函数图像与不等式

函数图像与不等式
函数图像与不等式

函数图像与不等式

【学习目标】1.理解函数图像与不等式的关系

2.明白数形结合思想,会用几何法求不等式的解集。

【重点难点】会用几何法求不等式的解集

【知识复习】如何观察函数图像求不等式的解集

【新知达标】

1.如图,直线y i=k i x+a

点坐标为

A、x> 1 B

x的取值范围为

、x > 2 C 、x

第2题圉

(1,2 ),则使y1< y2 的

v 1 D x

2.函数y,y2

4 t

3.当y1y2时, x的范围是

A. . x v —

B.—1 v x v 2 C .x v—1 或x> 2 D

3. 一次函数kx b的图象如图2所示,当y v0时,x的取值范围是

(A) x v 0 (B) x> 0(C) x v 2 ( D) x> 2

> 2

-4

第三题图

J y=kx+b0 >

I

4ti

kx b交坐标轴于A (—3, 0)、B (0,

4.如图,直线y5)两点,则不等式kx b 0的解集为(

A. x 3

B. x 3

C. x 3

D. x 3

与y2=k3X+b的交

5. 已知一次函数y kx b的图象如图所示,当x 1时,y的取值范围是

6. —次函数y kx b (

取值范围为_______ .

7. 如图,直线y = kx + b 交

于点P (1, m),则不

&如图,直线:y x 1与直线不等式x

1 > mx n的解集为

y mx于点P( a ,2),则关于x的9.如图,反比例函数y1=k1和正比例函数y2=k2X 的图象交于A (-1 , -3 )、B (1, 3) 两点,若夕>

k2x,则x的取值范围是

(A) -1 v x v0 (B) -1 v x v 1 (C) x v -1 或0 v x v 1

11.

12.

10.如图,函数y1 x 1和函数y2 -的图象相交于点M2 ,

x

右y1

D. 1

y2,则x的取值范围是(

如图,抛物线y = x2+ 1

x2+ 1 < 0 的解集是

与双曲线

x的取值范围是( ).

1

k

的交点A的横坐标是

x

1或x 2 C . 1

二次函数y x22x 3的图象如图所示.当y v 0时,自变量

A. —1 v x v 3 B . x v—1 D. x v—1 或x > 3

13.已知函数y i = x 2与函数y 2=— ■ x + 3的图象大致如图,若 y i v y 2,则自变量x 的取值范围是(

)?

B. x >2 或 x v —- 2 亠 3 D. x v — 2 或 x >

2 【典例分析】

1。利用函数图像求不等

2 x 2 2x 1的解集

1 2.利用函数图像求不等式 x 2

的解集 x A 3 c

A . — _ v x v 2 2 3

C.— 2v x v 2

【本节课小结】 1. 这节课使用了什么数学方法2. 利用函数图像求不等式解集的步骤是什么

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

单调性与几个重要不等式

单调性与几个重要不等式 [摘要] 本文利用单调性或函数的凹凸性证明不等式,并由此给出了詹生(Jensen)不等式,杨氏不等式,Holder不等式以及不等式等几个重要的不等式。 [关键词] 单调性詹生(Jensen)不等式杨氏不等式Holder不等式不等式 [Abstract] An effective method which is used constantly on proving inequalities in advanced mathematics has been introduced in the paper.And we also gave some important inequalities such as Jensen Inequality, Yang-Inequality, Holder Inequality, andInequality. [Key words] Monotone Jensen Inequality Yang-Inequality Holder InequalityInequality 在高等数学中,利用函数的单调性证明不等式的具有普遍的意义。本文通过利用函数的单调性证明数学中几个重要的不等式: 詹生(Jensen)不等式,杨氏不等式,Holder不等式以及不等式。以期对高等数学的教学有一定的启发和帮助。 引理1:设在区间有可导,且,,则。 引理2 设在区间有二阶导数,且,则对任意的,下面不等式成立 (1) 证无妨设, 对任意取定的,令 则 当时,有。又因为,所以由引理1知严格递增,于是有,因此严格递减,从而有,即 。 在引理2的条件下,假设 ,利用数学归纳法可以证明如下詹生(Jensen)不等式,即 且等号仅在时成立。 证明:由引理2有

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、从条件特征入手构造函数证明 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f 【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f 2 x . 求不等式0)2(4)2015()2015(2 >--++f x f x 的解集. 2、移项法构造函数 【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+- )1ln(1 1 1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11 1 )1ln()(-+++=x x x g ,从其导数入手即可证明。 3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2 )(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f + 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令 x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2 3 ++-=x x x x h ,求导即可达到证明。

构造函数法证明导数不等式的八种方法(新)

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤- +x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

考研数学:如何用单调性与凹凸性证明不等式

考研数学:如何用单调性和凹凸性证明不等式 纵观考研数学多年来的考试大纲和考试真题试卷,总体上讲变化不大。每年的考试范围和知识点基本相同或相近,考试题型的变化幅度也不是很大,其中有一些重要题型是年年考或经常考,如果考生能完全掌握这些重要题型的解题思路和方法,并能熟练地解答这些题型,则对于顺利地通过考研数学考试将有极大帮助。为了帮助各位考生学会并提高解答数学重要题型的水平,文都老师针对历年考研数学中的重要题型进行深入解剖,分析提炼出各种常考重要题型及方法,供考生们参考。下面分析高等数学中如何用单调性和凹凸性证明不等式这类问题。 用单调性和凹凸性证明不等式的基本思路: 大部分不等式的证明题,往往需要根据条件作辅助函数,然后由导数判断函数的单调性、凹凸性,再由单调性、凹凸性得出要证的不等式。 根据单调性证明: 若函数(),()f x g x 在[,]a b 上连续,在(,)a b 上可导,且()(),()()f a g a f x g x ''≥≥,则在(,)a b 上,()()f x g x ≥;若将上面的“≥”都改成“>”(或“≤”,或“<”),则不等式亦成立。 根据凹凸性证明: 若在区间I 上()<0f x '',则()f x 是凸函数,12,x x I ?∈,恒有1212()()( )22x x f x f x f ++> ;对凹函数则相反,若()0f x ''>,则1212()()( )<22x x f x f x f ++ 。 典型例题: 例1.设()f x 在(,)a b 内二阶可导,且()0f x ''>,证明:对于(,)a b 内任意两点12x x 、及01t ≤≤,有1212[(1)](1)()()f t x tx t f x tf x -+≤-+ 证:不妨设12x x <,令11()(1)()()[(1)]g x t f x tf x f t x tx =-+--+,12x x x ≤≤,记1(1)u t x t x =-+,则 1()0g x =,()()()()()0,g x tf x tf u tf x u u x ξξ'''''=-=-≥<<,故()g x 单调不减,于是1()()0g x g x ≥=,取2x x =,得2()0g x ≥,1212[(1)](1)()()f t x tx t f x tf x -+≤-+ 注:1)此题是用单调性证明凹函数的一个重要特性。 2)此题结论的几何意义:凹函数图形上任意两点之间的连线都在其图形之上。

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A.B.C.D. 2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是() A.B. C.D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A.B.C.D. 4.已知函数定义在数集,,上的偶函数,当时恒有,且,则不等式的解集为() A.,,B.,, C.,,D.,, 5.定义在上的函数满足,,则不等式的解集为() A.B.C.D. 6.设定义在上的函数满足任意都有,且时,有,则、、的大小关系是() A.B. C.D. 7.已知偶函数满足,且,则的解集为 A.或B. C.或D. 8.定义在R上的函数满足:是的导函数,则不等式 (其中e为自然对数的底数)的解集为( )

9.已知定义在上的函数的导函数为,满足,且,则不等式的解集为() A.B.C.D. 10.定义在上的函数f(x)满足,则不等式的解集为A.B.C.D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A.B.C.D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A.e2017f(-2017)e2017f(0) B.e2017f(-2017)f(0),f(2017)>e2017f(0) D.e2017f(-2017)>f(0),f(2017)

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

高等数学不等式的证明试题及答案

微积分中不等式的证明方法讨论 不等式的证明题经常出现在考研题中,虽然题目各种各样,但方法无非以下几种: 1.利用函数的单调性证明不等式 若在),(b a 上总有0)(>'x f ,则)(x f 在),(b a 单调增加;若在),(b a 上总有0)(<'x f ,则)(x f 在),(b a 单调减少。 注:考研题的难点是,构造恰当的辅助函数,有时需要两次利用函数的单调性证明不等式,有时需要对),(b a 进行分割,分别在小区间上讨论。 例1:证明:当0a b π<<<时, sin 2cos sin 2cos b b b b a a a a ππ++>++. 【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明. 【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时), 故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即 sin 2cos sin 2cos b b b b a a a a ππ++>++. 【评注】 证明数值不等式一般需构造辅助函数,辅助函数一般通过移项,使不等式一端为“0”,另一端即为所作辅助函数()f x ,然后求导验证()f x 的增减性,并求出区间端点的函数值(或极限值)。 例2:设2e b a e <<<, 证明)(4ln ln 2 22a b e a b ->-. 【分析】即证a e a b e b 2 222 4ln 4ln ->- 证明: 设x e x x 224ln )(-=?,则 24ln 2)(e x x x -='?, 2ln 12)(x x x -=''?, 所以当x>e 时,,0)(<''x ? 故)(x ?'单调减少,从而当2 e x e <<时,

用函数单调性定义证明

用函数单调性定义证明 例1、用函数单调性定义证明: (1)为常数)在上是增函数. (2)在上是减函数. 分析:虽然两个函数均为含有字母系数的函数,但字母对于函数的单调性并没有影响,故无须讨论. 证明: (1)设是上的任意两个实数,且, 则 = 由得,由得, . ,,即 . 于是即 . 在上是增函数. (2) 设是上的任意两个实数,且, 则 由得,由得

.又 , . 于是 即 . 在 上是减函数. 小结:由(1)中所得结论可知二次函数的单调区间只与对称轴的位置和开口方向有关,与常数 无关.若函数解析式是分式,通常变形时需要通分,将分子、分母都化成乘积的形式便于判断符号. 根据单调性确定参数 例1、函数 在 上是减函数,求 的取值集合. 分析:首先需要对 前面的系数进行分类讨论,确定函数的类型,再做进一步研究. 解:当 时,函数此时为 ,是常数函数,在 上不 具备增减性. 当 时, 为一次函数,若在 上是减函数,则有 ,解得 .故所求 的取值集合为 . 小结:此题虽比较简单,但渗透了对分类讨论的认识与使用. 例1、 设函数ax x x f -+=1)(2,其中0>a ,求a 的取值范围,使函数)(x f 在 区间[]+∞,0上是单调函数. 分析:由于函数的单调性不易直接判断,而且含有字母系数,求解过程中需要讨论字母的范围,因此可以从单调性定义出发,从定义求解释一种基本的方法,不可忽视. 解: 在[]+∞,0上任取1x ,2x ,使得21x x < )()(21x f x f -

)(11212 221x x a x x --+-+= )(1 12122 212 2 21x x a x x x x --+++-= )1 1)( (22 21 2121a x x x x x x -++++-= (Ⅰ)当1≥a 时,因为11 122 21 21<++++x x x x , 01 122 21 21<-++++a x x x x ,又 021<-x x , 所以0)()(21>-x f x f ,即)()(21x f x f > 所以当1≥a 时,函数)(x f 在区间[]+∞,0上是单调递减函数 (Ⅱ)当10<

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

利用函数单调性证明积分不等式(修改)

利用函数单调性证明积分不等式 黄道增 浙江省台州学院 (浙江 317000) 摘要:积分不等式的证明方法多种多样,本文主要利用被积函数的单调性和通过构造辅助函数的单调性证明积分不等式。 关键词:函数单调性 积分不等式 辅助函数 中图分类号 O172.2 积分不等式是微积分学中一类重要的不等式,其证明方法多种多样。如果题目条件中含“单调性”或隐含“单调性”的条件,利用函数单调性证明比较简单。本文主要讨论利用被积函数的单调性和通过构造辅助函数的单调性证明积分不等式。 1 利用被积函数的单调性 证明方法根据----定积分性质之一:设)(x f 与)(x g 为定义],[b a 在上的两个可积函数,若],[),()(b a x x g x f ∈≤,则dx x g dx x f b a b a ??≤)()(. 例1 设)(x f 为]1,0[上非负单调递减函数, 证明:对于10<<<βα,有?? >βααβαdx x f dx x f )()(0 证明:由)(x f 的单调递减性得: 若10<≤<αx ,有)()(αf x f ≥ 所以)()()(00αααα αf dx f dx x f =≥?? (1) 同理有 )()()()(ααβαβαβ αf dx f dx x f -=≤?? (2) 由(1)(2)得: dx x f f dx x f ??-≥≥β αα αβαα)(1)()(10 (3) 将(3)式两边同乘以β αβα)(-,有 dx x f dx x f ??≥-βαα βαβα β)()(0 因为1<-β αβ,所以??>βααβαdx x f dx x f )()(0 例2 试证:dx x x dx x x ??-≥-1021021sin 1cos . 分析:不等式两边的积分是瑕积分。在两边的积分中分别作变换x t arccos =与

函数单调性的判定方法

函数单调性的判定方法 1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种: 1.1 定义法 首先我们给出单调函数的定义。一般地,设f 为定义在D 上的函数。若对任何1x 、 D x ∈2,当21x x <时,总有 (1))()(21x f x f ≤,则称f 为D 上的增函数,特别当成立严格不等)()(21x f x f <时,称f 为D 上的严格增函数; (2))()(21x f x f ≥,则称f 为D 上的减函数,特别当成立严格不等式)()(21x f x f > 时,称f 为D 上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数 )(x f y =在给定区间D 上的单调性的一般步骤: (1)设元,任取1x ,D x ∈2且21x x <; (2)作差)()(21x f x f -; (3)变形(普遍是因式分解和配方); (4)断号(即判断)()(21x f x f -差与0的大小); (5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。 例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。 证明:设1x ,),(2+∞-∞∈x ,且21x x <,则

).)(()()()(212 221123132323121x x x x x x x x a x a x x f x f ++-=-=+--+-=- 由于04 3)2(2 2221212221>++ =++x x x x x x x ,012>-x x 则0))(()()(212 2211221>++-=-x x x x x x x f x f ,即)()(21x f x f >,所以)(x f 在() +∞∞-,上是减函数。 例2.用定义证明函数x k x x f + =)()0(>k 在),0(+∞上的单调性。 证明:设1x 、),0(2+∞∈x ,且21x x <,则 )()()()(221121x k x x k x x f x f +-+ =-)()(2 121x k x k x x -+-= )( )(211221x x x x k x x -+-=)()(212121x x x x k x x ---=))((2 12121x x k x x x x --=, 又210x x <<所以021<-x x ,021>x x , 当1x 、],0(2k x ∈时021≤-k x x ?0)()(21≥-x f x f ,此时函数)(x f 为减函数; 当1x 、),(2+∞∈k x 时021>-k x x ?0)()(21<-x f x f ,此时函数)(x f 为增函数。 综上函数x k x x f + =)()0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。 此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当 21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。在解决问题时,定义法是最直 接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。 1.2 函数性质法 函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我

高考数学二轮复习 专题一 函数与导数、不等式 第5讲 导数与不等式的证明、恒成立及能成立问题练习

专题一 函数与导数、不等式 第5讲 导数与不等式的证明、恒成立 及能成立问题练习 一、选择题 1.设f (x )是定义在R 上的奇函数,当x <0时,f ′(x )>0,且f (0)=0,f ? ?? ??-12=0,则不等式f (x )<0的解集为( ) A.??????x ? ??x <12 B.?????? x ? ??0<x <12 C.?????? x ? ??x <-12或0<x <12 D.?????? x ???-12 ≤x ≤0或x ≥12 解析 如图所示,根据图象得不等式f (x )<0的解集为?????? x ? ??x <-12或0<x <12. 答案 C 2.若不等式2x ln x ≥-x 2 +ax -3恒成立,则实数a 的取值范围为( ) A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞) 解析 条件可转化为a ≤2ln x +x +3 x 恒成立. 设f (x )=2ln x +x +3 x , 则f ′(x )=(x +3)(x -1) x 2 (x >0). 当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增, 所以f (x )min =f (1)=4.所以a ≤4. 答案 B 3.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ) A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞) 解析 ∵2x (x -a )<1,∴a >x -12 x .

令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1, ∴a 的取值范围为(-1,+∞),故选D. 答案 D 4.(2015·全国Ⅱ卷)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时, xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( ) A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞) C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞) 解析 令F (x )= f (x ) x ,因为f (x )为奇函数,所以F (x )为偶函数,由于F ′(x )=xf ′(x )-f (x )x 2 ,当x >0时,xf ′(x )-f (x )<0,所以F (x )=f (x ) x 在(0,+∞)上单调递减,根据对称性,F (x )= f (x ) x 在(-∞,0)上单调递增,又f (-1)=0,f (1)=0,数形结合可知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).故选A. 答案 A 5.(2016·山东师范大学附中二模)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( ) A.(-2,+∞) B.(0,+∞) C.(1,+∞) D.(4,+∞) 解析 由f (x +2)为偶函数可知函数f (x )的图象关于x =2对称,则f (4)=f (0)=1.令F (x )= f (x ) e x ,则F ′(x )= f ′(x )-f (x ) e x <0.∴函数F (x )在R 上单调递减. 又f (x )<e x 等价于f (x ) e x <1,∴F (x )<F (0),∴x >0. 答案 B 二、填空题 6.已知不等式e x -x >ax 的解集为P ,若[0,2]?P ,则实数a 的取值范围是________. 解析 由题意知不等式e x -x >ax 在x ∈[0,2]上恒成立. 当x =0时,显然对任意实数a ,该不等式都成立. 当x ∈(0,2]时,原不等式即a <e x x -1,令g (x )=e x x -1,则g ′(x )=e x (x -1)x 2 ,当0<x

复合函数的单调性与不等式恒成立问题

复合函数的单调性与不等式恒成立问题 班级 学号 姓名 1、对于(0,3)上的一切实数x ,不等式()122-<-x m x 恒成立,则实数m 的取值范围是 。 2、不等式a 220x ax ++≥对任意x ∈R 恒成立,则a 的取值范围为 . 3、不等式022 ≥-+ax ax 的解集为φ,则a 的取值范围为 . 4、当[]1,3x ∈时,不等式220x ax ++>恒成立,则a 的范围为 . 5、当[]1,3a ∈时,不等式220x ax ++>恒成立,则x 的范围为 . 6、已知函数36,2(),63,2x x y f x x x +≥-?==?--<-? 若不等式()2f x x m ≥-恒成立,则实数m 的取值范围是 . 6.若二次函数()()22 42221f x x p x p p =----+在区间[-1,1]内至少存在一实数c ,使f(c)>0,则实数p 的取值范围 ( ) A .121<<-p B .233<<-p C .3-≤p D .2 13-<<-p 8.若满足不等式08603422<+-<+-x x x x 和同时成立的x 的值,使关于x 的不等式0 922<+-a x x 也成立,则 ( ) A .9>a B .9=a C .90≤+p x px x 恒成立的x 的取值范围是 . 7、已知a ax x x f -++=3)(2 ,若2)(],2,2[≥-∈x f x 恒成立,求a 的取值范围. 例1.若函数bx x a x f 1)1()(2++=,且3)1(=f ,2 9)2(=f ⑴求b a ,的值,写出)(x f 的表达式 ; ⑵判断)(x f 在),1[+∞上的增减性,并加以证明。 例4.已知f(x)=x a x x ++22 >0在x ∈[)+∞,1上恒成立,求实数a 的取值范围。

证明函数单调性的方法总结

证明函数单调性的方法总结 导读:1、定义法: 利用定义证明函数单调性的一般步骤是: ①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等); ③依据差式的符号确定其增减性. 2、导数法: 设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充) (1)若使得f′(x)=0的x的值只有有限个, 则如果f ′(x)≥0,则f(x)在区间D内为增函数; 如果f′(x) ≤0,则f(x)在区间D内为减函数. (2)单调性的判断方法: 定义法及导数法、图象法、 复合函数的单调性(同增异减)、 用已知函数的单调性等 (补充)单调性的有关结论 1.若f(x),g(x)均为增(减)函数, 则f(x)+g(x)仍为增(减)函数. 2.若f(x)为增(减)函数, 则-f(x)为减(增)函数,如果同时有f(x)>0,

则 为减(增)函数, 为增(减)函数 3.互为反函数的两个函数有相同的单调性. 4.y=f[g(x)]是定义在M上的函数, 若f(x)与g(x)的'单调性相同, 则其复合函数f[g(x)]为增函数; 若f(x)、g(x)的单调性相反, 则其复合函数f[g(x)]为减函数.简称”同增异减” 5. 奇函数在关于原点对称的两个区间上的单调性相同; 偶函数在关于原点对称的两个区间上的单调性相反. 函数单调性的应用 (1)求某些函数的值域或最值. (2)比较函数值或自变量值的大小. (3)解、证不等式. (4)求参数的取值范围或值. (5)作函数图象. 【证明函数单调性的方法总结】 1.函数单调性的说课稿 2.高中数学函数的单调性的教学设计 3.导数与函数的单调性的教学反思

相关文档
最新文档