保证其正弦波形,显然将比电压开环控制能够获得更好的性能。

常用的一种电流闭环控制方法是电流滞环跟踪PWM(Current Hysteresis Band PWM ——CHBPWM)控制,具有电流滞环跟踪 PWM 控制的 PWM 变压变频器的A相控制原理图示于图6-22。

1. 滞环比较方式电流跟踪控制原理

图中,电流控制器是带滞环的比较器,环宽为2h。

将给定电流 i*a 与输出电流 ia 进行比较,电流偏差ia 超过h时,经滞环控制器HBC 控制逆变器 A相上(或下)桥臂的功率器件动作。B、C 二相的原理图均与此相同。

采用电流滞环跟踪控制时,变压变频器的电流波形与PWM电压波形示于图6-23。

如果, ia < i*a ,且i*a - ia ≥ h,滞环控制器 HBC输出正电平,驱动上桥臂功率开关器件V1导通,变压变频器输出正电压,使ia增大。当增长到与i*a相等时,虽然,但HBC仍保持正电平输出,保持导通,使ia继续增大

直到达到ia = i*a + h ,△ia = –h ,使滞环翻转,HBC输出负电平,关断V1 ,并经延时后驱动V4。

但此时VT4未必能够导通,由于电机绕组的电感作用,电流不会反向,而是通过二极管VD4续流,使VT4受到反向钳位而不能导通。此后,逐渐减小,直到时,,到达滞环偏差的下限值,使 HBC 再翻转,又重复使VT1导通。这样VT1与VD4交替工作,使输出电流和给定值之间的偏差保持在

范围内,在正弦波上下作锯齿状变化。从图 6-23 中可以看到,输出电流是十分接近正弦波的。

滞环比较方式的指令电流和输出电流

图6-23给出了在给定正弦波电流半个周期内的输出电流波形和相应的相电压波形。可以看出,在半个周期内输出电流围绕正弦波作脉动变化,不论在ia的上升段还是下降段,它都是指数曲线

中的一小部分,其变化率与电路参数和电机的反电动势有关。 Ia上升阶段输出相电压为0.5 Ud Ia下降阶段输出相电压为-0.5 Ud

电流跟踪控制的精度与滞环的环宽有关,同时还受到功率开关器件允许开关频率的制约。当环宽选得较大时,可降低开关频率,但电流波形失真较多,谐波分量高;如果环宽太小,电流波形虽然较好,却使开关频率增大了。这是一对矛盾的因素,实用中,应在充分利用器件开关频率的前提下,正确地选择尽可能小的环宽。

三、磁通正弦PWM技术(电压空间矢量PWM(SVPWM)控制技术,称磁链跟踪控制技术)

本节提要

空间矢量的定义

电压与磁链空间矢量的关系

六拍阶梯波逆变器与正六边形空间旋转磁场

电压空间矢量的线性组合与SVPWM控制

1. 空间矢量的定义

交流电动机绕组的电压、电流、磁链等物理量都是随时间变化的,分析时常用时间相量来表示,但如果考虑到它们所在绕组的空间位置,也可以如图所示,定义为空间矢量uA0, uB0 , uC0 。

图6-25 电压空间矢量

电压空间矢量的相互关系

当电源频率不变时,合成空间矢量 us 以电源角频率w1 为电气角速度作恒速旋转。当某一相电压为最大值时,合成电压矢量 us 就落在该相的轴线上。用公式表示,则有

(6-39)与定子电压空间矢量相仿,可以定义定子电流和磁链的空间矢量 Is 和Ψs 。

2. 电压与磁链空间矢量的关系

三相的电压平衡方程式相加,即得用合成空间矢量表示的定子电压方程式为

(6-40)

式中

us —定子三相电压合成空间矢量;

Is —定子三相电流合成空间矢量;

Ψs—定子三相磁链合成空间矢量。

近似关系

当电动机转速不是很低时,定子电阻压降在式(6-40)中所占的成分很小,可忽略不计,则定子合成电压与合成磁链空间矢量的近似关系为

(6-41)

或(6-42)

磁链轨迹

当电动机由三相平衡正弦电压供电时,电动机定子磁链幅值恒定,其空间矢量以恒速旋转,磁链矢量顶端的运动轨迹呈圆形(一般简称为磁链圆)。这样的定子磁链旋转矢量可用下式表示。

(6-43)

其中Ψm是磁链Ψs的幅值,w1为其旋转角速度。

由式(6-41)和式(6-43)可得

(6-44)

上式表明,当磁链幅值一定时,的大小与(或供电电压频率)成正比,其方向则与磁链矢量正交,即磁链圆的切线方向,磁场轨迹与电压空间矢量运动轨迹的关系如图所示,当磁链矢量在空间旋转一周时,电压矢量也连续地按磁链圆的切线方向运动2弧度,其轨迹与磁链圆重合。

这样,电动机旋转磁场的轨迹问题就可转化为电压空间矢量的运动轨迹问题。

图6-26 旋转磁场与电压空间矢量的运动轨迹

3. 六拍阶梯波逆变器与正六边形空间旋转磁场

(1)电压空间矢量运动轨迹

在常规的 PWM 变压变频调速系统中,异步电动机由六拍阶梯波逆变器供电,这时的电压空间矢量运动轨迹是怎样的呢?

为了讨论方便起见,再把三相逆变器-异步电动机调速系统主电路的原理图绘出,图6-27中六个功率开关器件都用开关符号代替,可以代表任意一种开关器件。

主电路原理图

图6-27 三相逆变器-异步电动机调速系统主电路原理图

开关工作状态

如果,图中的逆变器采用180°导通型,功率开关器件共有8种工作状态,其中

6 种有效开关状态;

2 种无效状态(因为逆变器这时并没有输出电压):

上桥臂开关 VT1、VT3、VT5 全部导通

下桥臂开关 VT2、VT4、VT6 全部导通

开关状态表

开关控制模式

对于六拍阶梯波的逆变器,在其输出的每个周期中6 种有效的工作状态各出现一次。逆变器每隔/3 时刻就切换一次工作状态(即换相),而在这/3 时刻内相应空间电压矢量保持不变。

(b)工作状态100的合成电压空间矢量

由图可知,三相的合成空间矢量为 u1,其幅值等于Ud,方向沿A轴(即X轴)。

c)工作状态110的合成电压空间矢量

u1 存在的时间为/3,在这段时间以后,工作状态转为110,和上面的分析相似,合成空间矢量变成图中的 u2 ,它在空间上滞后于u1 的相位为/3 弧度,存在的时间也是/3 。

(d)每个周期的六边形合成电压空间矢量

依此类推,随着逆变器工作状态的切换,电压空间矢量的幅值不变,而相位每次旋转/3 ,直到一个周期结束。

这样,在一个周期中 6 个电压空间矢量共转过 2弧度,形成一个封闭的正六边形,如图所示。

图6-28d

(2)定子磁链矢量端点的运动轨迹

电压空间矢量与磁链矢量的关系

一个由电压空间矢量运动所形成的正六边形轨迹也可以看作是异步电动机定子磁链矢量端点的运动轨迹。对于这个关系,进一步说明如下:

设在逆变器工作开始时定子磁链空间矢量为 1,在第一个 /3 期间,电动机上施加的电压空间矢量为图6-28d中的 u1 ,把它们再画在图6-29中。按照式(6-41)可以写成

图6-29 六拍逆变器供电时电动机电压空间矢量与磁链矢量的关系

(6-45)

也就是说,在/3 所对应的时间t内,施加 u1的结果是使定子磁链 1 产生一个增量,其幅值 |u1| 与成正比,方向与u1一致,最后得到图6-29所示的新的磁链,而

(6-46)

依此类推,可以写成的通式

(6-47)

(6-48)

总之,在一个周期内,6个磁链空间矢量呈放射状,矢量的尾部都在O点,其顶端的运动轨迹也就是6个电压空间矢量所围成的正六边形。

磁链矢量增量与电压矢量、时间增量的关系

如果 u1 的作用时间t 小于π/3 ,则i 的幅值也按比例地减小,如图 6-30 中的矢量

。可见,在任何时刻,所产生的磁链增量的方向决定于所施加的电压,其幅值则正比于施加电压的时间。

图6-30 磁链矢量增量与电压矢量、时间增量的关系

4. 电压空间矢量的线性组合与SVPWM控制

如前分析,我们可以得到的结论是:

如果交流电动机仅由常规的六拍阶梯波逆变器供电,磁链轨迹便是六边形的旋转磁场,这显然不象在正弦波供电时所产生的圆形旋转磁场那样能使电动机获得匀速运行。

如果想获得更多边形或逼近圆形的旋转磁场,就必须在每一个期间内出现多个工作状态,以形成更多的相位不同的电压空间矢量。为此,必须对逆变器的控制模式进行改造。

圆形旋转磁场逼近方法

PWM控制显然可以适应上述要求,问题是,怎样控制PWM的开关时间才能逼近圆形旋转磁场。科技工作者已经提出过多种实现方法,例如线性组合法,三段逼近法,比较判断法等[31],这里只介绍线性组合法。

(1)线性组合公式

可根据各段磁链增量的相位求出所需的作用时间 t1和 t2 。在图6-32中,可以看出

(6-49)(2)相电压合成公式

根据式(6-39)用相电压表示合成电压空间矢量的定义,把相电压的时间函数和空间相位分开写,得

(6-50)

式中= 120 。

(3)线电压合成公式

若改用线电压表示,可得

(6-51)

几种表示法的比较:由图6-27可见,当各功率开关处于不同状态时,线电压可取值为Ud、0 或–Ud,比用相电压表示时要明确一些。

比较式(6-52)和式(6-49),令实数项和虚数项分别相等,则

解 t1和 t2 ,得

(6-53)

(6-54)

零矢量的使用

换相周期 T0 应由旋转磁场所需的频率决定, T0 与 t1+ t2 未必相等,其间隙时间可用零矢量 u7 或 u8 来填补。为了减少功率器件的开关次数,一般使 u7 和 u8 各占一半时间,因此

(6-55)

电压空间矢量的扇区划分:

为了讨论方便起见,可把逆变器的一个工作周期用6个电压空间矢量划分成6个区域,称为扇区(Sector),如图所示的Ⅰ、Ⅱ、…、Ⅵ,每个扇区对应的时间均为/3 。

由于逆变器在各扇区的工作状态都是对称的,分析一个扇区的方法可以推广到其他扇区。

电压空间矢量的6个扇区:

图6-33 电压空间矢量的放射形式和6个扇区

在常规六拍逆变器中一个扇区仅包含两个开关工作状态。

实现SVPWM控制就是要把每一扇区再分成若干个对应于时间 T0 的小区间。按照上述方法插入若干个线性组合的新电压空间矢量 us,以获得优于正六边形的多边形(逼近圆形)旋转磁场。开关状态顺序原则

在实际系统中,应该尽量减少开关状态变化时引起的开关损耗,因此不同开关状态的顺序必须遵守下述原则:每次切换开关状态时,只切换一个功率开关器件,以满足最小开关损耗。

脉宽调制(PWM)集成电路SG3525原理及应用

麻省理工大学 集成电路应用课程论文 论文题目:脉宽调制(PWM)集成电路SG3525 原理及应用 学院、系:电信学院电气系 专业班级:电气11 学生姓名:葉晓龍 任课教师:*** 2014 年 6 月8日

脉宽调制(PWM)集成电路SG3525的工作原理及应用 摘要:随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。SG3525是用于驱动N沟道功率MOSFET。其产品一推出就受到广泛好评。SG3525系列PWM控制器分军品、工业品、民品三个等级。下面就SG3525的工作原理、管脚排列、主要特点以及应用领域等进行介绍。 关键词:PWM控制器MOSFET SG3525 开关变换器 一、概述 SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。 二、管教排列及定义 SG3525芯片引脚排列如下图所示: 引脚的功能及含义如下: 引脚1:误差放大器反向输入端。在闭环系统中,该引脚接反馈信号。在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。 引脚2:误差放大器同向输入端。在闭环系统和开环系统中,该端接给定信

号。根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。 引脚3:振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。 引脚4:振荡器输出端。 引脚5:振荡器定时电容接入端。 引脚6:振荡器定时电阻接入端。 引脚7:振荡器放电端。该端与引脚5之间外接一只放电电阻,构成放电回路。 引脚8:软启动电容接入端。该端通常接一只5 的软启动电容。 引脚9:PWM比较器补偿信号输入端。在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。 引脚10:外部关断信号输入端。该端接高电平时控制器输出被禁止。该端可与保护电路相连,以实现故障保护。 引脚11:输出端A。引脚11和引脚14是两路互补输出端。 引脚12:信号地。 引脚13:输出级偏置电压接入端。 引脚14:输出端B。引脚14和引脚11是两路互补输出端。 引脚15:偏置电源接入端。 引脚16:基准电源输出端。该端可输出一温度稳定性极好的基准电压。 三、主要特点及应用领域 主要特点 (1)外围电路简单,使用方便 (2)保护功能齐全 (3)软启动特性 (4)死区可调 应用领域 (1)开关电源电路 (2)随动系统直流电机调速电路

脉宽调制控制电路

脉宽调制控制电路 学生姓名:胡真 学号:20085042054 工业现场控制当中,经常要用到一些可变的直流电压,而一般的直流电源其值是固定不变的,为了得到可变的直流电压,我们一般采用脉宽调制控制电路,也就是我们通常所说的PWM 控制电路。该电路是利用半导体功率晶体管或晶闸管等开关器件的导通和关断,把直流电压变成电压脉冲列,控制电压脉冲的宽度或周期达到变压目的,或者控制电压脉冲宽度和脉冲列的周期以达到变压变频的目的的一种变换电路,多用在开关稳压电源、不间断电源(UPS)以及交直流电机调速等控制电路中。 1. 脉宽调制控制电路的工作原理 图1 PWM 控制电路原理 基本的脉宽调制控制电路包括电压-脉宽变换器和开关式功率放大器两部分,如图1所示。运算放大器N 工作在开环状态,实现把连续电压信号变成脉冲电压信号。二极管VD 在V1关断时为感性负载RL 提供释放电感储能形成续流回路。N 的反相端输入三个信号:一个是锯齿波或三角波调制信号up ,其频率是主电路所需的开关调制频率,一般为1~4kHz ;另一个是控制电压uk ,其极性与大 U u 0 u c D

小随时可变; 再一个是负偏置电压u0,其作用是在Uc =0时通过Rp 的调节使比较器的输出电压Ub 为宽度相等的正负方波。当Uc>0时,锯齿波过零的时间提前,结果在输出端得到正半波比负半波窄的调制方波。当Uc<0时,锯齿波过零的时间后移,结果在输出端得到正半波比负半波宽的调制方波。 图2 PWM 控制负载的波形图 PWM 信号加到主控电路的开关管V 的基极时,负载RL 两端电压uL 的波形如图2所示。显然,通过PWM 控制改变开关管在一个开关周期T 内的导通时间τ的长短,就可实现对RL 两端平均电压UL 大小的控制。 2. 典型脉宽调制电路 2.1. 对脉宽调制器的基本要求 (1)死区要小,调宽脉冲的前后沿的斜率要大,也就是比较器的灵敏度要足够高。 (2)在设计实际电路时,应使其简单、可靠,且不受外界干扰。 (3)考虑与功率转换电路的耦合问题。 t t 2T 2T T T T +τ T +τ τ τ O O u u U U E E

脉宽调制(PWM)的基本原理及其应用实例

脉宽调制(PWM)的基本原理及其应用实例 脉宽调制(PWM)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 模拟电路 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。 模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。 数字控制 通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 简而言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 图1显示了三种不同的PWM信号。图1a是一个占空比为10%的PWM输出,即在信号周期中,10%的时间通,其余90%的时间断。图1b和图1c显示的分别是占空比为50%和90%的PWM 输出。这三种PWM输出编码的分别是强度为满度值的10%、50%和90%的三种不同模拟信号值。例如,假设供电电源为9V,占空比为10%,则对应的是一个幅度为0.9V的模拟信号。 图2是一个可以使用PWM进行驱动的简单电路。图中使用9V电池来给一个白炽灯泡供电。如果将连接电池和灯泡的开关闭合50ms,灯泡在这段时间中将得到9V供电。如果在下一个50ms中将开关断开,灯泡得到的供电将为0V。如果在1秒钟内将此过程重复10次,灯泡将会点亮并象连接到了一个4.5V电池(9V的50%)上一样。这种情况下,占空比为50%,调制频率为10Hz。 大多数负载(无论是电感性负载还是电容性负载)需要的调制频率高于10Hz。设想一下如果灯泡先接通5秒再断开5秒,然后再接通、再断开……。占空比仍然是50%,但灯泡在头5秒钟内将点亮,在下一个5秒钟内将熄灭。要让灯泡取得4.5V电压的供电效果,通断循环周期与负载对开关状态变化的响应时间相比必须足够短。要想取得调光灯(但保持点亮)的效果,必须提高调制频率。在其他PWM应用场合也有同样的要求。通常调制频率为1kHz到200kHz之间。

脉宽调制电路

脉宽调制电路 通电后IC的7脚由电阻分压产生8.25V的直流电压,刚通电时6脚电位低于7脚,比较器(LM339)1脚输出高电位,R3的正反馈作用,使得比较器迅速饱和,随着时间的推移,电容逐渐充电,6脚的电位逐渐升高,当高于7脚的电位时(8.25V),比较器突然翻转,1脚输出低电位,同样正反馈的作用使得该过程更强烈,此时电容通过R4和二极管D1向LM339的1脚放电。当电容上的电压低于IC7脚的电压(这时可能不是8.25V了,因为1脚的低电位会影响到7脚电压)时,电路再次翻转,重复前面的过程,从而在电容两端形成了8000Hz 的锯齿波电压。该锯齿波电压直接施加于比较器的4脚,又和控制电压进行比较,当电容两端电压高于控制电压时,比较器输出低电位,低于控制电压时输出高电位,相当于把锯齿的上半部分切掉了,因此控制电压越高,锯齿切掉的越少,输出的脉宽就越宽。稳压二极管在这里起削波的作用,实现脉出的整形。这个电路设计的非常经典,是非常好的脉宽调制电路。

图1中,由U1a、U1d组成振荡器电路,提供频率约为400Hz的方波/三角形波。U1c产生6V的参考电压作为振荡器电路的虚拟地。这是为了振荡器电路能在单电源情况下也能工作而不需要用正负双 电源。U1b这里接成比较器的形式,它的反相输入端(6脚)接入电阻R6、R7和VR1,用来提供比较器的参考电压。这个电压与U1d的输出端(14脚)的三角形波电压进行比较。当该波形电压高于U1b的6脚电压.U1b的7脚输出为高电平;反之,当该波形电压低于U1b的6脚电压,U1b的7脚输出为低电平。由此我们可知,改变U1b的6脚

电位使其与输入三角形波电压进行比较。就可增加或减小输出方波的宽度,实现脉宽调制(PWM)。电阻R6、R7用于控制VR1的结束点,保证在调节VR1时可以实现输出为全开(全速或全亮)或全关(停转或全灭),其实际的阻值可能会根据实际电路不同有所改变。 图1中,Q1为N沟道场效应管,这里用作功率开关管(电流放大),来驱动负载部分。前面电路提供的不同宽度的方波信号通过栅极(G)来控制Q1的通断。LED1的亮度变化可以用来指示电路输出的脉冲宽度。C3可以改善电路输出波形和减轻电路的射频干扰(RFI)。D1是用来防止电机的反电动势损坏Q1。 当使用24v的电源电压时,图1电路通过U2将24V转换成12V供控制电路使用。而Q1可以直接在21v电源上,对于Q1来讲这与接在12v电源上没有什么区别。参考图1,改变J1、J2的接法可使电路工作在不同电源电压(12V或24V)下。当通过Q1的电流不超过1A时,Q 1可不用散热器。但如果Q1工作时电流超过1A时,需加装散热器。如果需要更大的电流(大于3A),可采用IRFZ34N等替换Q1。

NE555PWM脉宽调制电路

NE555PWM脉宽调制电路 PWM称之为脉冲宽度调制信号,利用脉冲的宽度来调整亮度,也可用来控制DC马达。PWM脉冲宽度调制信号的基本频率至少约400HZ-10KHZ,当调整LED的明或暗时,这个基本的频率不可变动,而是改变这个频率上方波的宽度,宽度越宽则越亮、宽度越窄则越暗。PWM是控制LED的点亮时间,而不是改变输出的电压来控制亮度。 图1-5 PWM脉宽调制图片 以下为PWM工作原理: reset接脚被连接到+V,因此它对电路没有作用。 当电路通电时,Pin 2 (触发点)接脚是低电位,因为电容器C1开始放电。这开始振荡器的周期,造成第3接脚到高电位。当第3接脚到高电位时,电容器C1开始通过R1和对二极管D2充电。当在C1的电压到达+V的2/3时启动接脚6,造成输出接脚(Pin3)跟放电接脚(Pin7)成低电位。 当第3接脚到低电位,电容器C1起动通过R1和D1的放电。当在C1的电压下跌到+V的1/3以下,输出接脚(Pin3)和放电接脚(Pin7)接脚到高电位并使电路周期重复。 Pin 5并没有被外在电压作输入使用,因此它与0.01uF电容器相接。 电容器C1通过R1及二极管,二极管一边为放电一边为充电。充电和放电电阻总和是相同的,因此输出信号的周期是恒定的。工作区间仅随R1做变化。 PWM信号的整体频率在这电路上取决于R1和C1的数值。 公式:频率(Hz)= 1.44/(R1 * C1)

利用555定时器实现宽范围脉宽调制器(PWM) 脉宽调制器(PWM)常常用在开关电源(稳压)中,要使开关电源稳压范围宽(即输入电压范围大),可利用555定时器构成宽范围PWM。 仅需把一个二极管和电位计添加到异步模式运转的555定时器上,就产生了一个带有可调效率系数为1%到99%的脉宽调制器(图1)。它的应用包括高功率开关驱动的电动机速度控制。 图1:在555定时器电路中增加一个二极管和电位计可构成一个宽范围PWM。/TD> 这个电路的输出可以驱动MOSFET去控制通过电动机的电流,达到平滑控制电动机速度9 0%左右。这也应用于灯光的控制,灯光的强度可得以有效控制。 另一个应用是在开关式电源。PWM调整允许一个可变的输出电压。可通过555定时器(5个引脚)VC终端的反馈来调节电压。一个超过调节阈值限制的输出电压将提前结束基于周期循环的PWM信号,以维持输出电压的稳定。微处理器可以通过数字电位计直接调节PWM 去控制电动机速度、灯光强度或者电源输出电压。对于周期因子(DF): 其中, 而a是终端2和终端1之间电阻与终端3和终端1之间电阻的比值。选R3=R1,R2=100×R1,这时DF为1%至99%。如上所述,数字电位计可以代替R2。通过的电流有限是在该应用中使用数字电位计的主要约束。对于一个100kΩ的数字电位计,R1和R3可以达到1 kΩ,则峰值电流为5mA。

差动脉宽调制电路

5.3.2 差动脉宽调制电路 该电路常用于差动电容式传感器,电路原理如图5-12所示。该电路由电压比较器A 1、A 2、双稳态触发器及电容充放电回路所组成;C 1、C 2为传感器的差动电容;A 3为低通滤波器;双稳态触发器的两个输出端用作差动脉冲宽度调制电路的输出;f U 为比较电压。 设电源接通时,双稳态触发器的A 端为高电位,B 端为低电位,因此A 点通过1R 对1 C 充电,直至M 点上的电位等于参考电压f U 时,比较器A 1产生脉冲,触发双稳态触发器翻转,A 点成低电位,B 点成高电位。此时M 点电位经二极管 D 1从f U 降至零,而同时B 点的高电位经2R 向2C 充电,当N 点电位充电至f U 时,比较器A 2产生一脉冲,使触发器又翻转一次,使A 点成高电位,B 点成低电位,又重复上述过程。如此周而复始,在双稳态触发器的两输出端各自产生一宽度受1C 、2C 调制的脉冲方波。方波脉宽与1C 、2C 的关系如下:当1C =2C 时,线路上各点电压波形如图5-13(a )所示,A 、B 两点间平均电压为零。但当1C 、2C 值不相等时,如1C >2C ,则1C 、2C 充放电时间常数发生改变,电压波形如图5-13(b )所示。A 、B 两点间平均电压不再是零,输出直流电压U sc 等于A 、B 两点间电压平均值U AP 与U BP 之差。已知: 1AP 112T U U T T = + 2 BP 112 T U U T T =+ 式中,1U 为触发器输出高电平,T 1、T 2为充电时间。 则 12 sc AP BP 1 12 T T U U U U T T -=-=+ (5.3.1) 图5-12 差动脉冲宽度调制线路

TL1451双脉冲宽度调制控制电路

UNISONIC TECHNOLOGIES CO., LTD TL1451 LINEAR INTEGRATED CIRCUIT DUAL PULSE-WIDTH-MODULATION CONTROL CIRCUITS DESCRIPTION The UTC TL1451 incorporates on a single monolithic chip all the functions required in the construction of two pulse-width-modulation (PWM) control circuits. Designed primarily for power supply control, the UTC TL1451 contains an on-chip 2.5V regulator, two error amplifiers, an adjustable oscillator, two dead-time comparators, undervoltage lockout circuitry, and dual common –emitter output transistor circuits. FEATURES *Complete PWM power control circuitry *Completely synchronized operation *Internal undervoltage lockout protection *Wide supply voltage range *Internal Short-Circuit protection *Oscillator frequency 500kHz max *Variable dead time provides control over total range *Internal regulator provides a stable 2.5V reference supply *Pb-free plating product number: TL1451L ORDERING INFORMATION Order Number Normal Lead free plating Package Packing TL1451-S16-R TL1451L-S16-R SOP-16 Tape Reel TL1451-S16-T TL1451L-S16-T SOP-16 Tube TL1451-P16-R TL1451L-P16-R TSSOP-16Tape Reel TL1451-P16-T TL1451L-P16-T TSSOP-16Tube TL1451-D16-T TL1451L-D16-T DIP-16 Tube

利用555定时器实现宽范围脉宽调制器(PWM)

利用555定时器实现宽范围脉宽调制器(PWM) 脉宽调制器(PWM)常常用在开关电源(稳压)中,要使开关电源稳压范围宽(即输入电压范围大),可利用555定时器构成宽范围PWM。 仅需把一个二极管和电位计添加到异步模式运转的555定时器上,就产生了一个带有可调效率系数为1%到99%的脉宽调制器(图1)。它的应用包括高功率开关驱动的电动机速度控制。 (原文件名:555_Figure_01.gif) 图1:在555定时器电路中增加一个二极管和电位计可构成一个宽范围PWM 这个电路的输出可以驱动MOSFET去控制通过电动机的电流,达到平滑控制电动机速度90%左右。这也应用于灯光的控制,灯光的强度可得以有效控制。 另一个应用是在开关式电源。PWM调整允许一个可变的输出电压。可通过555定时器(5个引脚)VC终端的反馈来调节电压。一个超过调节阈值限制的输出电压将提前结束基于周期循环的PWM信号,以维持输出电压的稳定。微处理器可以通过数字电位计直接调节PWM去控制电动机速度、灯光强度或者电源输出电压。对于周期因子(DF): (原文件名:555_Figure_03.gif) 其中, (原文件名:555_Figure_04.gif) 而α是终端2和终端1之间电阻与终端3和终端1之间电阻的比值。选R3=R1,R2=100×R1,这时DF为1%至99%。如上所述,数字电位计可以代替R2。通过的电流有限是在该应用中使用数字电位计的主要约束。对于一个100kΩ的数字电位计,R1和R3可以达到1kΩ,则

峰值电流为5mA。 标准二极管可在递减线性下当作D来使用。对于理想的二极管,k=0.693,则有: (原文件名:555_Figure_05.gif) DF和α之间为线性关系。图2显示了当α变化时VOUT的波形。 (原文件名:555_Figure_02.gif) 图2:这三个波形显示了VOUT如何随α变化而变化。 作者:Henry Santana,Kavlico Corp ============= 呵呵,原来在这里8楼就有详细的解释

(原文件名:图2.gif) ============= 老外的图,是不是比3.2.3a少接一个VD2? 阿莫的楼主位公式是不是应该改成3.2.3b那样? 我个人觉得,有了光偶就可以省掉74HC14.有了HC14就可以省去光偶. 74HC14换成CD40106如何?这样就不用额外的5V电源了. C2容量较大,是否在7812上并联反向二极管较为保险. 印象中的555第3脚,好象拉电流能力强,输出电流好象很弱 有一个小细节,有人能解释吗? IRFZ48N 的GS我加入了1K的电阻,是作为GS快速释放电荷使用的。将它换成10K 或

脉宽调制的基本原理及其应用实例

脉宽调制的基本原理及其应用实例 2009-12-16 20:17:00| 分类:驱动控制| 标签:|字号大中小订阅 脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽 调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 一、脉冲宽度调制基本原理 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过高分 辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM 进行编码。 脉冲宽度调制(PWM)是一种对模拟信号电平进行数字编码的方法。通过 高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 P WM调速基本原理 P WM脉冲驱动电路 直流电机的速度控制中,需要对控制信号进行功率驱动或电气隔离,以下为典型应用电路(负载为直流电机M1)。

TL494脉宽控制电路

TL494脉宽调制控制电路 TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广 泛应用于单端正激双管式、半桥式、全桥式开关电源。TL494有SO-16和PDIP-16两种 封装形式,以适应不同场合的要求。其主要特性如下: 主要特征 集成了全部的脉宽调制电路。 片内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。 内置误差放大器。 内止5V参考基准电压源。 可调整死区时间。 内置功率晶体管可提供500mA的驱动能力。 推或拉两种输出方式。 工作原理简述 TL494是一个固定频率的脉冲宽度调制电路,内置了线性锯齿波振荡器,振荡频率可通过外 部的一个电阻和一个电容进行调节,其振荡频率如下: 输出脉冲的宽度是通过电容C T上的正极性锯齿波电压与另外两个控制信号进行比较来实现。 功率输出管Q1和Q2受控于或非门。当双稳触发器的时钟信号为低电平时才会被选通,即只有在 锯齿波电压大于控制信号期间才会被选通。当控制信号增大,输出脉冲的宽度将减小。参见图2。 控制信号由集成电路外部输入,一路送至死区时间比较器,一路送往误差放大器的输入端。死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%,当输出端接地,最大输出占空比为96%,而输出端接参考电平时,占空比为48%。当把死区时间控制输入端接上固定的电压(范围在0—3.3V之间)即能在输出脉冲上产生附加的死区时间。

脉冲宽度调制比较器为误差放大器调节输出脉宽提供了一个手段:当反馈电压从0.5V变化到3.5时,输出的脉冲宽度从被死区确定的最大导通百分比时间中下降到零。两个误差放大器具有从-0.3V到(Vcc-2.0)的共模输入范围,这可能从电源的输出电压和电流察觉得到。误差放大器的输出端常处于高电平,它与脉冲宽度调制器的反相输入端进行“或”运算,正是这种电路结构,放大器只需最小的输出即可支配控制回路。 当比较器C T放电,一个正脉冲出现在死区比较器的输出端,受脉冲约束的双稳触发器进行计时,同时停止输出管Q1和Q2的工作。若输出控制端连接到参考电压源,那么调制脉冲交替输出至两个输出晶体管,输出频率等于脉冲振荡器的一半。如果工作于单端状态,且最大占空比小于50%时,输出驱动信号分别从晶体管Q1或Q2取得。输出变压器一个反馈绕组及二极管提供反馈电压。在单端工作模式下,当需要更高的驱动电流输出,亦可将Q1和Q2并联使用,这时,需将输出模式控制脚接地以关闭双稳触发器。这种状态下,输出的脉冲频率将等于振荡器的频率。 TL494内置一个5.0V的基准电压源,使用外置偏置电路时,可提供高达10mA的负载电流,在典型的0—70℃温度范围50mV 温漂条件下,该基准电压源能提供±5%的精确度。

脉冲宽度调制电路

脉冲宽度调制电路

脉冲宽度调制电路,首先分析电路。脉冲是3uS/5V的,那么Q4常态是关闭的。工作时瞬间导通3uS。所以Q5应该是常态导通,瞬态关闭的。这和xbtxbt所说的好象完全不一样。所以初步分析,可能1:电路原理错了。可能2:电路图画错了。可能3:如杨真人的图所示,xbtxbt把输入信号说错了。 由二极管D21的方向推断:可能3成立。 先假设,可能性3成立。 常态时R21,C21充电,使Q4导通,C点电压0.3~0.4V,D点为R23、R22分压,C22通过R23充电,到Udc。Q5导通。Q5-S电压应略小于UD。 信号出现时,D21,R21一起对C21放电,Q4快速关闭,C点电压升高。此时C22自举,D点电压随之升高。Q5-G电压升高>200V,Q5-S电压随之快速升高。 信号结束后。R21,C21充电,使Q4导通,C、D点电压下降,Q5-S下降。恢复为常态。 无论如何修改元件参数,Q5-S端不会出现0V电压。应该在UD~VCC时间变动。 改动如下: 1、因为C21、R21、D21组成简单单稳电路前级,所以C21尽量小,有利于放电快速,对输出脉冲前沿斜率起决定性作用。R21要大,延长充电时间,使输出单稳效果明显。此部分电路起第1阶段延时作用。 2、在Q4-B前串联一个100电阻,否则C21上电压最多只能到0.7V。 3、常态时Q4导通,C22两端电压等于R22两端分压。自举时C22通过R22放电,要使延时效果加大,应加大C22电容和R22电阻。但由于信号源频率的限制,R23对C22充电时间受到限制。所以C22、R23不能太大。要仔细计算。加大R22会造成,分压过高,影响Q5-S的输出。 4、同时由于是自举电路,D22没有任何作用,自举时,C22下面没有任何电流通路。 此电路用于30VDC电路中有一定的可行性,用于200VDC电路中后果难料。C22充放电速度及电阻功率成问题。要严格计算。

脉宽调制(PWM)控制电路

脉宽调制(PWM )控制电路 在一些变频控制系统中,要求在调频的同时调节电压,如在变频调速系统中要求逆变器输出电压随频率的改变而改变,以防止电动机出现过励磁或欠励磁现象;在中频感应加热炉的频率控制时也要求相应改变电压。 控制输出电压变化最理想的方法是脉宽调制。脉宽调制控制电路(PWM)是通过调节控 制电压脉冲的宽度和脉冲列的周期来控制输出电压和频率。通过利用PWM 信号触发可关 断晶闸管(GT())或功率晶体管等开关器件的导通和关断,把直流电压变为电压脉冲列。在逆 变器中采用PWM 控制,可以同时完成调频和调压的任务。PWM 广泛应用于开关电源、不间断电源、直流电机调速、交流电机变频调速和中频炉电源控制等领域。 4.5.1 脉宽调制控制电路的基本原理 脉宽调制控制电路的基本构成和工作原理等叙述如下 一、PWM 的基本电路 基本的脉宽调制控制电路由电压—脉宽转换器和开关功率放大器组成.其组成原理如图 4-5-1所示。电压一脉宽转换器的核心是运算放大器(比较器)。运算放大器A 输入信号有 调制信号T u (其频率为主电路所需的开关调制频率)、负偏置电压P u 、控制电压信号C u 。由于运算放大器为开环,因此,该比较器的输出仅取决于输入方向的两个极限位(取决于)(P T c u u u +-的正负),此输出经开关功率放大器输出到触发脉冲列逆变器。 如图4-5-1所示,调制电压T u 为锯齿波,当控制电压C u > P C u u +时,运算放大器的输出为低电平,如图(b)所示;反之,当C u < P C u u +时,运算放大器的输出为高电平,(如图(c)所示)。 图4-5-1 脉宽调制控制电路组成原理图 图4-5-4 脉冲调制波形图

正弦脉宽调制(SPWM)控制

正弦脉宽调制(SPWM)控制 2010-09-18 ylw527+关注献花(4) 为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采用晶闸管变频器。应用最早而且作为pwm控制基础的是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。 图3-1 与正弦波等效的等宽不等幅矩形脉冲波序列 正弦脉宽调制原理 一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,如图3-1所示。图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。 在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。这种正弦波正、负半周分别用正、负脉冲等效的spwm 波形称作单极式spwm。

PWM-(脉冲宽度调制)原理与实现

射频CMOS电路分析与设计 院部:信息工程学院 班级:13电子信息工程 姓名:方贤超 学号:21306021009

PWM (脉冲宽度调制)原理与实现 1、PWM原理 2、调制器设计思想 3、具体实现设计 一、PWM(脉冲宽度调制Pulse Width Modulation)原理: 脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。 通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中

tk-kTs<

PWM(脉宽调制)的基本原理及其应用实例

PWM(脉宽调制)的基本原理及其应用实例 脉宽调制(P ulse W idth M odulation)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 模拟电路 模拟信号的值可以连续变化,其时间和幅度的分辨率都没有限制。9V电池就是一种模拟器件,因为它的输出电压并不精确地等于9V,而是随时间发生变化,并可取任何实数值。与此类似,从电池吸收的电流也不限定在一组可能的取值范围之内。模拟信号与数字信号的区别在于后者的取值通常只能属于预先确定的可能取值集合之内,例如在{0V, 5V}这一集合中取值。 模拟电压和电流可直接用来进行控制,如对汽车收音机的音量进行控制。在简单的模拟收音机中,音量旋钮被连接到一个可变电阻。拧动旋钮时,电阻值变大或变小;流经这个电阻的电流也随之增加或减少,从而改变了驱动扬声器的电流值,使音量相应变大或变小。与收音机一样,模拟电路的输出与输入成线性比例。 尽管模拟控制看起来可能直观而简单,但它并不总是非常经济或可行的。其中一点就是,模拟电路容易随时间漂移,因而难以调节。能够解决这个问题的精密模拟电路可能非常庞大、笨重(如老式的家庭立体声设备)和昂贵。模拟电路还有可能严重发热,其功耗相对于工作元件两端电压与电流的乘积成正比。模拟电路还可能对噪声很敏感,任何扰动或噪声都肯定会改变电流值的大小。 数字控制 通过以数字方式控制模拟电路,可以大幅度降低系统的成本和功耗。此外,许多微控制器和DSP已经在芯片上包含了PWM控制器,这使数字控制的实现变得更加容易了。 简而言之,PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。PWM信号仍然是数字的,因为在给定的任何时刻,满幅值的直流供电要么完全有(ON),要么完全无(OFF)。电压或电流源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟负载上去的。通的时候即是直流供电被加到负载上的时候,断的时候即是供电被断开的时候。只要带宽足够,任何模拟值都可以使用PWM进行编码。 图1显示了三种不同的PWM信号。图1a是一个占空比为10%的PWM输出,即在信号周期中,10%的时间通,其余90%的时间断。图1b和图1c显示的分别是占空比为50%和90%的PWM输出。这三种PWM输出编码的分别是强度为满度值的10%、50%和90%的三

相关主题
相关文档
最新文档