无约束优化方法

无约束优化方法
无约束优化方法

第四章无约束优化方法

——最速下降法,牛顿型方法

概述

在求解目标函数的极小值的过程中,若对设计变量的取值范围不加限制,则称这种最优化问题为无约束优化问题。尽管对于机械的优化设计问题,多数是有约束的,无约束最优化方法仍然是最优化设计的基本组成部分。因为约束最优化问题可以通过对约束条件的处理,转化为无约束最优化问题来求解。

为什么要研究无约束优化问题

(1)有些实际问题,其数学模型本身就是一个无约束优化问题。

(2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。

(3)约束优化问题的求解可以通过一系列无约束优化方法来达到。

所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。 根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。 一:间接法——要使用导数的无约束优化方法,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度法等。 二:直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯形法等。

无约束优化问题的一般形式可描述为:

求n 维设计变量

[]12T n n X x x x R =∈L

使目标函数 ()min f X ?

目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。

无约束优化问题的求解: 1、解析法

可以利用无约束优化问题的极值条

件求得。即将求目标函数的极值问题变成求方程

0)(min *=X f

的解。也就是

求X*

使其满足

解上述方程组,求得驻点后,再根据极值点所需满足的充分条件来判定是否为极小值点。但上式是一个含有n个未知量,n个方程的方程组,在实际问题中一般是非线性的,很难用解析法求解,0)(0)(0)(*2*1*=??=??=??n x X f x X f x X f

M

要用数值计算的方法。由第二章的讲述我们知道,优化问题的一般解法是数值迭代的方法。因此,与其用数值方法求解非线性方程组,还不如用数值迭代的方法直接求解无约束极值问题。

2、数值方法

数值迭代法的基本思想是从一个初

始点)0(X 出发,按照一个可行的搜索方向)0(d

ρ搜索,确定最佳的步长0α使函数值沿)0(d ρ方

向下降最大,得到)

1(X 点。依此一步一步地重复数值计算,最终达到最优点。优化计算所采用的基本迭代公式为 ),2,1,0()()()1(Λρ=+=+k d X X K K K K α ()

在上式中, ()K d r 是第是 k+1 次搜索或迭代方向,称为搜索方向(迭代方向)。 由上面的迭代公式可以看出,采用数值法进行迭代求优时,需要确定初始点)(k X 、搜索方向)(k d ρ和迭代步长K α,称为优化方法迭代算法的三要素。第三章我们已经讨论了如何在搜索方向)(k d ρ上确定最优步长K α的方法,本章我们将讨论如何确定搜索方向)

(k d ρ。

最常用的数值方法是搜索方法,其基本思想如下图所示:

无约束优化方法可以分为两类。一

类是通过计算目标函数的一阶或二阶导

数值确定搜索方向的方法,称为间接

法,如最速下降法、牛顿法、变尺度法

和共轭梯度法。另一类是直接利用目标

函数值确定搜索方向的方法,称为直接

法,如坐标轮换法、鲍威尔法和单形替

换法。各种无约束优化方法的区别在于

确定其搜索方向0d的方法不同。

4.1最速下降法

最速下降法是一个求解极值问题的古

老算法,1847年由柯西(Cauchy )提

出。

4.1.1最速下降法的基本原理

由第二章优化设计的数学基础可

知,梯度方向是函数增加最快的方向,

负梯度方向是函数下降最快的方向,所

以最速下降法以负梯度方向为搜索方

向,每次迭代都沿着负梯度方向进行一

维搜索,直到满足精度要求为止。因

此,最速下降法又称为梯度法。由公式

()

),2,1,0()()()1(Λρ=+=+k d X X K K K K α

可知,若某次选代中己取得点)

(k X ,从该点出发,取负梯度方向

)()()()()(k k k X f X f d ??-=ρ

为搜索方向。则最速下降法的迭代公式为

()(1)()()()(0,1,2,)()k K K K k f X X X k f X α+?=-=?L ()

当第k次的迭代初始点)

(k X 和搜索方向)(k d ρ已经确定的情况下,原目标函数成为关于步长α的一维函数。即

()()()()K K f X S ?αα=+

最优步长K

α可以利用一维搜索的方法求得 (1)()()()()min ()()()min ()k K k K k k f X f X d f X d αα?ααα+==+=+r r

根据一元函数极值的必要条件和多

元复合函数的求导公式,得

()()()()()()0T K k K f X d f X ?αα??'=-?+?=??r

(1)()()()0T K K f X f X +????=??

或写成 (1)()[]0K T k d d +=r r

由此可知,在最速下降法中相邻两

个搜索方向互相正交。也就是说在用最速下降法迭代求优的过程中,走的是一条曲折的路线,该次搜索方向与前一次搜索方向垂直,形成“之”字形的锯齿现象,如图所示。最速下降法刚开始搜索步长比较大,愈靠近极值点其步长愈小,收敛速度愈来愈慢。特别是对于二维二次目标函数的等值线是较扁的椭圆时,这种缺陷更加明显。因此所谓最速

下降是指目

标函数在迭

代点附近出

现的局部性

质,从迭代过程的全局来看,负梯度方向并非是目标函数的最快搜索方向。

图最速下降法的搜索路径

此外,最速下降法的迭代公式也可以写成下面的形式

(1)()()()(0,1,2,)K K k K X X f X k α+=-?=L ()

将其与式相比较,可知,此处K α等于式中步长除以函数在()K X 点导数的模()()k f X ?,而

此时的搜索方向()()

()k k d f X =?r 也不再是个单位

向量。

4.1.2最速下降法的迭代过程

1) 给定初始点(0)X ,收敛精度ε,并令计算次数0k ?;

2) 计算)(k X 点的梯度()()K f X ?及梯度的模()()k f X ?,并令

)()()()()

(k k k X f X f d ??-=ρ 3) 判断是否满足精度指标()()k f X ε?≤;若满足,)(k X 为最优点,迭代停止,输出最优解*()k X X =和*()()()k f X f X =,否则进行下一步计算;

4) 以)(k X 为出发点,沿)(k d ρ进行一维搜

索,求能使函数值下降最多的步长K α,即

()()()()

min ()()k k k k K

f X d f X d ααα+=+r r 5) 令(1)()()k k k K X X d

α+=+r ,k=k+1,转到步骤2)。

最速下降法的程序框图如图所示。

最速下降法的程序框图

例题 用最速下降法求目标函数

22

12

()(1)(1)f X x x =-+-的极小值,设初始点

(0)T [0 0]X =,计算精度2

10ε-=。 解 (1)计算初始点(0)

X 处目标函数

的梯度和梯度的模

11(0)22(0)()2(1)2() 2(1)()2 ()f X x x f X x f X x f X ??????--???????===????-?-???????????

?=

(2)由于(0)

()f X ε?=>,不满足精度

指标,转下一步计算。 (3)确定搜索方向

(0)(0)(0)2()2()f X d f X -??=-==?-??r

(4)计算新的迭代点

由公式()可得

(1)(0)(0)00X X d αα??=+=+=????r 代入目标函数

(1)22()1)1)f X

=+- 沿)(k d ρ方向进行一维搜索(或对α求导,并

令其为零)

(1)()1)1)df X d α=-+- 令(1)()0df X d α=

,,求得最优步长0α=

(5)计算新迭代点

(1)11X ??===????

(6)计算新迭代点的梯度及梯度

的模

1(1)22(1)0()2(1)0x f X x -?????==????-????

(0)()0f X ε?=<

因已满足精度要求,停止迭代,得

最优解为

*11X ??=????,*

()0f X = 可见,对于目标函数的等值线为圆

的情况,只要一次迭代就能达到极小值点*

X 。这是因为圆周上任意一点的负梯度方向总是指向圆心的,如图所示。

图例题目标函数极小值的搜索过程

通过上面的分析可知最速下降法具有以下特点:

(1)理论明确,程序简单,对初始点要求不严格,每次迭代所需的计算量和存储量也较小,适用于计算机计算。

(2)对一般函数而言,最速下降法的收敛速度并不快,因为最速下降方向仅仅是指某点的一个局部性质。

(3)最速下降法相邻两次搜索方向的正交性,决定了迭代全过程的搜索路线呈锯齿状,在远离极小点时逼近速度较快,而在接近极小点时逼近速度较慢。

(4)最速下降法的收敛速度与目标函数的性质以及初始点的选择密切相关。对于等值线(面)为同心圆(球)的目标函数,一次搜索即可达到极小点。若目标函数为二次函数,等值线为椭圆,当初始点选在长轴或短轴上时,一次搜索也可达到极小值点。

最速下降法的收敛速度和变量的尺度关系很大,这一点可从最速下降法收敛速度的估计式上看出来。在适当条件下,有

式中的海赛矩阵最大特征值上界;其最小特征值下界。

当相邻两个迭代点之间满足上式时(右边的系数为小于等于1的正的常数),我们称相应的迭代方法是具有线性收敛速度的迭代法。因此,最速下降法是具有线性收敛速度的选代法。

鉴于应用最速下降法可以使目标函数在开头几步下降很快,所以它可与其它无约束优化方法配合使用。

即在开始阶段用梯度法求得一个较优的初始点,然后用其它收敛快的方法继续寻找极小点。

4.2牛顿法

牛顿法是根据目标函数的等值线在

极值点附近为同心椭圆族的特点,在极值点*

X 邻域内用一个二次函数()X ?来近似代替原目标函数()f X ,并将()X ?的极小值点作为对目标函数()f X 求优的下一个迭代点,经多次迭代,使之逼近原目标函数()f X 的极小值点。 4.2.1牛顿法的基本原理

设目标函数是连续二阶可微的,将

函数在)

(k X 点按泰勒级数展开,并保留到二次项,得()()()()2()()1()()()[()]()()()() 2

K K T K K T K K f X X f X f X X X X X f X X X ?≈=+?-+-?-此式是个二次函数,设(1)

k X +为()X ?的极小值点,则 (1)()0k X ?+?=

()2()(1)()()()()0

k k k k f X f X X X +?+?-=(1)()2()1()[()]()(0,1,2,)K K K K X X f X f X k +-=-??=L ()

这就是多元函数求极值的牛顿法迭

代公式。式中取()2()1()[()]()k K K d f X f X -=-??r 称为牛顿

方向,为常数。式中没有步长k

α,或者可以看成步长恒等于1,所以牛顿法是一种定步长的迭代。 例题 用牛顿法求目标函数2212()25f X x x =+的极小值。

解 (1)取初始点(0)T [2 2]X =

(2)计算梯度、二阶偏导数矩阵及其逆矩阵

1(0)221224()5010020 ()050102()1050x f X x f X f X -?????==??????

?????=???????????=??????????

(3)计算新的迭代点

(1)(0)2(0)1(0)102402[()]()121000050X X f X f X -??????????=-??=-=????????????????????

经过一次迭代即可求得极小值点*T

[0 0]X

=,函数极小值*()0f X =。 4.2.2 阻尼牛顿法

由以上的两个例题可以看出,对于二次函数,用牛顿法迭代一次即可得到最优点;对于非二次函数,若函数的迭代点已进入极小点的邻域,则其收敛速度也是很快的。但是从牛顿法迭代公式的推导可以看出,迭代点是由近似二次函数()X ?的极值条件确定的,该点可能是()X ?极小值点,也可能是()X ?的极大值点。因此在用牛顿法迭代时,可能会出现函数上升的现象,即(1)()()()k k f X f X +>,使迭代不能收敛于最优点。例如上例中若取初始

点(0)T

X=,第一次迭代点的函数值就增

[0 1]

大。这表明牛顿法不能保证函数值稳定地下降,在严重的情况下甚至不能收敛而导致计算失败。可见,牛顿法对初始点的要求是比较苛刻的,所选取的初始点离极小值点不能太远。而在极小值点位置未知的情况下,上述要求很难达到。

为了消除牛顿法的上述这些弊病,需要对其做一些修改。将牛顿法定步长的迭代,改为变步长的迭代,引入步长α,在()k X的牛顿方向进行一维搜索,保证每次迭代点的函数值都是下降的。这种方法称为阻尼牛顿法,其迭代公式为

(1)()2()1()[()]()(0,1,2,)

K K K K k X X f X f X k α+-=-??=L ()

式中,K

α为牛顿方向的最优步长。这种方法对初始点的选取不再苛刻,从而提高了牛顿法的可靠度。但采用阻尼牛顿法,每次迭代都要进行一维搜索,使收敛速度大大降低。例如,对于例所示的目标函数,取同样的初始点,采用阻尼牛顿法进行迭代,达到同样的精度,要经过25次的迭代,越靠近极小值点收敛速度越慢,使牛顿法收敛速度快的优势损失殆尽。

阻尼牛顿法的迭代过程:

阻尼牛顿法的计算步骤如下:

1)给定初始点(0)

X ,收敛精度ε,并令计算次数0k ?;

无约束优化方法程序

无约束优化方法---鲍威尔方法 本实验用鲍威尔方法求函数f(x)=(x1-5)2+(x2-6)2 的最优解。 一、简述鲍威尔法的基本原理 从任选的初始点x⑴o出发,先按坐标轮换法的搜索方向依次沿e1.e2.e3进行一维搜索,得各自方向的一维极小点x⑴ x⑵ x⑶.连接初始点xo⑴和最末一个一维极小点x3⑴,产生一个新的矢量 S1=x3⑴-xo⑴ 再沿此方向作一维搜索,得该方向上的一维极小点x⑴. 从xo⑴出发知道获得x⑴点的搜索过程称为一环。S1是该环中产生的一个新方向,称为新生方向。 接着,以第一环迭代的终点x⑴作为第二环迭代的起点xo⑵,即 Xo⑵←x⑴ 弃去第一环方向组中的第一个方向e1,将第一环新生方向S1补在最后,构成第二环的基本搜索方向组e2,e3,S1,依次沿这些方向求得一维极小点x1⑵,x2⑵,x3⑵.连接 Xo⑵与x3⑵,又得第二环的新生方向 S2=x3⑵-xo⑵ 沿S2作一维搜索所得的极小点x⑵即为第二环的最终迭代点 二、鲍威尔法的程序 #include "stdafx.h" /* 文件包含*/ #include

#include #include #define MAXN 10 #define sqr(x) ((x)*(x)) double xkk[MAXN],xk[MAXN],sk[MAXN]; int N,type,nt,et; //N--变量个数,type=0,1,2,3 nt,et--不等式、等式约束个数 double rk; double funt(double *x,double *g,double *h) { g[0]=x[0]; g[1]=x[1]-1; g[2]=11-x[0]-x[1]; return sqr(x[0]-8)+sqr(x[1]-8); } double F(double *x) { double f1,f2,ff,fx,g[MAXN],h[MAXN]; int i; fx=funt(x,g,h); f1=f2=0.0; if(type==0 || type==2)for(i=0; i1.0e-15)?1.0/g[i]:1.0e15;

常用最优化方法评价准则

常用无约束最优化方法评价准则 方法算法特点适用条件 最速下降法属于间接法之一。方法简便,但要计算一阶偏导 数,可靠性较好,能稳定地使函数下降,但收敛 速度较慢,尤其在极点值附近更为严重 适用于精度要求不高或用于对 复杂函数寻找一个好的初始 点。 Newton法属于间接法之一。需计算一、二阶偏导数和Hesse 矩阵的逆矩阵,准备工作量大,算法复杂,占用 内存量大。此法具有二次收敛性,在一定条件下 其收敛速度快,要求迭代点的Hesse矩阵必须非 奇异且定型(正定或负定)。对初始点要求较高, 可靠性较差。 目标函数存在一阶\二阶偏导 数,且维数不宜太高。 共轭方向法属于间接法之一。具有可靠性好,占用内存少, 收敛速度快的特点。 适用于维数较高的目标函数。 变尺度法属于间接法之一。具有二次收敛性,收敛速度快。 可靠性较好,只需计算一阶偏导数。对初始点要 求不高,优于Newton法。因此,目前认为此法是 最有效的方法之一,但需内存量大。对维数太高 的问题不太适宜。 适用维数较高的目标函数 (n=10~50)且具有一阶偏导 数。 坐标轮换法最简单的直接法之一。只需计算函数值,无需求 导,使用时准备工作量少。占用内存少。但计算 效率低,可靠性差。 用于维数较低(n<5)或目标函 数不易求导的情况。 单纯形法此法简单,直观,属直接法之一。上机计算过程 中占用内存少,规则单纯形法终止条件简单,而 不规则单纯形法终止条件复杂,应注意选择,才 可能保证计算的可靠性。 可用于维数较高的目标函数。

常用约束最优化方法评价标准 方法算法特点适用条件 外点法将约束优化问题转化为一系列无约束优化问题。 初始点可以任选,罚因子应取为单调递增数列。 初始罚因子及递增系数应取适当较大值。 可用于求解含有等式约束或不等 式约束的中等维数的约束最优化 问题。 内点法将约束优化问题转化为一系列无约束优化问题。 初始点应取为严格满足各个不等式约束的内点, 障碍因子应取为单调递减的正数序列。初始障碍 因子选择恰当与否对收敛速度和求解成败有较大 影响。 可用于求解只含有不等式约束的 中等维数约束优化问题。 混合罚函数法将约束优化问题转化为一系列无约束优化问题, 用内点形式的混合罚函数时,初始点及障碍因子 的取法同上;用外点形式的混合罚函数时,初始 点可任选,罚因子取法同外点法相同。 可用于求解既有等式约束又有不 等式约束的中等维数的约束化问 题。 约束坐标轮换法由可行点出发,分别沿各坐标轴方向以加步探索 法进行搜索,使每个搜索点在可行域内,且使目 标函数值下降。 可用于求解只含有不等式约束, 且维数较低(n<5),目标函数的 二次性较强的优化问题。 复合形法在可行域内构造一个具有n个顶点的复合形,然 后对复合形进行映射变化,逐次去掉目标函数值 最大的顶点。 可用于求解含不等式约束和边界 约束的低维优化问题。

常用无约束最优化方法(一)

项目三 常用无约束最优化方法(一) [实验目的] 编写最速下降法、Newton 法(修正Newton 法)的程序。 [实验学时] 2学时 [实验准备] 1.掌握最速下降法的思想及迭代步骤。 2.掌握Newton 法的思想及迭代步骤; 3.掌握修正Newton 法的思想及迭代步骤。 [实验内容及步骤] 编程解决以下问题:【选作一个】 1.用最速下降法求 22120min ()25[22]0.01T f X x x X ε=+==,,,. 2.用Newton 法求 22121212min ()60104f X x x x x x x =--++-, 初始点 0[00]0.01T X ε==,,. 最速下降法 Matlab 程序: clc;clear; syms x1 x2; X=[x1,x2]; fx=X(1)^2+X(2)^2-4*X(1)-6*X(2)+17; fxd1=[diff(fx,x1) diff(fx,x2)]; x=[2 3]; g=0; e=0.0005; a=1; fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); step=0; while g>e step=step+1; dk=-fan; %点x(k)处的搜索步长

ak=((2*x(1)-4)*dk(1)+(2*x(2)-6)*dk(2))/(dk(1)*dk(2)-2*dk(1)^2-2*dk(2)^2); xu=x+ak*dk; x=xu; %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf(' x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); %计算目标函数点x(k+1)处一阶导数值 fan=subs(fxd1,[x1 x2],[x(1) x(2)]); g=0; for i=1:length(fan) g=g+fan(i)^2; end g=sqrt(g); end %输出结果 optim_fx=subs(fx,[x1 x2],[x(1) x(2)]); fprintf('\n最速下降法\n结果:\n x=[ %d %d ] optim_fx=%d\n',x(1),x(2),optim_fx); c++程序 #include #include #include #include float goldena(float x[2],float p[2]) {float a; a=-1*(x[0]*p[0]+4*x[1]*p[1])/(p[0]*p[0]+4*p[1]*p[1]); return a; } void main() {float a=0,x[2],p[2],g[2]={0,0},e=0.001,t; int i=0; x[0]=1.0; x[1]=1.0;

单纯形法解决无约束优化问题

分数: ___________任课教师签字:___________ 课程作业 学年学期:2017——2018学年第二学期 课程名称:优化理论 作业名称:作业三 学生姓名: 学号: 提交时间:

一、问题重述 形如的min (x),x R n f ∈问题称为无约束优化问题,常用下降算法来解决这类问题。下降算法的关键在于步长和搜索方向的选取。步长的求取可以借助前面作业中提到的一维搜索等方法求取,而搜索方向算法可以分为两大类,解析法和直接法。 解析法借助了目标函数的导数进行搜索,这类算法搜索速度快、效率高,但是对目标函数的要求更为严格。常用的方法有最速下降法、Newton 法、共轭梯度法、拟Newton 法等。 直接法不使用导数,也不需要得到目标函数的明确解析式,只需要能够得到某些函数上的点即可。因此直接法的适用范围更广,但相应的收敛速度会较慢,计算量也会随着问题维数的增加而迅速增大。常用的方法有单纯形法、Powell 方向加速法以及Powell 改进算法。 本作业以直接法的Powell 法为例,解决具体的无约束优化问题,并对将Powell 方向加速法和Powell 改进算法解决结果进行对比。 二、算法原理 对于n 维正定二次函数(x)0.5T T f x Gx b x c =++,设011,,...(k n)k p p p -<关于G 共轭,0x 与1x 为任意不同点。分别从0x 与1x 出发,依次沿011,,...k p p p -作一维搜索。如果最后找到两个互不相同的极小点x a 与x b ,则x b a x -与011,,...k p p p -关于G 共轭。 Powell 方向加速法正是基于这一原理,每次迭代过程作n+1次一维搜索。第一次沿给定的n 个线性无关的方向011,,...n p p p -依次作一维搜索,之后沿由这一阶段的起点到第n 次搜索所得到的点的方向P 再做一次一维搜索,并把这次所得点作为下一阶段的起点,下一阶段的n 个搜索方向为011,,...,n p p p p -。以此直到找到最优解。 此算法是在迭代中逐次生成共轭方向,而共轭方向又是较好的搜索方向,所以称之为方向加速法。但是,此算法产生的n 个向量可能线性或近似线性相关,这时张不成n 维空间,可能得不到真正的极小点。因此,Powell 原始算法存在一定的缺陷。 Powell 改进算法虽然不再具有二次终止性,但克服了搜索方向的线性相关的不利情形,是解决无约束优化问题较有效的直接法之一。 本次作业一维搜索的过程是利用函数求导,求得最小值。经过试验发现,α是允许为负数的。否则最终寻优得到的极值点与实际结果存在很大的偏差,

多维无约束优化算法

多维无约束优化算法 多维无约束优化问题的一般数学表达式为: 求n 维设计变量 使目标函数 多维无约束优化算法就是求解这类问题的方法,它是优化技术中最重要最基础的内容之一。因为它不仅可以直接用来求解无约束优化问题,而且实际工程设计问题中的大量约束优化问题,有时也是通过对约束条件的适当处理,转化为无约束优化问题来求解的。所以,无约束优化方法在工程优化设计中有着十分重要的作用。 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 (1)间接法——要使用导数,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度法等。 (2)直接法——不使用导数信息,如坐标轮换法、鲍威尔法单纯形法等。用直接法寻找极小点时,不必求函数的导数,只要计算目标函数值。这类方法较适用于解决变量个数较少的(n ≤20)问题,一般情况下比间接法效率低。间接法除要计算目标函数值外,还要计算目标函数的梯度,有的还要计算其海赛矩阵。 各种优化方法之间的主要差异是在于构造的搜索方向,因此,搜索方向的构成问题乃是无约束优化方法的关键。 下面介绍几种经典的无约束优化方法。 1、梯度法 基本思想:函数的负梯度方向是函数值在该点下降最快的方向。将n 维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最速下降法或梯度法。 搜索方向s 取该点的负梯度方向 (最速下降方向) ,使函数值在该点附近的范围内下降最快 。 为了使目标函数值沿搜索方向能够获得最大的下降值,其步长因子应取一维搜索的最佳步长。即有 12[]T n x x x = x ()min f →x ()k f -?x k αmin ()n f R ∈x x 1(0,1,2,)k k k k s k α+=+= x x 1(0,1,2,) k k k k s k α+=+= x x 1()(0,1,2,) k k k k a f k +=-?= x x x 1()[()]min [()]min ()k k k k k k k a a f f a f f a f ?α+=-?=-?=x x x x x

无约束优化算法:单纯形法

单纯形法 1. 算法原理 单纯形法的基本思想是: 设(0)(1)(),,...,n x x x 是n R 中的1n +个点,构成一个当前的单纯形,max min ,x x 定义如下: {}(0)(1)()max ()max (),(),...,()n f x f x f x f x = {}(0)(1)()min ()min (),(),...,()n f x f x f x f x = 记x 为这个单纯形除去max x 外的所有顶点的形心, ()max 01n i i x x x n =??=- ??? ∑ 取max x 关于x 的反射点(1)n x +,(1)max ()n x x x x +=+-构成新的单纯形,反复上述过程,直到达到停止条件。 2. 函数min f search 1) 函数语法 min (,0)x f search fun x = min (,0,) [,]min (...) [,,]min (...) [,,,]min (...) x f search fun x options x fval f search x fval exitflag f search x fval exitflag output f search ==== 函数输入: fun :目标函数 0x :迭代初始点 options :函数参数设置 函数输出: x :最优点 fval :最优点对应的函数值 exitflag :函数停止信息 1:函数收敛正常停止 0:迭代次数,目标函数计算次数达到最大数 -1:算法被输出函数停止 output :函数运算信息

2)函数使用 BanaFun m (1)目标函数程序. function f BanaFun x =不含导数解析式 ()() f x x x =-+- 100*((2)(1)^2)^2(1(1))^2 -函数不需要导数信息。 Nelder Mead Simplex SimplexUnc m (2)算法参数设置:. ('arg','','','','',250,'','') = options optimset L eScale off gradobj off MaxFunEvals display iter SimplexUnc m (3)函数调用运算:. = ('arg','','','','',250,'','') options optimset L eScale off gradobj on MaxFunEvals display iter x=- [ 1.9,2] x fval exitflag output f search BanaFun x options = [,,,]min(@,,) 3)计算结果 Iteration Func-count min f(x) Procedure 0 1 267.62 1 3 236.4 2 initial simplex 2 5 67.2672 expand 3 7 12.2776 expand 4 8 12.2776 reflect 5 10 12.277 6 contract inside 6 12 6.76772 contract inside 7 13 6.76772 reflect 8 15 6.76772 contract inside 9 17 6.76772 contract outside 10 19 6.62983 contract inside 11 21 6.55249 contract inside 12 23 6.46084 contract inside 13 24 6.46084 reflect 14 26 6.46084 contract inside 15 28 6.45544 contract outside 16 30 6.42801 expand 17 32 6.40994 expand 18 34 6.32449 expand 19 36 6.28548 expand 20 38 6.00458 expand 21 39 6.00458 reflect 22 41 5.43287 expand

第三章 无约束最优化方法

第三章无约束最优化方法 本章内容及教学安排 第一节概述 第二节迭代终止原则 第三节常用的一维搜索方法 第四节梯度法 第五节牛顿法 第六节共轭方向法 第七节变尺度法 第八节坐标轮换法 第九节鲍威尔方法 第一节概述 优化问题可分为 无约束优化问题 有约束优化问题 无约束最优化问题求解基于古典极值理论的一种数值迭代方法,主要用来求解非线性规划问题 迭代法的基本思想:

所以迭代法要解决三个问题 1、如何选择搜索方向 2、如何确定步长

3、如何确定最优点(终止迭代) 第二节 迭代终止准则 1)1K K X X ε+-≤ 111/2 21K K K K n i i i X X X X ε++=??-=-≤???? ∑() 2) 11()()()() () K K K K K f X f X f X f X or f X ε ε ++-≤-≤ 3)(1)()K f X ε+?≤ 第三节 常用的一维搜索方法 本节主要解决的是如何确定最优步长的问题。 从初始点(0)X 出发,以一定的步长沿某一个方向,可以找到一个新的迭代点,其公式如下: (1)(0)00(2)(1)11(1)() K K k k X X S X X S X X S ααα+=+=+= + 现在假设K S 已经确定,需要确定的是步长k α,就把求多维目标函数的极小值这个多维算过程中,当起步点和方向问题,变成求一个变量即步长的最优值的一维问题了。即 (1)()min ()min ()min ()K K K k k f X f X S f αα+=+= 由此可见,最佳步长*K α由一维搜索方法来确定 求*k α,使得()()()()()()min K K K K f f X S αα=+→ 一、一维搜索区间的确定 区间[,]a b 应满足 ()(*)()f a f f b α><

无约束优化方法

第四章无约束优化方法 ——最速下降法,牛顿型方法 概述 在求解目标函数的极小值的过程中,若对设计变量的取值范围不加限制,则称这种最优化问题为无约束优化问题。尽管对于机械的优化设计问题,多数是有约束的,无约束最优化方法仍然是最优化设计的基本组成部分。因为约束最优化问题可以通过对约束条件的处理,转化为无约束最优化问题来求解。 为什么要研究无约束优化问题 (1)有些实际问题,其数学模型本身就是一个无约束优化问题。 (2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。 (3)约束优化问题的求解可以通过一系列无约束优化方法来达到。

所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。 根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。 一:间接法——要使用导数的无约束优化方法,如梯度法、(阻尼)牛顿法、变尺度法、共轭梯度法等。 二:直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯形法等。 无约束优化问题的一般形式可描述为: 求n 维设计变量 []12T n n X x x x R =∈L 使目标函数 ()min f X ? 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 无约束优化问题的求解: 1、解析法

可以利用无约束优化问题的极值条 件求得。即将求目标函数的极值问题变成求方程 0)(min *=X f 的解。也就是 求X* 使其满足 解上述方程组,求得驻点后,再根据极值点所需满足的充分条件来判定是否为极小值点。但上式是一个含有n个未知量,n个方程的方程组,在实际问题中一般是非线性的,很难用解析法求解,0)(0)(0)(*2*1*=??=??=??n x X f x X f x X f M

无约束优化方法与MATLAB实现

例4-1 MA TLAB实现,用M函数文件形式求解: syms s t; f=s^2+3*t^2-2*t*s+4*t+3*s; [x,minf]=minZBLH(f,[-2 6],[0.2 0.2],1.5,[t s],0.0001,0.0001) 坐标轮换minZBLH函数文件如下: function [x,minf] = minconPS2(f,x0,delta,u,var,eps1,eps2) %目标函数:f; %初始点:x0; %收缩系数:u; %自变量向量:var; %步长精度:eps1; %自变量精度:eps2; if nargin == 7 eps2 = 1.0e-6; end n = length(var); y = x0; bmainCon = 1; while bmainCon yf = subs(f,var,y); yk_1 = y; for i=1:n tmpy = zeros(size(y)); tmpy(i) = delta(i); tmpf = subs(f, var,y+tmpy); if tmpf < yf bcon = 1; while bcon tmpy(i) = 2*tmpy(i); tmpf_i = subs(f, var,y+tmpy); if tmpf_i

无约束优化方法(最速下降法_牛顿法)

第四章 无约束优化方法 ——最速下降法,牛顿型方法 概述 在求解目标函数的极小值的过程中,若对设计变量的取值范围不加限制,则称这 种最优化问题为无约束优化问题。尽管对于机械的优化设计问题,多数是有约束的, 无约束最优化方法仍然是最优化设计的基本组成部分。因为约束最优化问题可以通过 对约束条件的处理,转化为无约束最优化问题来求解。 为什么要研究无约束优化问题? (1)有些实际问题,其数学模型本身就是一个无约束优化问题。 (2)通过熟悉它的解法可以为研究约束优化问题打下良好的基础。 (3)约束优化问题的求解可以通过一系列无约束优化方法来达到。 所以无约束优化问题的解法是优化设计方法的基本组成部分,也是优化方法的基础。 根据构成搜索方向所使用的信息性质的不同,无约束优化方法可以分为两类。 一:间接法——要使用导数的无约束优化方法,如梯度法、(阻尼)牛顿法、变尺度 法、共轭梯度法等。 二:直接法——只利用目标函数值的无约束优化问题,如坐标轮换法、鲍威尔法单纯 形法等。 无约束优化问题的一般形式可描述为: 求n 维设计变量 []12T n n X x x x R =∈L 使目标函数 ()min f X ? 目前已研究出很多种无约束优化方法,它们的主要不同点在于构造搜索方向上的差别。 无约束优化问题的求解: 1、解析法 可以利用无约束优化问题的极值条件求得。即将求目标函数的极值问题变成求方 程 0)(min *=X f

的解。也就是求X*使其满足 解上述方程组,求得驻点后,再根据极值点所需满足的充分条件来判定是否为极小值 点。但上式是一个含有n个未知量,n个方程的方程组,在实际问题中一般是非线性 的,很难用解析法求解,要用数值计算的方法。由第二章的讲述我们知道,优化问题 的一般解法是数值迭代的方法。因此,与其用数值方法求解非线性方程组,还不如用 数值迭代的方法直接求解无约束极值问题。 2、数值方法 数值迭代法的基本思想是从一个初始点) 0(X 出发,按照一个可行的搜索方向)0(d ρ搜索,确定最佳的步长0α使函数值沿)0(d ρ方向下降最大,得到)1(X 点。依此一步一步地重复数值计算,最终达到最优点。优化计算所采用的基本迭代公式为 ),2,1,0()()()1(Λρ=+=+k d X X K K K K α (4.2) 在上式中, ()K d r 是第是 k+1 次搜索或迭代方向,称为搜索方向(迭代方向)。 由上面的迭代公式可以看出,采用数值法进行迭代求优时,需要确定初始点)(k X 、搜索方向)(k d ρ和迭代步长K α,称为优化方法迭代算法的三要素。第三章我们已经讨论了如何在搜索方向)(k d ρ上确定最优步长K α的方法,本章我们将讨论如何确定搜索方向)(k d ρ。 最常用的数值方法是搜索方法,其基本思想如下图所示: 0)(0)(0)(*2*1*=??=??=??n x X f x X f x X f M

无约束最优化直接方法和间接方

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称

无约束最优化直接方法和间接方法的异同

无约束最优化直接方法和间接方法的异同一、什么是无约束最优化 最优化方法(也称做运筹学方法)是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种有组织系统的管理问题及其生产经营活动。其的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。 最优化问题分为无约束最优化和约束最优化问题,约束最优化问题是具有辅助函数和形态约束条件的优化问题,而无约束优化问题则没有任何限制条件。无约束最优化问题实际上是一个多元函数无条件极值问题。 虽然在工程实践中,大多数问题都是具有约束的优化问题,但是优化问题的处理上可以将有约束的优化问题转化为无约束最优化问题,然后按无约束方法进行处理。或者是将约束优化问题部分转化为无约束优化问题,在远离极值点和约束边界处按无优化约束来处理,在接近极值点或者约束边界时按照约束最优化问题处理。所以无约束优化问题的解法不仅是优化设计方法的基本组成部分,也是优化方法的基础。 无约束最优化方法大致分为两类:一类是使用导数的间接方法,即在计算过程中要用到目标函数的导数;另一类是直接方法,即只要用到目标函数值,不需要计算导数。这里我们比较这两类方法的异同。 二、无约束最优化方法 1. 使用导数的间接方法 1.1 最速下降法 函数的负梯度方向是函数值在该点下降最快的方向。将n维问题转化为一系列沿负梯度方向用一维搜索方法寻优的问题,利用负梯度作为搜索方向,故称最

优化设计 有约束优化 无约束优化

目录 1.多维有约束优化............................................. 错误!未定义书签。 题目.................................................... 错误!未定义书签。 已知条件................................................ 错误!未定义书签。 建立优化模型............................................ 错误!未定义书签。 问题分析及设计变量的确定............................. 错误!未定义书签。 目标函数的确定....................................... 错误!未定义书签。 约束条件的建立...................................... 错误!未定义书签。 优化方法的选择.......................................... 错误!未定义书签。 数学模型的求解.......................................... 错误!未定义书签。 确定数学优化模型.................................... 错误!未定义书签。 运用Matlab优化工具箱对数学模型求解.................. 错误!未定义书签。 1. 最优解以及结果分析................................ 错误!未定义书签。 2.多维无约束优化............................................. 错误!未定义书签。 题目.................................................... 错误!未定义书签。 确定优化设计模型........................................ 错误!未定义书签。 运用Matlab优化工具箱对数学模型求解...................... 错误!未定义书签。 编写目标函数........................................ 错误!未定义书签。 绘制该函数的平面和空间等值线........................ 错误!未定义书签。 利用matlab工具箱fminunc函数对该模型进行求解........ 错误!未定义书签。 求解结果............................................. 错误!未定义书签。

约束优化、一维搜索、无约束优化MATLAB程序语句用法

1、一维搜索 function f=myfun_yi(x) f=(x-2)^2-1 》》fminbnd(@myfun_yi,1,12) 2、无约束搜索 function f=myfun_wuyueshu(x) f=3*x(1)^2+2*x(1)*x(2)+x(2)^2 >> x0=[1,1] >> [x,fval]=fminunc(@myfun_wuyueshu,x0) 3、约束搜索 min f(x) x 设计变量 b Ax ≤ 线性不等式约束 eq b x A =eq 线性等式约束 ()0≤x C 非线性约束 0=eq C 非线性等式约束 b b u x l ≤≤ 上下限边界约束

例题: ()222 13)(min x x x f +-= ()042211≤-+=x x x g ()012≤-=x x g ()023≤-=x x g 目标函数: function f=myfun_constrain(x) f=(x(1)-3)^2+x(2)^2; 非线性约束函数定义 function [c,ceq]=mycon(x) c=x(1)^2+x(2)-4; ceq=[]; 初始条件及函数调用: %3初始条件 A=[-1,0;0,-1]; b=[0;0]; aeq=[]; beq=[]; lb=[]; ub=[];

x0=[9;9] %函数定义 [x,fval]=fmincon(@myfun_constrain,x0,A,b,aeq,beq, lb,ub,@mycon)%如果x0,A,b,aeq,beq,lb,ub,@mycon中没有某项,用[]代替

相关文档
最新文档