燃气燃烧反应机理通用范本

燃气燃烧反应机理通用范本
燃气燃烧反应机理通用范本

内部编号:AN-QP-HT516

版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe

Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production.

编辑:__________________

审核:__________________

单位:__________________

燃气燃烧反应机理通用范本

燃气燃烧反应机理通用范本

使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。

燃气的燃烧反应是一种化学反应。它也遵循化学反应动力学的基本原理。

燃气的燃烧化学反应,在通常情况下属于单相反应,只有在特殊情况下,才出现固体碳粒,丽发生多相反应。

对于燃烧化学反应,反应速度通常采用单位时间;单位体积内燃烧掉的燃料数量或消耗掉的氧量或燃烧放出的热量来表示。例如,在燃烧技术中常常采用炉膛的容积热强度qv,单位是kJ/m3

·h或kW/m3

来表征燃烧反应速度。

燃气的燃烧化学反应速度的大小,取决于反应物质的性质与进行反应的条件。影响反应速度的主要因素仍然是反应物质的浓度、温度、压力和催化条件等。

一、链反应

除了分子热活化理论以外,阐明化学反应机理的另一重要理论就是链锁反应理论。

根据这个理论,化学反应的进程实际上不是按照反应方程式来进行的,而是要经过中间阶段,产生中间活性产物(或称活化中心)。这些中间活性产物大都是不稳定的自由原子或离子,它们与原反应物反应时,所需的反应活化能小得多,使化学反应避开了高能的障碍,所

以它们很容易直接发生反应,得到反应最终产物的同时,又形成新的中间活性产物。所以,一旦中间活性产物形成,不仅本身发生化学反应,而且还导致一系列新的活化中心发生化学反应,就象链锁一样,一环扣一环地相继发展,使反应进行得非常迅速,瞬间完成。

链反应具有十分重要的意义。不仅燃气的燃烧和爆炸属于链反应,还有很多工艺过程,例如高分子的加成聚合反应、碳氢化合物的卤化和氢化都与链反应密切相关。

链反应的历程包括:

(1)链的形成这是由原反应物生成活性中间产物的过程,是链反应中最困难的阶段,它需要足够的能量来分裂原反应物,一般借助光化作用、高能电磁辐射或微量活性物质的引入来

头现。

(2)链的增长这是由活性中间产物与原反应物作用,产生新的活性中心的过程。它有两种类型:

直链反应,或叫不分支链反应,指每一步中间反应都是由一个中间活性产物与反应物作用。再产生出一个新的活化中心,链以直链形式增长:

分支链反应,是指一个中间活性产物与反应物作用,产生出多于一个的活化中心。链形成分枝,使反应速度急剧增长,甚至引起爆炸:

(3)链的中断指活性中心的销毁。主要包括:器壁中断、空间中断等。

二、燃气燃烧反应机理

燃气的燃烧反应都属于链锁反应。比如,氢的燃烧属于典型的分支链锁反应,其反应历程可表示如下:

其中,M*

为某种高能量的活化分子;

其中,①反应活化能最高约为

58.6mJ/mol,反应最慢;

上标“·”为活化中心。

将链增长的三个基元反应综合起来,就可得到该反应的单个链锁环节总的效果:

表明,一个自由氢参加反应生成两个H20分子的同时,又生成三个新的自由氢。一枝分三枝:就是典型的分支链锁反应。假如上述环中形成的三个活化中心都销毁,这个链锁环节的反应就中断了。

该链环的总反应速度,由链增长的第一反应(即活化能最高的反应)速度来决定。所以反应速度可表示为:

式中K——化学反应速度常数;

T——绝对温度;

E——反应活化能;

R——通用气体常数;

C——反应物浓度。

一氧化碳的燃烧反应,也具有象氢燃烧的那样分支链锁反应的特征,而且实践证明,CO 只有存在H20的情况,才有可能开始快速的燃烧反应。正由于在CO燃烧中,有H20参加,使成为复杂的分支链锁反应。

甲烷等碳氢化合物的燃烧反应,也属于分支链锁反应,而且远比氢及一氧化碳的反应复杂。燃烧反应中,新的链环节大多要依靠中间生成物的分解,属于蜕化了的分支链锁反应。由于问题的复杂性,目前还没有关于这类反应的明确的动力学机理。

可在此位置输入公司或组织名字

You Can Enter The Name Of The Organization Here

第二节 热力燃烧的原理

第二节热力燃烧的原理 热力燃烧一般用于处理废气中含可燃组分浓度较低的情况。它和直接燃烧的区别就在于直接燃烧的废气由于本身含有较高浓度的可燃组分,它可以直接在空气中燃烧。热力燃烧则不同,废气中可燃组分的浓度很低,燃烧过程中所放出的热量不足以满足燃烧过程所需的热量。因此,废气本身不能作为燃料,只能作为辅助燃料燃烧过程中的助燃气体,在辅助燃料燃烧的过程中,将废气中的可燃组分销毁。与直接燃烧相比,热力燃烧所需要的温度一般较低,通常为540~820℃。 一、热力燃烧的基本理论 (一)火焰传播理论 在热力燃烧过程中,一般认为,只有燃烧室的温度维持在760~820℃,驻留时间为0.5s时,有机物的燃烧才能比较完全。而达到这个温度范围是依靠火焰传播过程来实现的。火焰传播的理论分为两大类。 1.热传播理论 这类理论认为:火焰传播是依靠燃烧时所放出的热量加热周围的气体,使其达到燃烧所需要的温度而实现的。 因此,能否实现火焰传播主要与三个方面的因素有关:①混合气体中的含氧量;②混合气体中含有可燃组分的浓度;③辅助燃料燃烧过程中所放出的热量。当燃烧过程中放出的热量不足以使周围的气体达到燃烧所需要的温度,火焰自然不能向外传播;当助燃废气中的含氧量不足,燃烧过程难以进行,火焰也不能传播出去。例如:丙烷气体在空气当中很容易燃烧,但在氧和氮各占12%和88%的气体中,丙烷燃烧非常困难。此外,混合气体中可燃组分的浓度与火焰能否传播有着紧密的联系。浓度过低,燃烧过程不能实现;浓度过高时,由于没有足够的氧而使得废气不能在正常的着火温度下产生燃烧反应,因而火焰也得不到传播。人们将这种能够维持火焰传播的浓度范围称为爆炸极限。使用燃烧法处理各种有机废气的过程中,爆炸极限的范围是至关重要的。 2.自由基连锁反应理论 该种理论认为:在燃烧室中,火焰之所以能够进行很快的氧化反应,就是因为火焰中存在着大量活性很大的自由基。由于自由基是具有不饱和价的 精品

煤气燃烧反应的火焰温度

煤气燃烧反应的火焰温度 高志崇 (泰山学院化学系,山东泰安 271021) [摘 要] 计算了水煤气和焦炉气燃烧反应的火焰温度,进一步明确氢气和烃燃烧反应的机理.氢燃烧反 应的机理为:(1)O 2+hv 2O ,(2)H 2+O H 2O+hv;烃燃烧反应的机理为:(1)O 2+hv 2O ,(2)C p H 2q p C+ q H 2,(3)H 2+O H 2O+hv,(4)C+O CO+hv,(5)2CO+O 2 2CO 2. [关键词] 燃烧反应;温度;焓;波长 [中图分类号] O643.2+1 [文献标识码] A [文章编号] 1672-2590(2003)03-0071-04 [收稿日期]2003!03!10 [作者简介]高志崇(1966-),女,山东招远人,泰山学院化学系副教授. 氢气和烃均属于可燃性物质,作者曾根据氢气和烃燃烧反应的火焰温度提出了氢气和烃燃烧反应 的机理[1,2].煤气含有H 2、CO 和C H 4等多种可燃性气体,其燃烧反应的火焰温度与氢气和烃燃烧反应的机理有关.本文将通过煤气燃烧反应火焰温度的计算进一步明确氢气和烃燃烧反应的机理. 1 燃烧反应的反应焓 H 与光子数量、波长之间的关系 能量有功和热两种方式.热是以无序形式传递的能量,功是以有序形式传递的能量.功有体积功W 和非体积功W ?两种.光是有序的能量,显然光是一种非体积功,也就是说燃烧过程中体系以光的形式对环境作非体积功,非体积功的大小也就是光子的能量(规定体系对环境作功为正值)[1,2]. 假设某燃烧反应发出n mol 光子,那么体系作的非体积功W ?为W ?=nE m =nNhc =0.1196n ,式中E m 为每摩尔光子的能量(J mol -1),N 为阿伏加德罗常数(6.022#1023mol -1),h 为普朗克常数(6.626#10-34J s),c 为光速(2.998#108m s -1), 为波长(m).根据热力学第一定律 U =U 2-U 1=Q -W -W ?(1) 燃烧反应通常是在恒压条件下进行的,因而W =P (V 2-V 1)(2) 由于燃烧反应可近似地看成绝热反应,因而Q =0(3) 将(2)、(3)式代入(1)式得(U 2+PV 2)-(U 1+PV 1)=W ?,根据焓的定义H =U +PV .因而 H =H 2-H 2=-W ?=-0.1196n (4)由(4)式可以看出,燃烧反应的焓变即为体系对环境作的非体积功的负值.作者利用(4)式计算的氢气、一氧化碳及乙炔在氧气中燃烧反应的火焰温度与实际温度非常接近[2].本文将利用该公式计算水煤 气和焦炉气燃烧反应的火焰温度,进一步明确氢气和烃燃烧反应的机理. 2 氢气和烃燃烧反应机理 2.1 氢气燃烧反应机理 作者根据氢气燃烧反应的火焰温度,提出了氢气燃烧反应的机理.该机理为[1]: 第25卷第3期 2003年5月泰山学院学报JOURNAL OF TAISHAN UNIVERSI TY Vol.25 NO.3 May 2003

聚烯烃的燃烧机理

聚烯烃的燃烧机理 聚烯烃由于其优异的力学性能、化学稳定性和易加工性等被广泛应用在生活的各个方面。但由于聚烯烃由碳、氢两种元素组成,这种化学结构使其很容易燃烧,且释放大量烟气和有毒气体。 聚烯烃的易燃性不仅限制了其应用,直接或间接引起的火灾数量也不计其数。火灾不仅造成了巨大的经济损失,更为可怕的是,燃烧过程中释放的热量、烟气和有毒气体会危及人民的宝贵生命。 因此,提高聚烯烃的阻燃性能成为扩展其应用的必经之路;同时降低它在燃烧过程中释放的可燃气体量对于保护人民的生命财产安全也非常重要。 1 聚烯烃的燃烧机理 为了解决聚烯烃的阻燃难题,我们首先要理解聚烯烃的燃烧过程和机理。聚合物的燃烧是一个相当复杂的过程,多种因素会影响其进程。近年来的研究报道更倾向于指出:聚合物材料的燃烧过程受热量、氧气、可燃物和自由基反应四种因素影响。 对聚乙烯来说,它在惰性气氛和空气中受热降解可遵循反应,PE 主链上的碳-碳键受热发生断裂形成大分子碳自由基。碳自由基可能会重新组合,也有可能发生氢转移或脱氢反应进一步形成较小分子量的自由基或烯烃,最终会形成小分子降解产物。所以 PE 裂解产物以烯烃、烷烃等碳氢化合物为主。 在空气(氧气)下,温度低于 200 oC 受热时,PE 链会发生脱氢反应形成烷基自由基,它很容易被氧化进一步形成过氧化烷基自由基。当温度处于 200-250 oC 之间时,烷基自由基的氧化过程是可逆进行的;同时烷基自由基可以与氧气反应形成氢过氧化物烷基自由基。当温度进一步升高时,由于链末端自由基浓度增加,此时自由基β断裂、烷基自由基与氧气的加成反应以及聚合物链受热脱氢这三者之间存在竞争。当温度超过 300 oC 时,碳-碳键开始无规断裂,PE 大面积发生降解,质量损失进一步增加。所以 PE 的热氧化降解产物以酮类、酯类等羰基化合物和碳氢化合物为主。综上所述,PE 在惰性气氛和空气下的降解均以自由基链反应的方式进行,因此自由基的浓度高低在 PE 的热降解过程中发挥着非常重要的作用。 2 阻燃聚烯烃的研究现状 基于对聚合物的燃烧过程分析,可以看出想要达到良好的阻燃效果,必须破坏四面体模型,力求阻止或减缓其中一个或几个因素。所以,聚合物的阻燃一般通过物理途径和化学途径两种方法来实现。物理途径可以通过冷却燃烧体系、稀释可燃物气体浓度和形成隔热隔氧保护层等方法来延缓聚合物的燃烧。化学途径则是希望可以终止或干扰自由基链反应的进行,改变聚合物的降解机理,进而达到阻燃的效果。

催化燃烧原理及催化剂

催化燃烧的基本原理 催化燃烧是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。在催化燃烧过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行。借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H20, 同时放出大量热能,其反应过程为: 2 催化燃烧的特点及经济性 2.1催化燃烧的特点 2.1.1起燃温度低,节省能源 有机废气催化燃烧与直接燃烧相比,具有起燃温度低,能耗也小的显著特点。在某些情况下,达到起燃温度后便无需外界供热。 二、催化剂及燃烧动力学 2.1催化剂的主要性能指标 在空速较高,温度较低的条件下,有机废气的燃烧反应转化率接近100%,表明该催化剂的活性较高[9]。催化剂的活性分诱导活化、稳定、衰老失活3 个阶段,有一定的使用限期,工业上实用催化剂的寿命一般在2年以上。使用期的长短与最佳活性结构的稳定性有关,而稳定性取决于耐热、抗毒的能力。对催化燃烧所用催化剂则要求具有较高的耐热和抗毒的性能。有机废气的催化燃烧一般不会在很严格的操作条件下进行,这是由于废气的浓度、流量、成分等往往不稳定,因此要求催化剂具有较宽的操作条件适应性。催化燃烧工艺的操作空速较大,气流对催化剂的冲击力较强,同时由于床层温度会升降,造成热胀冷缩,易使催化剂载体破裂,因而催化剂要具有较大的机械强度和良好的抗热胀冷缩性能。 2.2催化剂种类 目前催化剂的种类已相当多,按活性成分大体可分3 类。2.2.1贵金属催化剂 铂、钯、钌等贵金属对烃类及其衍生物的氧化都具有很高的催化活性,且使用寿命长,适用范围广,易于回收,因而是最常用的废气燃烧催化剂。如我国最早采用的Pt-Al203 催化剂就属于此类催化剂。但由于其资源稀少,价格昂贵,耐中毒性差,人们一直努力寻找替代品或尽量减少其用量。2.2.2过渡金属氢化物催化剂 作为取代贵金属催化剂,采用氧化性较强的过渡金属氧化物,对甲烷等烃类和一氧化碳亦具有较高的活性,同时降低了催化剂的成本,常见的有Mn0x、CoOx和CuOx等催化剂。大连理工大学研制的含Mn02催化剂,在130C及空速13000h-1 的条件下能消除甲醇蒸气,对乙醛、丙酮、苯蒸气的清除也很有效果。

低氮燃烧的原理教学内容

低氮燃烧的原理

氮氧化物的生成与温度有密切的关系,一般火焰温度越高,氮氧化物的生成越多,反之亦然,这也是流化床炉得以环保的原因之一。低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。 根据氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。 简介:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。 关键字:燃烧条件 NOx NOx燃烧技术低NOx燃烧器 用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。 目前主要有以下几种: 1 低过量空气燃烧

使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。这是一种最简单的降低NOx排放的方法。一般可降低NOx排放15-20%。但如炉内氧浓度过低(3%以下),会造成浓度急剧增加,增加化学不完全燃烧热损失,引起飞灰含碳量增加,燃烧效率下降。因此在锅炉设计和运行时,应选取最合理的过量空气系数。 2 空气分级燃烧 基本原理是将燃料的燃烧过程分阶段完成。在第一阶段,将从主燃烧器供入炉膛的空气量减少到总燃烧空气量的70-75%(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。因此,不但延迟了燃烧过程,而且在还原性气氛中降低了生成NOx的反应率,抑制了NOx在这一燃烧中的生成量。为了完成全部燃烧过程,完全燃烧所需的其余空气则通过布置在主燃烧器上方的专门空气喷口OFA(over fire air)――称为"火上风"喷口送入炉膛,与第一级燃烧区在"贫氧燃烧"条件下所产生的烟气混合,在α>1的条件下完成全部燃烧过程。由于整个燃烧过程所需空气是分两级供入炉内,故称为空气分级燃烧法。 这一方法弥补了简单的低过量空气燃烧的缺点。在第一级燃烧区内的过量空气系数越小,抑制NOx的生成效果越好,但不完全燃烧产物越多,导致燃烧效率降低、引起结渣和腐蚀的可能性越大。因此为保证既能减少NOx的排放,又保证锅炉燃烧的经济性和可*性,必须正确组织空气分级燃烧过程。

第四章 甲烷着火与燃烧特性的反应动力学分析

第四章 甲烷着火与燃烧特性的反应动力学分析 4.1化学反应动力学模型选择 4.2着火特性的反应动力学分析 4.3燃烧特性的反应动力学分析 本节将采用不同的甲烷燃料燃烧化学反应详细机理(Gri_mech 3.0、NUI Galway_Mech 、USC_Mech 2.0)对第三章中相同的实验工况下甲烷/空气混合气的层流燃烧速率进行数值计算,并将计算结果与实验数据进行对比分析。 4.3.1初始压力对l U -Φ的影响 在初始温度u T 为K 290,初始压力u P 分别为Mpa 1.0、Mpa 2.0和Mpa 3.0时,采用不同的甲烷燃料燃烧化学反应机理对其层流燃烧速率进行数值计算,将得到

图3.24 T u =290K 时不同初始压力下层流燃烧速率随当量比变化趋势的计算结果与实验数据 对比图 当Mpa P u 1.0=时,采用Gri_2.1动力学模型计算得到的甲烷/空气混合气的层流燃烧速率与实验数据吻合良好,另外两种动力学模型计算得到的结果则与实验数据存在一定偏差;当Mpa P u 2.0=时,在Φ值小于1的一侧,采用Gri_2.1动力学模型计算得到的甲烷/空气混合气的层流燃烧速率与实验数据较为接近,另外两种动力学模型计算得到的结果则与实验数据有偏差,但在Φ值大于1的一侧,采用Gri_2.1动力学模型和USC_Mech 2.0动力学模型计算得到的甲烷/空气混合气的层流燃烧速率最接近实验值;当Mpa P u 3.0=时,三种动力学模型的计算结果均与实验数据有偏离。经过综合分析,在三种压力工况下,Gri_2.1动力学模型能够较为准确的预测甲烷/空气混合气的层流燃烧速率。 4.3.2初始温度对l U -Φ的影响 在初始压力u P 为Mpa 1.0,初始温度u T 分别为K 290、K 320和K 350时,采用不同的甲烷燃料燃烧化学反应机理对其层流燃烧速率进行数值计算,将得到的计算结果与实验数据进行对比分析,如图3.25所示。

燃气燃烧与应用-知识点

第一章燃气的燃烧计算 燃烧:气体燃料中的可燃成分(H2、 C m H n、CO 、 H2S 等)在一定条件下与氧发生激烈的氧化作用,并产生大量的热和光的物理化学反应过程称为燃烧。 燃烧必须具备的条件:比例混合、具备一定的能量、具备反应时间 热值:1Nm3燃气完全燃烧所放出的热量称为该燃气的热值,单位是kJ/Nm3。对于液化石油气也可用kJ/kg。 高热值是指1m3燃气完全燃烧后其烟气被冷却至原 始温度,而其中的水蒸气以凝结水状态排出时所放出 的热量。 低热值是指1m3燃气完全燃烧后其烟气被冷却至原始 温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热 量。 一般焦炉煤气的低热值大约为16000—17000KJ/m3 天然气的低热值是36000—46000 KJ/m3 液化石油气的低热值是88000—120000KJ/m3 按1KCAL=4.1868KJ 计算: 焦炉煤气的低热值约为3800—4060KCal/m3 天然气的低热值是8600—11000KCal/m3 液化石油气的低热值是21000—286000KCal/m3 热值的计算 热值可以直接用热量计测定,也可以由各单一气体的 热值根据混合法则按下式进行计算: 理论空气需要量 每立方米(或公斤)燃气按燃烧反应计量方程式完全 燃烧所需的空气量,单位为m3/m3或m3/kg。它是燃气 完全燃烧所需的最小空气量。 过剩空气系数:实际供给的空气量v与理论空气需要量 v0之比称为过剩空气系数。 α值的确定 α值的大小取决于燃气燃烧方法及燃烧设备的运 行工况。 工业设备α——1.05-1.20 民用燃具α——1.30-1.80 α值对热效率的影响 α过大,炉膛温度降低,排烟热损失增加, 热效率降低; α过小,燃料的化学热不能够充分发挥, 热效率降低。 应该保证完全燃烧的条件下α接近于1. 烟气量含有1m3干燃气的湿燃气完全燃烧后的产物 运行时过剩空气系数的确定 计算目的: 在控制燃烧过程中,需要检测燃烧过程中的过剩空气 系数,防止过剩空气变化而引起的燃烧效率与热效率 的降低。 在检测燃气燃烧设备的烟气中的有害物质时,需要根 据烟气样中氧含量或二氧化碳含量确定过剩空气系 数,从而折算成过剩空气系数为1的有害物含量。 根据烟气中O2含量计算过剩空气系数 O2′---烟气样中的氧的容积成分 (2)根据烟气中CO2含量计算过剩空气系数 2 ' 2 m CO a CO = CO2m——当=1时,干燃烧产物中CO2含量,%; CO2′——实际干燃烧产物中CO2含量,%。 1.4个燃烧温度定义及计算公式 热量计温度:一定比例的燃气和空气进入炉内燃烧, 它们带入的热量包括两部分:其一是由燃气、空气带 入的物理热量(燃气和空气的热焓);其二是燃气的化 学热量(热值)。如果燃烧过程在绝热条件下进行,这 两部分热量全部用于加热烟气本身,则烟气所能达到 的温度称为热量计温度。 燃烧热量温度:如果不计参加燃烧反应的燃气和空气 的物理热,即t a=t g=o,并假设a=1.则所得的烟气 温度称为燃烧热量温度。 理论燃烧温度:将由CO2HO2在高温下分解的热损失和发 生不完全燃烧损失的热量考虑在内,则所求得的烟气 温度称为理论燃烧温度t th 实际燃烧温度: 2.影响燃烧温度的因素 热值:一般说来,理论燃烧温度随燃气低热值 H l的增 大而增大. 过剩空气系数:燃烧区的过剩空气系数太小时,由于 燃烧不完全,不完全燃烧热损失增大,使理论燃 烧温度降低。若过剩空气系数太大,则增加了燃烧产 物的数量,使燃烧温度也降低 燃气和空气的初始温度:预热空气或燃气可加大空气 和燃气的焓值,从而使理论燃烧温度提高。 3.烟气的焓与空气的焓 烟气的焓:每标准立方米干燃气燃烧所生成的烟气在 等压下从0℃加热到t℃所需的热量,单位为千焦每标 准立方米。 空气的焓:每标准立方米干燃气燃烧所需的理论空气 在等压下从0℃加热到t(℃)所需的热量,单位为千焦 每标准立方米。 第一章思考题 第一章课后例题必须会做。 燃气的热值、理论空气量、烟气量与燃气组分的关 系,三类常用气体热值、理论空气量、烟气量的取值 范围。 在工业与民用燃烧器设计时如何使用高低热值进行计 算 在燃烧器设计与燃烧设备运行管理中如何选择过剩空 气系数 运行中烟气中CO含量和过剩空气系数对设计与运行管 理的指导作用 燃烧温度的影响因素及其提高措施。 第二章燃气燃烧反应动力学 ' 2 20.9 20.9 a O = -

燃气燃烧反应机理

编订:__________________ 审核:__________________ 单位:__________________ 燃气燃烧反应机理 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9218-13 燃气燃烧反应机理 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 燃气的燃烧反应是一种化学反应。它也遵循化学反应动力学的基本原理。 燃气的燃烧化学反应,在通常情况下属于单相反应,只有在特殊情况下,才出现固体碳粒,丽发生多相反应。 对于燃烧化学反应,反应速度通常采用单位时间;单位体积内燃烧掉的燃料数量或消耗掉的氧量或燃烧放出的热量来表示。例如,在燃烧技术中常常采用炉膛的容积热强度qv,单位是kJ/m3 ·h或kW/m3 来表征燃烧反应速度。 燃气的燃烧化学反应速度的大小,取决于反应物质的性质与进行反应的条件。影响反应速度的主要因素仍然是反应物质的浓度、温度、压力和催化条件等。

一、链反应 除了分子热活化理论以外,阐明化学反应机理的另一重要理论就是链锁反应理论。 根据这个理论,化学反应的进程实际上不是按照反应方程式来进行的,而是要经过中间阶段,产生中间活性产物(或称活化中心)。这些中间活性产物大都是不稳定的自由原子或离子,它们与原反应物反应时,所需的反应活化能小得多,使化学反应避开了高能的障碍,所以它们很容易直接发生反应,得到反应最终产物的同时,又形成新的中间活性产物。所以,一旦中间活性产物形成,不仅本身发生化学反应,而且还导致一系列新的活化中心发生化学反应,就象链锁一样,一环扣一环地相继发展,使反应进行得非常迅速,瞬间完成。 链反应具有十分重要的意义。不仅燃气的燃烧和爆炸属于链反应,还有很多工艺过程,例如高分子的

低氮燃烧的原理

氮氧化物的生成与温度有密切的关系,一般火焰温度越高,氮氧化物的生成越多,反之亦然,这也是流化床炉得以环保的原因之一。低氮燃烧器一般把一次风分成浓淡两股,浓相在内,更靠近火焰中心;淡相在外,贴近水冷壁。浓相在内着火时,火焰温度相对较高,但是氧气比相对较少,故生成的氮氧化物的几率相对减少;淡相在外,氧气比相对较大,但由于距火焰高温区域较远,温度相对较低,故氮氧化物的生成也不会很多。 根据氮氧化合物生成机理,影响氮氧化合物生成量的因素主要有火焰温度、燃烧器区段氧浓度、燃烧产物在高温区停留时间和煤的特性,而降低氮氧化合物生成量的途径主要有两个方面:降低火焰温度,防止局部高温;降低过量空气系数和氧浓度,使煤粉在缺氧的条件下燃烧。 简介:用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。 关键字:燃烧条件NOx燃烧技术低NOx燃烧器 用改变燃烧条件的方法来降低NOx的排放,统称为低NOx燃烧技术。在各种降低NOx排放的技术中,低NOx燃烧技术采用最广、相对简单、经济并且有效。

目前主要有以下几种: 1 低过量空气燃烧 使燃烧过程尽可能在接近理论空气量的条件下进行,随着烟气中过量氧的减少,可以抑制NOx的生成。这是一种最简单的降低NOx排放的方法。一般可降低NOx排放15-20%。但如炉内氧浓度过低(3%以下),会造成浓度急剧增加,增加化学不完全燃烧热损失,引起飞灰含碳量增加,燃烧效率下降。因此在锅炉设计和运行时,应选取最合理的过量空气系数。 2 空气分级燃烧 基本原理是将燃料的燃烧过程分阶段完成。在第一阶段,将从主燃烧器供入炉膛的空气量减少到总燃烧空气量的70-75%(相当于理论空气量的80%),使燃料先在缺氧的富燃料燃烧条件下燃烧。此时第一级燃烧区内过量空气系数α<1,因而降低了燃烧区内的燃烧速度和温度水平。因此,不但延迟了燃烧过程,而且在还原性气氛中降低了生成NOx的反应率,抑制了NOx在这一燃烧中的生成量。为了完成全部燃烧过程,完全燃烧所需的其余空气则通过布置在主燃烧器上方的专门空气喷口OFA(over fire air)――称为"火上风"喷口送入炉膛,与第一级燃烧区在"贫氧燃烧"条件下所产生的烟气混合,在α>1

燃烧反应动力学

燃烧反应动力学: 这一章主要从化学动力学的角度阐述燃烧反应的一些基本概念、原理和理论模型。 首先定义了反应速度:化学反应速度是在单位时间内由于化学反应而使反应物质(或燃烧产物)的浓度改变率。 dC w d τ =- 然后介绍了最基本的反应——基元反应,即反应物分子(或离子、官能团)在碰撞种一步转化为产物分子(或离子、官能团)的反应。 同时引入了反应级数的概念。并在此基础之上逐步讨论了一级反应和二级反应的一些结论和特点。其中又引入了半衰期的概念,其定义如下:经过一定时间r 后,反应物的浓度降为初始浓度的一半时所需要的时间即是该反应的半衰期。 在简单的基元反应基础之上,课程进一步研究了一些复杂反应,包括:可逆反应、平行反应、连续反应等。至此基本的反应类型介绍完毕。紧接着课程讨论了各种参数对化学反应速度的影响,包括温度、压力、浓度等。其后继续介绍了反应速度的碰撞理论模型。并提出了有效碰撞理论: ● 在相互反应的分子碰撞过程中,只有一部分的分子碰撞处于合适的方位上; ● 处于合适方位上的分子间的相互碰撞,只有一部分有能力足以使得化学键破裂; ● 反应速率常数可以表示成: /E RT AB k Z e ?-= 有了碰撞理论模型的基础之后,课程开始介绍另外一种比较特殊的重要反应类型——链锁反应。主要介绍了不分支链锁反应(也叫直链反应)和分支链锁反应两个类型。本章的最后介绍了燃烧学中常用的一些概念和术语。现总结如下: ● 生成焓:当化合物是由不同元素组成时,化学能被转换成热能,这种转换的能量称 为化合物的生成焓。 ● 过量空气系数:燃烧反应过程当中实际空气量和理论空气量的比值。 ● 当量比:111φ=千克燃料 实际燃空比实际燃烧过程种供给的空气量=千克燃料理论燃空比 千克燃料完全燃烧所需要的理论空气量 ● 绝热燃烧温度:一个绝热、无外力做功、没有动能或势能变化的燃烧过程,燃烧产 生的热量全部用于加热燃烧产物,这样一个过程中燃烧产物的温度。 多组分反应流体力学基本方程组: 这章主要从流体力学的角度分析多组分燃烧反应过程的一些特点以及结论,并导出多组分燃烧反应的基本方程组。 首先,本章介绍了几类火焰: ● 扩散火焰:燃气和空气进入炉膛(或烧嘴)前不预先混合,燃烧过程当中空气、燃 气边混合边燃烧。特点:火焰明亮,有明显轮廓。 ● 预混火焰、燃气和空气在烧嘴内已经混合均匀,在燃烧室内直接燃烧。特点:火焰 透明,也称为“无焰燃烧”。 ● 部分预混火焰:燃料先和部分氧化剂混合,其余氧化剂通过扩散进入燃烧室。 随后,引入三个特征时间:

燃气燃烧反应机理

编号:SM-ZD-53864 燃气燃烧反应机理 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

燃气燃烧反应机理 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 燃气的燃烧反应是一种化学反应。它也遵循化学反应动力学的基本原理。 燃气的燃烧化学反应,在通常情况下属于单相反应,只有在特殊情况下,才出现固体碳粒,丽发生多相反应。 对于燃烧化学反应,反应速度通常采用单位时间;单位体积内燃烧掉的燃料数量或消耗掉的氧量或燃烧放出的热量来表示。例如,在燃烧技术中常常采用炉膛的容积热强度qv,单位是kJ/m3 ·h或kW/m3 来表征燃烧反应速度。 燃气的燃烧化学反应速度的大小,取决于反应物质的性质与进行反应的条件。影响反应速度的主要因素仍然是反应物质的浓度、温度、压力和催化条件等。 一、链反应

除了分子热活化理论以外,阐明化学反应机理的另一重要理论就是链锁反应理论。 根据这个理论,化学反应的进程实际上不是按照反应方程式来进行的,而是要经过中间阶段,产生中间活性产物(或称活化中心)。这些中间活性产物大都是不稳定的自由原子或离子,它们与原反应物反应时,所需的反应活化能小得多,使化学反应避开了高能的障碍,所以它们很容易直接发生反应,得到反应最终产物的同时,又形成新的中间活性产物。所以,一旦中间活性产物形成,不仅本身发生化学反应,而且还导致一系列新的活化中心发生化学反应,就象链锁一样,一环扣一环地相继发展,使反应进行得非常迅速,瞬间完成。 链反应具有十分重要的意义。不仅燃气的燃烧和爆炸属于链反应,还有很多工艺过程,例如高分子的加成聚合反应、碳氢化合物的卤化和氢化都与链反应密切相关。 链反应的历程包括: (1)链的形成这是由原反应物生成活性中间产物的过程,是链反应中最困难的阶段,它需要足够的能量来分裂原反应

催化燃烧机理

催化燃烧的原理 催化燃烧是借助催化剂在低温下(200~400℃)下,实现对有机物的完全氧化,因此,能耗少,操作简便,安全,净化效率高,在有机废气特别是回收价值不大的有机废气净化方面,比如化工,喷漆、绝缘材料、漆包线、涂料生产等行业应用较广,已有不少定型设备可供选用。 一、催化原理及装置组成 (1)催化剂定义催化剂是一种能提高化学反应速率,控制反应方向,在反应前后本身的化学性质不发生改变的物质。 (2)催化作用机理催化作用的机理是一个很复杂的问题,这里仅做简介。在一个化学反应过程中,催化剂的加入并不能改变原有的化学平衡,所改变的仅是化学反应的速度,而在反应前后,催化剂本身的性质并不发生变化。那么,催化剂是怎样加速了反应速度呢了既然反应前后催化剂不发生变化,那么催化剂到底参加了反应没有?实际上,催化剂本身参加了反应,正是由于它的参加,使反应改变了原有的途径,使反应的活化能降低,从而加速了反应速度。例如反应A+B→C是通过中间活性结合物(AB)过渡而成的,即: A+B→[AB]→C 其反应速度较慢。当加入催化剂K后,反应从一条很容易进行的途径实现: A+B+2K→[AK]+[BK]→[CK]+K→C+2K 中间不再需要[AB]向C的过渡,从而加快了反应速度,而催化剂并未改变性质。 (3)催化燃烧的工艺组成不同的排放场合和不同的废气,有不同的工艺流程。但不论采取哪种工艺流程,都由如下工艺单元组成。 ①废气预处理为了避免催化剂床层的堵塞和催化剂中毒,废气在进入床层之前必须进行预处理,以除去废气中的粉尘、液滴及催化剂的毒物。 ②预热装置预热装置包括废气预热装置和催化剂燃烧器预热装置。因为催化剂都有一个催化活性温度,对催化燃烧来说称催化剂起燃温度,必须使废气和床层的温度达到起燃温度才能进行催化燃烧,因此,必须设置预热装置。但对于排出的废气本身温度就较高的场合,如漆包线、绝缘材料、烤漆等烘干排气,温度可达300℃以上,则不必设置预热装置。 预热装置加热后的热气可采用换热器和床层内布管的方式。预热器的热源可采用烟道气或电加热,目前采用电加热较多。当催化反应开始后,可尽量以回收的反应热来预热废气。在反应热较大的场合,还应设置废热回收装置,以节约能源。 预热废气的热源温度一般都超过催化剂的活性温度。为保护催化剂,加热装置应与催化燃烧装置保持一定距离,这样还能使废气温度分布均匀。 从需要预热这一点出发,催化燃烧法最适用于连续排气的净化,若间歇排气,不仅每次预热需要耗能,反应热也无法回收利用,会造成很大的能源浪费,在设计和选择时应注意这一点。 ③催化燃烧装置一般采用固定床催化反应器。反应器的设计按规范进行,应便于操作,维修方便,便于装卸催化剂。 在进行催化燃烧的工艺设计时,应根据具体情况,对于处理气量较大的场合,设计成分建式流程,即预热器、反应器独立装设,其间用管道连接。对于处理气量小的场合,可采用催化焚烧炉(见图16-13),把预热与反应组合在一起,但要注意预热段与反应段间的距离。

燃气燃烧器回火现象及其预防措施

在化工生产中,很多工艺加热炉以气体燃料燃烧作为热源,可燃气体燃烧需要很多空气,如:人工煤气需1.2~4.0(m3/m3),天然气和液化石油气则需10~25(m3/m3)。可见欲使燃气充分燃烧须有大量空气与之混合方可。因此,燃气与空气的混合方式,对燃烧情况有很大影响,也关系到燃烧系统能否正常安全运行。燃烧系统运行时,如果产生回火现象将烧坏燃烧器或发生安全事故。 1 燃气的燃烧方法及特点 根据燃气与空气混合情况不同将燃烧分为三种方式,即扩散式燃烧、预混部分空气燃烧(大气式燃烧)和无焰燃烧。燃烧过程处于哪一类是根据一次空气系数α1(一次空气量与燃烧理论空气量之比)来判断的。 1.1 扩散式燃烧 燃气未预先和空气混合而进行的燃烧称为扩散式燃烧,其α1=0。扩散式燃烧的燃烧速度与燃烧完全程度主要取决于燃气与空气分子间的扩散速度和完全程度。 扩散式燃烧的特点: (1)燃烧稳定、在燃气系统不产生负压、空气不被吸入的情况下,不会回火,燃烧器工作稳定。 (2)过剩空气多,燃烧速度慢,火焰温度低。对燃烧碳氢化合物含量较高的可燃气体时,在高温下由于火焰面内氧气供应不足,碳氢化合物分解出碳粒、氢和重碳氢化合物。碳粒和重碳氢化合物很难燃烧,结果造成化学不完全燃烧。一般说来,对天然气不宜采用扩散燃烧法。 (3)燃烧强度低,在工业炉上为提高燃烧强度多采用机械鼓风方式的燃烧器。 1.2 预混部分空气燃烧 其0<α1<1。在这种情况下,由于可燃混合物中空气量较小,因此,部分燃烧按纯动力学方法燃烧,其余燃气则按扩散燃烧方法进行燃烧。 预混部分空气燃烧的特点: (1)在绝大多数情况下能保证燃烧设备以任何比例的燃气与空气进行工作。因此,设备热负荷的调节范围大。 (2)由于先吸入部分空气,所以克服了扩散燃烧的一些缺点,提高了燃烧速度,降低了不完全燃烧程度。 (3)当一次空气系数α1合适时,此种燃烧方法有一定的稳定范围。 (4)一次空气系数α1越大,燃烧稳定范围就越小,因此,一次空气系数α1不可选取过

燃气燃烧反应机理.doc

燃气燃烧反应机理 燃气的燃烧反应是一种化学反应。它也遵循化学反应动力学的基本原理。 燃气的燃烧化学反应,在通常情况下属于单相反应,只有在特殊情况下,才出现固体碳粒,丽发生多相反应。 对于燃烧化学反应,反应速度通常采用单位时间;单位体积内燃烧掉的燃料数量或消耗掉的氧量或燃烧放出的热量来表示。例如,在燃烧技术中常常采用炉膛的容积热强度qv,单位是kJ/m3·h或kW/m3来表征燃烧反应速度。 燃气的燃烧化学反应速度的大小,取决于反应物质的性质与进行反应的条件。影响反应速度的主要因素仍然是反应物质的浓度、温度、压力和催化条件等。 一、链反应 除了分子热活化理论以外,阐明化学反应机理的另一重要理论就是链锁反应理论。 根据这个理论,化学反应的进程实际上不是按照反应方程式来进行的,而是要经过中间阶段,产生中间活性产物(或称活化中心)。这些中间活性产物大都是不稳定的自由原子或离子,它们与原反应物反应时,所需的反应活化能小得多,使化学反应避开了高能的障碍,所以它们

很容易直接发生反应,得到反应最终产物的同时,又形成新的中间活性产物。所以,一旦中间活性产物形成,不仅本身发生化学反应,而且还导致一系列新的活化中心发生化学反应,就象链锁一样,一环扣一环地相继发展,使反应进行得非常迅速,瞬间完成。 链反应具有十分重要的意义。不仅燃气的燃烧和爆炸属于链反应,还有很多工艺过程,例如高分子的加成聚合反应、碳氢化合物的卤化和氢化都与链反应密切相关。 链反应的历程包括: (1)链的形成这是由原反应物生成活性中间产物的过程,是链反应中最困难的阶段,它需要足够的能量来分裂原反应物,一般借助光化作用、高能电磁辐射或微量活性物质的引入来头现。 (2)链的增长这是由活性中间产物与原反应物作用,产生新的活性中心的过程。它有两种类型: 直链反应,或叫不分支链反应,指每一步中间反应都是由一个中间活性产物与反应物作用。再产生出一个新的活化中心,链以直链形式增长: 分支链反应,是指一个中间活性产物与反应物作用,产生出多于一个的活化中心。链形成分枝,使反应速度急剧增长,甚至引起爆炸:(3)链的中断指活性中心的销毁。主要包括:器壁中断、空间中断等。 二、燃气燃烧反应机理 燃气的燃烧反应都属于链锁反应。比如,氢的燃烧属于典型的分支链

燃料燃烧过程中NOx产生的机理

燃烧过程中NOx生成机理 1本文介绍燃料燃烧过程中NOx产生的机理和危害,我国电站锅炉还未有Nox排放标准.四角切圆燃烧锅炉有利于降低NOx生成和控制NOx排放,适合我国国情,电站锅炉采用低NOx燃烧是一投入少,见效快的发展道路。 关键词:四角切圆燃烧降低NOx生成控制NOx排放 0前言 当今世界对电站锅炉产生的有害排放物作为一个重要控制指标,世界发达国家均已制定了电站锅炉NOx排放标准,美国已建电站锅炉NOx排放规定: 气体燃料: 86g/GJ 油: 129g/GJ 煤:切圆燃烧 193g/GJ 墙式燃烧 215 g/GJ 新建电站锅炉NOx排放在某些地区必须达到50g/GJ。对达不到标准的要受到严厉的处罚,直至关闭。 我国现在还没有电站锅炉NOx排放标准和连续测量NOx排放的装置。现按引进技术制造设置顶部风(即OFA)的1025t/h控制循环锅炉在性能考核期内,NOx排放值:吴径热电厂为152g /GJ,石横发电厂为225g/GJ,其他较多锅炉还未得到控制。 氮氧化物主要以NO、N02、N2O、N203、N204、N205等形式出现,统称为NOx。在空气中,NO浓度越大,毒性越强,N02的毒性更大。它很易与人体和动物血液中的血色素混合夺取氧分,使血液缺氧,引起中枢神经麻痹症,N02还强烈刺激呼吸器管粘膜,引起肺部疾病。还对入体的心、肝、肾脏及造血组织有损害,严重时会导致死亡。 NO和N02会破坏同温层中的臭氧层,使其失去对紫外光辐射的屏蔽作用,危害地面生物。大气中有NOx与Sox、粉尘共存,生成硫酸或硫酸盐溶液和硝酸或硝酸盐溶液,形成酸雨。 由于NOx对人类和自然界存在危害,必须控制NOx的生成和排放。我国也应参照先进国家的经验,尽早制定出符合国情的火电站锅炉NOx排放标准。 1 NOx的生成及控制 NOx大多在各种燃料的燃烧过程中产生的,其中NO约占NOx总量的90%-95%,在大气中会迅速氧化成毒性更大的NO2 燃料燃烧中生成的NOx有“热力型”和“燃料型”两种:

热力燃烧的原理

热力燃烧一般用于处理废气中含可燃组分浓度较低的情况。它和直接燃烧的区别就在于直接燃烧的废气由于本身含有较高浓度的可燃组分,它可以直接在空气中燃烧。热力燃烧则不同,废气中可燃组分的浓度很低,燃烧过程中所放出的热量不足以满足燃烧过程所需的热量。因此,废气本身不能作为燃料,只能作为辅助燃料燃烧过程中的助燃气体,在辅助燃料燃烧的过程中,将废气中的可燃组分销毁。与直接燃烧相比,热力燃烧所需要的温度一般较低,通常为540~820℃。 一、热力燃烧的基本理论 (一)火焰传播理论 在热力燃烧过程中,一般认为,只有燃烧室的温度维持在760~820℃,驻留时间为0.5s时,有机物的燃烧才能比较完全。而达到这个温度范围是依靠火焰传播过程来实现的。火焰传播的理论分为两大类。 1.热传播理论 这类理论认为:火焰传播是依靠燃烧时所放出的热量加热周围的气体,使其达到燃烧所需要的温度而实现的。 因此,能否实现火焰传播主要与三个方面的因素有关:①混合气体中的含氧量;②混合气体中含有可燃组分的浓度;③辅助燃料燃烧过程中所放出的热量。当燃烧过程中放出的热量不足以使周围的气体达到燃烧所需要的温度,火焰自然不能向外传播;当助燃废气中的含氧量不足,燃烧过程难以进行,火焰也不能传播出去。例如:丙烷气体在空气当中很容易燃烧,但在氧和氮各占12%和88%的气体中,丙烷燃烧非常困难。此外,混合气体中可燃组分的浓度与火焰能否传播有着紧密的联系。浓度过低,燃烧过程不能实现;浓度过高时,由于没有足够的氧而使得废气不能在正常的着火温度下产生燃烧反应,因而火焰也得不到传播。人们将这种能够维持火焰传播的浓度范围称为爆炸极限。使用燃烧法处理各种有机废气的过程中,爆炸极限的范围是至关重要的。 2.自由基连锁反应理论 该种理论认为:在燃烧室中,火焰之所以能够进行很快的氧化反应,就是因为火焰中存在着大量活性很大的自由基。由于自由基是具有不饱和价的自由原子或原子团,极易同其他的原子或自由基发生连续的连锁反应,而使得火焰得以传播。 1970年西里和鲍曼提出甲烷燃烧反应的历程如下。

水煤气反应的操作

水煤气反应的操作 摘要:干熄焦在开工阶段,煤气烘炉是整个开工阶段中的一个重要环节,由于焦炉煤气中含有大量的H2和CH4,其发热量约为15910千焦 /标米3,重量约0.5千克/标米3。在燃烧过程中,产生水汽,在煤 气烘炉后期,产生水煤气反应。 关键词:水煤气、火焰脉动、导入空气。 1、水煤气:焦炉煤气在燃烧的过程中,H2+O2→H2O,这部分水汽量较大, 特别是600℃---700℃最容易体现出来。虽然通过常用放散阀和预存段调节阀进行放散,但仍有大量的水汽在系统中循环,造成循环气体中的含氧量下降。有可能造成火焰熄灭。 2、火焰脉动:在水煤气反应这一阶段,由于煤气量的增加,随之H2和CH4 也在增加。H2和CH4在燃烧过程中,产生水,体积瞬间收缩,产生局部负压区,是在烧嘴上方,有时火焰高度只有100mm,有时可产生几米高的火焰。 3、导入空气:随着烘炉所需温度指标的上升,相应的煤气量也在增加,燃烧 所需的空气量也相应的增加,但由于导入空气位置的局限性,已不能满足烘炉后期的需要量。 措施: 1、与公司调度联系,确保进入干熄炉区域煤气主管压力稳定大于1700Pa 2、水煤气反应是开工阶段不可避免的,在增加煤气量的同时,输送煤气管道 内的水量也有所增加,增加煤气输送管道的输水次数是必要的。 3、提升干熄焦炉盖,由于常用放散阀和预存段调节阀的通径有限,不可能在 短时间内将循环气体排出,提升炉盖增加了放散面积,也使蓄积在干熄炉顶部的水汽排出,炉盖内的是耐火浇注料,又是冷凝区。耐火浇注料容易

吸附冷凝水,这部分水不烘出,对炉盖的使用寿命有影响,提升高度30---50mm。 4、增加导入空气的途径:在烘炉的低温阶段,通过一、二次风门的调节就可 满足火焰燃烧所需要的空气量,随着升温的上升,到了水煤气反应阶段, 一、二次风门的导入空气量已不能满足煤气燃烧所需空气量。这时,可通 过打开导入空气中栓,通过导入空气调节阀导入空气,开始导入空气一瞬间,T5温度急剧上升,这是煤气完全燃烧造成的,通过调整煤气量和导入空气就可解决,循环气体中的氧含量控制在10---11%/ 5、增加中央风帽的开度,当煤气量增加后,火焰的燃烧体积增加,容易造成 冷却室内温度的上升过快,增加中央的开度,可提升火焰的高度,但一次增加不能过大,过大容易将火吹灭,根据火焰情况,每次增加5%。 6、备用压缩空气管道,在导入空气量不足的情况下使用。 7、增加煤气量的同时,加大循环风机设定参数提高循环风量,有助于废气的 排出和空气的导入,有助煤气的充分燃烧。 注意事项: 1、装入装置平台,由于炉盖的提升,常用放散阀和预存段调节阀,都在放散 有毒的循环烟气,长时间在装入装置,容易中毒尽量少去,不要停留,检查时一定要佩戴CO报警仪。 2、看火时,由于存在着不可预见的情况,当煤气压力波动大,水煤气反应, 而造成观察孔处回火,看火时,应站在在摄像头固定柱后面观察火焰情况。 3、疏水时,要观察疏水点的风向,在佩戴CO报警仪的同时,要站在上风, 当疏水量变小时要及时调小疏水阀门,防止大量的有毒气体排出。 4、巡检和疏水时,必须二人同行,并通知中控操作人员。 5、如果煤气熄火,应严格遵守点火技术要求。

相关文档
最新文档