超高分子量聚乙烯管材应用范围

超高分子量聚乙烯管材应用范围
超高分子量聚乙烯管材应用范围

超高分子量聚乙烯管材应用范围超高分子量聚乙烯管道应用范围

1、松散物料输送

固体颗粒、粉末等松散物料的输送,主要采用以空气为载体的气力管道输

送方式,在高速风送过程中物料对管道造成磨损,且由于磨擦阻力使功率消耗高、噪音较大。UHMWPE管以其耐磨损、耐冲击、磨擦系数低、自润滑、不粘附、卫生无毒、消音、轻便等优点而可替代钢管、不锈钢管等在以下领域应用。

(1)粮食、饲料加工业

国内外粮食加工行业的面粉厂、杂粮加工厂和大米厂以及储粮库等均采用

气力输送粮食。全国有大型面粉厂2500多家,中小型面粉厂上万家,应用UHMWPE管的潜力很大。

同样,UHMWPE管也可在饲料加工业中应用。截止到1994年底,全国共有

饲料加工企业11000多家,即使部分企业采用UHMWPE管,其用量也相当可观。

(2)建材、散装物料运输

水泥、石灰、沙(砂)石、混凝土、耐火材料、陶瓷原料、焙烧矿、矾土、

石膏等建材的输送中,管道磨损较为严重。在散装物料运输中,各种散装的水泥、谷物、食盐、矾土、化肥、煤块等物料需要采用气力输送装置的卸料机来

输送。我国沿海接卸进口粮食的港口,在散粮泊位配置了吸粮机、装卸机和圆

筒仓,中小港口的多数粮食泊位都配备了固定式吸粮机,均需要相应的耐磨输

送管道。到2000年我国水泥散装运量将达到1.7亿吨以上,粮食散装运量将有6000万吨。由此看来,UHMWPE管在散装物料运输中具有广阔的应用前景。

(3)矿粉输送

选矿厂采用干式自磨矿石时,需要用风力将磨好的产品排出。金属矿山和

煤矿近年来已开始采用风力填充的新工艺,即利用气力将矸石、炉渣等充填材

料抛掷到采空区。

(4)电厂干除灰

我国火力发电厂的干除灰系统一般采用负压、低正压和正压输送等气力输送。由于输送速度高达15~25m/s,输灰管道磨损严重,使用寿命短。

2浆体输送

浆体状固液混合物的输送主要采用以水为载体的水力管道输送方式,输送

时易产生磨损、腐蚀、结垢等问题。UHMWPE管以其耐磨损、耐腐蚀、不结垢、

磨擦系数低等优点,可替代普通钢管、不锈钢管、特种钢管等在下列领域应用。

(1)采选矿、冶金

煤矿、化工矿、铁矿、有色金属矿及非金属矿等的采矿,选矿厂的矿浆输

送大量采用管道,如原矿管、尾矿管、精矿管、浮选系统管等。选煤厂输送煤

炭洗选所产生的浮选入料、浮选精矿和重介质悬浮液等固液混合物都要用管道

输送。据日本统计,输送矿浆的精矿管使用寿命为15000h,原尾矿管最短时为6000h,砂浆填充用管多为6000h,最长时为1000h。目前,我国选矿厂尾矿、

精矿输送用管道多为钢管,由于矿浆中含有约30%的铁矿石,对钢管的磨损相

当厉害,使用寿命仅为1~2a,且每半年要翻转90°,工作量很大。

冶金行业的焦炭粉、矿粉、矿浆及冶炼废渣的处理也涉及大量的管道输送。如革钢铁公司的一个选矿厂用于精选各种矿物的输送管路长达60km,对磨损最

严重的部位通常几个星期需要更换一次管道,其余管道每隔不长时间就需进行

翻转,工作量之大可想而知。我国是煤炭、矿业大国,煤矿多达9万余个。据

不完全统计,每年需耐磨塑料矿用管约2万t,若普遍使用,每年需求量在4

万t以上,可节约钢材20万t。

(2)水煤浆工程

水煤浆是一种新型的高粘度液、固混合流体,由约70%的煤粉、30%的水及1%的化学添加剂配制而成,可以像油一样通过管道输送到终点,再经过脱水、干燥处理后送给用户.如采用UHMWPE管,就可抵抗这种高粘度固液混合物产生的磨损和腐蚀现象,并因其具有自润滑性而减小输送阻力。

(3)电厂冲灰

火力发电厂水力冲灰系统中普遍存在着管内壁结垢的问题。UHMWPE管抗粘附,不易挂灰,可减少结垢现象,即使有一定程度的结垢,清除也比较容易,并且管材耐磨损、耐腐蚀,可大大延长使用寿命,且不需要涂刷防腐涂料,能节省维护费用。国内曾用UHMWPE板材卷制成内衬管做试验,结果表明,基本不结垢,其耐磨性比普通钢管提高了8倍。

我国现有大型燃煤电厂400余座,小型电厂更多,今后每年将以10家以上的速度增建火力发电厂。每个电厂若需UHMWPE管100t,全国就需几万吨。

(4)海湖盐化工

由于UHMWPE管具有极高的耐磨性、耐腐蚀性及耐低温性,可望在海湖盐化工行业盐浆、卤水的输送中发挥重要作用。

①海盐输送目前北方海盐生产的收储工艺流程中,集中式盐田采用大管道输洗;而且,钢管输送盐浆,容易产生结垢现象。如青海盐湖集团公司采盐系统输送管道采用了UHMWPE管使用效果更佳,我国北方海盐年产量占全国盐产量的2/3,气温较低,而UHMWPE管的耐寒性极优。

②卤水输送国外盐厂和制碱厂的输送卤水管道较多。UHMWPE管优良的耐腐蚀性将会大大提高其使用寿命。

(5)疏浚、排泥

所谓疏浚就是用挖泥船挖掘港口、江河、湖泊等泥砂,并将泥砂排出的作业。现在,许多城市护城河、湖泊的清淤也开始采用新工艺,即从水底直接抽吸淤泥浆,经管道实现长距离排送。挖泥船配管中有水上浮动管线、零号及上坡管线、水上架设管线、水底管线、陆上架设管线。据统计,年均有4亿t的

泥沙淤积在黄河河道内。我国将对黄河实施"百船工程"项目,即从国外引进百

艘挖泥船对黄河等河流主河道进行清淤治理。每艘船需配备4km泥砂输送管。

因钢管易锈蚀、磨损快、笨重,且不易装卸,因而挖泥船输出国要求配用UHMWPE管,仅此项目每年需用耐磨管材8000多t。此外,我国现有挖泥船400

多艘,将需耐磨管材15000t以上。

3流体、气体输送

UHMWPE管也适于输送各种流体、气体。

(1)建筑业

UHMWPE管的冲击强度、耐低温性位于现有塑料管之首,远优于PVC-U管、PP-R管、PB管、ABS管等,有利于抵抗意外冲击和严寒的破坏,而且抗内压强度、耐环境应力开裂性可与交联PE管、铝塑复合管相媲美,因此安全可靠、使用寿命长;因其能吸收冲击能,排水时的消音性优于实壁PVC-U管;用作埋地

管时,柔韧性好,地层变动时(如地震)不易被破坏;其使用温度一般为100℃

以下,但由于分子量极高,分子链段移动困难,其热变形温度比普通PE高,如果没有应力的作用,在熔点以上的150~200℃下,制品的形状也不会发生改变,与交联PE的热性能相似。因此,建筑业的供水管、排水管、污水管、排气管、煤气管、下水管都可采用UHMWPE管。据预测,2000年我国塑料给水管的需求

量为10万~15万t。到2010年,全国新建住宅室内排水管的80%将采用塑料管,基本淘汰传统铸铁管;室内上水管采用柔性塑料管的比例将达到30%。这为大

力推广UHMWPE管的应用提供了条件。

(2)水处理

工业"三废"的腐蚀性较强,水处理和废水处理可能是塑料管的另一大市场。据EAP估计,2000年用于水处理和废水处理装置消耗的塑料管大约超过350亿

美元。

(3)化学、制药工业

UHMWPE管具有优良的耐化学药品性,除强氧化性酸液外,在一定温度和浓

度范围内能耐各种腐蚀性介质(酸、碱、盐)及有机介质(萘溶剂除外),其在20℃

和80℃的80种有机溶剂中浸渍30d,外表无任何反常现象,其它物理性能也几乎没有变化。

UHMWPE管在一定范围内输送腐蚀性化工原料时,可替代价格昂贵的不锈钢管和氟塑料管。

(4)海水利用、船舶

据不完全统计,青岛、威海、龙口等地的年海水利用总量已超过8亿m3,广泛用于电力、化工、机械、纺织、食品等工业。由于海水腐蚀较严重。耐腐蚀的UHMWPE管可以在该领域应用。

(5)石油工业

油田是消耗各种管材的大户。据报道,石油和天然气市场,特别是二次和三次回采的小块油田,1983年就用了约39000km的塑料管材。我国油田开发已有几十年历史,随着部分油田开发进入中后期,特别是一些油田井液含水增加以及盐碱严重,加快了管道腐蚀速度,目前,在油田应用的主要塑料管为普通PE内衬管,而UHMWPE作为内衬管,具有耐腐蚀、耐磨、输送阻力小等优点。

5.应用实例

白银公司厂坝铅锌矿经过考察调研最终选择了超高分子量聚乙烯管材,2002年12月18~22日,完成了安装工作并投入使用,投入使用两个多月来取得了预期效果。

效益测算:超高分子量聚乙烯管道耐磨强度为普通钢管的2.5倍,(为了稳妥,耐磨强度取4~6倍的低限的62.5%)普通钢管使用寿命按4年计算。

1、超高分子量聚乙烯管道¢219x10mm

总投资489220.9元,其中安装费1.8万元

2、普通钢管¢200X5mm

真假超高分子量聚乙烯管的区别

真假超高分子量聚乙烯管的辨别方法 2001年,超高分子量聚乙烯管材被科学技术部国科计字(2000)056号文件列为国家科技成果重点推广计划,属化工类新材料、新产品,是国家863计划成果转化项目。2009年国家发改委、科技部等将超高分子量聚乙烯管材列为当前优先发展的高科技产业化重点领域项目。 近年来,超分子量聚乙烯管材等相关产业在国家政策支持鼓励下发展十分迅速。但是,由于行业内部缺乏统一的规范及执行标准,随着该产业的快速发展,业内一些厂家为追逐利润或者低成本,越来越多地在超高分子量聚乙烯管生产过程中添加回料,或者以外观貌似超高分子量聚乙烯管的塑料管冒充超高分子量聚乙烯管,导致业内产品质量良莠不齐,市场竞争极为混乱,对产业发展造成诸多不良影响。这也给使用方造成了不必要的经济损失。本文介绍几种区分真假超高分子量聚乙烯管的辨别方法,以求对行业内外关注此种新产品的人士有所帮助。 泰丰源做的管子如果能叫超高,那我们超高生产厂家真都该歇业倒闭了。 泰丰源塑料管(超高管真是叫不出口)三大劣势: 1.分子量低:泰丰源做的管子虽然也叫做超高分子量聚乙烯管,但平均分子量 仅有150万(150万分子量是超高材料的最低限),而正规厂家所做的真正地超高分子量聚乙烯管分子量都在200万以上甚至300万。 2.性能不佳:由于泰丰源所做的所谓超高分子量聚乙烯管分子量较低,直接导 致其综合性能远不如其他厂家生产的超高分子量聚乙烯管。包括耐磨性能、抗冲击性能、自润滑性、不结垢性都不如真正地超高分子量聚乙烯管。 3.价格便宜:为什么说价格便宜事泰丰源所谓超高管道的劣势之一呢?俗话说 得好,便宜没好货,好货不便宜,管道也是货,所以也入理。泰丰源经常在市场上与竞争对手拼价格,他敢比正规厂家的价格低10%—15%。之所以这样,事因为他们原材料成本很低,为什么低?是因为他们用的管道原料虽然都打着超高分子量聚乙烯的旗号,但都是杂牌料,或者是混合料、再生料。这样的原材料生产出来的管子是什么样子的,不言而喻。 下边教大家几招分辨真假超高管(也可称作优等超高管与劣等超高管)的常用办法:

超高分子量聚乙烯(UHMWPE)-化学化工论坛

超高分子量聚乙烯(UHMWPE)是一种综合性能优异的新型热塑性工程塑料,它的分子结构与普通聚乙烯(PE)完全相同,但相对分子质量可达(1-4)×106。随着相对分子质量的大幅度升高,UHMWPE表现出普通PE所不具备的优异性能,如耐磨性、耐冲击性、低摩擦系数、耐化学性和消音性等。 由于UHMWPE分子链很长,易发生链缠结,熔融时熔体黏度高达108Pa?s,熔体流动性差且临界剪切速率很低,因此容易导致熔体破裂,使其成型加工困难。为改善UHMWPE 的加工成型性能,需要对其流动性进行改性,而物理改性是主要的手段。 1UHMWPE的物理改性 物理改性不改变分子构型,但可以赋予材料新的性能。目前常用的物理改性方法主要有1)将UHMWPE与低熔点、低黏度的树脂共混改性;(2)加入流动改性剂,以降低UHMWPE 的熔体黏度,改善其加工性能,使之能在普通挤出机和注射机上加工;(3)液晶高分子原位复合材料改性等。 1.1共混改性 共混改性是改善UHMWPE熔体流动性最有效、简便的途径。共混时所用的第二组分主要是指低熔点、低黏度的树脂,如低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、聚丙烯(PP)、聚酰胺(PA)、聚酯等。目前使用较多的是HDPE和LDPE。当共混体系被加热到熔点以上时,UHMWPE就会悬浮在第二组分的液相中,形成可挤出、可注射的悬浮体物料。 将UHMWPE与LDPE(或HDPE)共混可使其成型加工性能获得显著改善。但共混体系在冷却过程中会形成较大的球晶,球晶之间有明显的界面。在这些界面上存在着由分子链排布不同引起的内应力,由此会导致产生裂纹,所以与基体聚合物相比,共混物的拉伸强度有所下降。当受外力冲击时,裂纹会很快沿球晶界面发展而断裂,引起冲击强度降低。为保持共混体系的力学性能,可以采用加入适量成核剂,如硅灰石、苯甲酸、苯甲酸盐、硬脂酸盐、己二酸盐的方法阻止其力学性能下降。 Dumoulin等对UHMWPE与中相对分子质量聚乙烯(MMWPE)的共混物进行了研究。在双辊混炼温度175℃,混炼时间10min;密炼温度185-200℃,密炼时间10min的条件下,制备了UHMWPE含量小于或等于6%(质量分数,以下同)的共混物。在上述条件下制备的共混物的流变性能得到极大改善。 Veda等对UHMWPE与MMWPE的共混物进行了研究。结果表明,UHMWPE与MMWPE 在给定条件下能共结晶。但加入MMWPE后,共混物的冲击性能、耐磨性能有所下降。为保持力学性能,在共混体系中加入成核剂。 专利介绍了一种UHMWPE共混改性方法。将70%的UHMWPE与30%的PE共混,用共混物挤出的制品拉伸强度为390MPa,断裂伸长率为290%,用带缺口试样进行Izod冲击试验时,试样不断裂。 专利报道,将79.18%的UHMWPE(相对分子质量3.5×106),19.19%的普通PE(相对分子质量6.0×105),0.13%的成核剂(热解硅石,粒径5-50μm,表面积100-400m2/g)熔融混合,所得共混物可在普通注射机上成型,产品的抗冲击性、耐磨性等物理机械性能优于不加成核剂的共混物。 Vadhar等对UHMWPE与线型低密度聚乙烯(LLDPE)共混物进行了研究。采用同步和顺序投料方式,在密炼机、混料机中制备UHMWPE与LLDPE共混物。同步投料即在密炼温度180℃时,将两种组分同时加入密炼机内混炼;顺序投料即在250℃时先将UHMWPE树脂加入混料机中混炼,然后将其冷却到180℃,再加入LLDPE继续混炼。 实验结果表明,投料方式对共混物的流变性能和力学性能影响极大。差示扫描量热及小角激光散射图像分析仪分析表明,顺序投料方式制备的共混物中,UHMWPE和LLDPE组分之间发生共结晶现象而且两种组分的混合均匀程度优于同步投料方式制备的共混物。由于

超高分子量聚乙烯钢塑复合管介绍

超高分子量聚乙烯(UHMW-PE)钢塑复合管简介超高分子量聚乙烯钢塑复合管是由超高分子量聚乙烯管和钢管经特殊的工艺复合而成,其特征是内层为超高分子量聚乙烯,外层敷以钢管,内层的超高分子量聚乙烯管的基体管材沿外层管口延伸至法兰端面外缘形成整体结构,将超高分子量聚乙烯管材和钢管合二为一,而介质和外层钢管完全隔离,这样就形成了具有高耐磨、耐冲击、耐腐蚀、自润滑、抗结垢,而又具有耐高压的复合管道。超高分子量聚乙烯钢塑复合管具有双层复合结构,输送介质和外层钢管完全隔离,只与超高分子量聚乙烯层接触,所以这种结构的管材除了具有超高分子量聚乙烯管材的所有的性能外,还具有钢管承压的性能,是两种材质管材的完美结合。 超高分子量聚乙烯钢塑复合管广泛应用于火力发电系统的粉煤灰输送、回水管道,矿山行业的尾矿、泥浆输送,煤炭行业的选煤厂粉煤高压输送、水煤浆高压输送以及其他行业的泥浆、含渣腐蚀性介质输送等领域。 超高分子量聚乙烯钢塑复合管的产品特性: 1、高耐磨性: 在目前所有的工程塑料中UHMW-PE的耐磨性居塑料之冠,最引人注目。分子量越高材料就越耐磨,甚至超过许多金属材料(如碳钢、不锈钢、青铜等)。在强腐蚀和高磨损条件下使用寿命是钢管的4-6倍,而且提高输送效率20%。 与其它材料耐磨性比较表 材料UHMW-PE PA66 45#钢黄铜磨耗指数 1.0 2.0 6.0 10.0

2、高抗冲击性: 抗冲击性居塑料之首,无论是外力强冲击,还是内部压力波动,都难以使其开裂。其冲击强度是尼龙66的10倍,聚氯乙烯的20倍,聚四氟乙烯的8倍;特别是在低温环境,其冲击强度反而达到最高值,其柔韧性能为输送系统提供了极为安全可靠的保障。 与其它材料冲击性能比较表 材料UHMWPE PA66 PC ABS 冲击强度kJ/m2130 8 80 15 3、极低的摩擦系数: 静摩擦系数为0.07,自润滑性良好,它的高光滑度降低了热摩擦带来的损伤,在应用中无需润滑油、维护更简便,UHMW-PE除可提高耐磨寿命外,还可收到节能效果。 与其它材料摩擦系数比较表 材料UHMW-PE PA66 ABS PC 钢-钢玻璃-金属冰-冰 摩擦系数0.07-0.11 0.37 0.38 0.36 0.58 0.5-0.7 0.05-0.15 4、耐腐蚀性 UHMW-PE是一种饱和分子团结构,故其化学稳定性极高,本产品可以耐烈性化学物质的侵蚀,除对某些强氧化性酸在高温下有轻微腐蚀外,在其它的碱液、酸液中不受腐蚀。 5、耐老化、寿命长 分子链中不饱和基因少,抗疲劳强度大于50万次,耐环境应力开裂性最优,抗环境应力开裂>4000h ,是PE100的2倍以上 ,埋地使用50年左右,仍可保持70%以上的机械性能。

超高分子量聚乙烯的特性

超高分子量聚乙烯的特性 1、极高的耐磨特性超高管的分子量高达200万以上,磨耗指数最小, 使它具有极高的抗滑动摩擦能力。耐磨性高于一般的合金钢6.6倍,不锈钢的27.3倍。是酚醛树脂的17.9倍,尼龙六的6倍,聚乙烯的4倍,大幅度提高了管道的使用寿命。 2、极高的耐冲击性在现有的工程塑料中超高分子量管道的冲击韧性 值最高,许多材料在严重或反复爆炸的冲击中会裂纹、破损、破碎或表面应力疲劳。本产品按GB1843标准,进行悬臂梁冲击实验达到无破损,可承受外力强冲击、内部超载、压力波动。 3、耐腐蚀性UHMW-PE是一种饱和分子团结构,故其化学稳定性极高,本 产品可以耐烈性化学物质的侵蚀,除对某些强酸在高温下有轻微腐蚀外,在其它的碱液、酸液中不受腐蚀。可以在浓度小于80%的浓盐酸中应用,在浓度小于75%的硫酸、浓度小于20%的硝酸中性能相当稳定。 4、良好的自润滑性由于超高分子量聚乙烯管内含蜡状物质,且自身 润滑很好。摩擦系数(196N,2小时)仅为0.219MN/m(GB3960)。自身滑动性能优于用油润滑的钢或黄铜。特别是在环境恶劣、粉尘、泥沙多的地方,本品的自身干润滑性能更充分的显示出来。不但能运动自如,且保护相关工件不磨损或拉伤。 5、独特的耐低温性超高分子量聚乙烯管道耐低温性能优异,其耐冲 击性、耐磨性在零下269摄氏度时基本不变。是目前唯一可在接近绝对零度的温度下工作的一种工程塑料。同时,超高分子量聚乙烯管道的适温性宽,可长期在-269℃到80℃的温度下工作。 6、不易结垢性超高分子量聚乙烯管由于摩擦系数小和无极性,因此具 有很好的表面非附着性,管道光洁度高。现有的材料一般在PH值为9以上的介质中均结垢,超高分子量聚乙烯管则不结垢,这一特性对火电站用于排粉煤灰系统有重大意义。在原油、泥浆等输送管道方面也非常适用。 7、寿命长超高分子量聚乙烯分子链中不饱和基因少,抗疲劳强度大于50 万次,耐环境应力开裂性最优,抗环境应力开裂>4000h ,是PE100的2倍以上 ,埋地使用50年左右,仍可保持70%以上的机械性能。 8、安装简便超高分子量聚乙烯(UHMW----PE)管道单位管长比重仅为 钢管重量的八分之一,使装卸、运输、安装更为方便,且能减轻工人的劳动强度,UHMW-PE管道抗老化性极强,50年不易老化。不论地上架设,还是地下埋设均可。安装时无论是焊接或者是法兰连接均可,安全可靠、快捷方便、无需防腐、省工省力,充分体现出使用超高分子量聚乙烯管道“节能、环保、经济、高效”的优越性。

超高分子量聚乙烯(UHMWPE)的应用及加工技术

《燕山石化公司2012年度情报论文第号》 超高分子量聚乙烯(UHMWPE)的应用及加工 技术 伟超

树脂应用研究所2012.12.27

目录 1.UHMWPE的性能及应用 (1) 1.1 UHMWPE的性能 (1) 1.2 UHMWPE的应用 (2) 1.2.1 以耐磨性和耐冲击性为主的应用 (2) 1.2.2 以自润滑性和不粘性为主的应用 (3) 1.2.3 以耐腐蚀性和不吸水性为主的应用 (4) 1.2.4 以卫生无毒性为主的应用 (4) 2.UHMWPE的加工特点及加工技术 (4) 2.1 UHMWPE的加工特点 (4) 2.2 UHMWPE的加工技术 (5) 2.2.1 模压成型 (5) 2.2.2 挤出成型 (5) 2.2.3 注塑成型 (7) 2.2.4 UHMWPE纤维的纺丝工艺 (8) 2.3 几种新型挤出方法 (10)

2.3.1 UHMWPE的近熔点挤出技术 (10) 2.3.2 超高分子量聚乙烯加工中的亚稳性现象 (11) 2.3.3 气体辅助挤出成型技术 (11) 2.3.4 超支化聚(酯-酰胺)对UHMWPE的加工流动改性 (12) 2.3.5 数值模拟UHMWPE的柱塞挤出 (12) 3.结论 (13) 参考文献 (14)

超高分子量聚乙烯(UHMWPE)的应用及加工技术摘要:超高分子量聚乙烯(UHMWPE)是一种具有优异综合性能的热塑性工程塑料,广泛应用在纺织、造纸、包装、运输、化工、采矿、石油、建筑、电气、食品、医疗、体育、船舶、汽车等领域。由于其相对分子质量大,UHMWPE具有流动性差,临界剪切速率低,分子链易发生断裂等特点,加工困难。本文对超高分子量聚乙烯(UHMWPE)的应用及模压成型、挤出成型、注塑成型、纺丝等加工技术进行了介绍,并特别介绍了近熔点挤出、气体辅助挤出、超支化合物改性等几种较为新颖的UHMWPE加工技术。 关键词:UHMWPE,加工,进展,应用 超高分子量聚乙烯(UHMWPE)是一种具有优异综合性能的热塑性工程塑料。最早由美国Allied Chemical公司于1957年实现工业化,此后德国Hercules公司、日本三井石油化学公司等也相继投入工业化生产。我国高桥化工厂于1964年最早研制成功并投入工业化生产,20世纪70年代后期又有塑料厂和助剂二厂投入生产。目前,各国树脂的生产都是采用齐格勒型高效催化剂低压法合成的。 1.UHMWPE的性能及应用 1.1 UHMWPE的性能[1] 1.磨耗性能 UHMWPE的耐磨耗性能居塑料之首,比尼龙66和聚四氟乙烯高4倍,比碳钢高5倍。 2.冲击性能 UHMWPE的冲击强度是市售工程塑料中最高的,为聚碳酸脂(PC)的2倍,ABS的5倍,且能在液氮温度(-℃)下保持高韧性。 3.润滑性能

超高分子量聚乙烯特性

超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万 以上的聚乙烯。 分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。热变形温度 (0.46MPa)85℃,熔点130~136℃。 UHMWPE性质特点为:极好的耐磨性,良好的耐低温冲击性、自润滑性、无毒、耐水、耐化学药品性,耐热性优于一般PE,缺点是耐热性(热变形温度)低、加工成型性差,外表面硬度,刚性,耐蠕变性不如一般工程塑料,膨胀系数偏大。UHMWPE流动性差,熔融状态下粘度极高,是呈橡胶状的高粘弹性体,早期仅能用压制和烧结方法成型,目前也可用挤出、注塑和吹塑方法加工。 特殊功能 机械性能高于一般的高密度聚乙烯。具有突出的抗冲击性、耐应力开裂性、耐高温蠕变性、低摩擦系数、自润滑性,卓越的耐化学腐蚀性、抗疲劳性、噪音阻尼性、耐核辐射性等。 使用温度100~110℃。耐寒性好,可在-269℃下使用。密度0.985g/cm3,分子量200万的产品,其断裂拉伸强度40MPa,断裂伸长率350%,弯曲弹性模量600MPa,悬臂梁缺口冲击冲不断。磨耗量(MPC法)20mm。 应用领域 UHMWPE可以代替碳钢、不锈钢、青铜等材料用于纺织、造纸、食品机械、运输、医疗、煤矿、化工等部门。如纺织工业上技梭器、打梭棒、齿轮、联结、扫花杆、缓冲块、偏心块、杆轴套、摆动后果等耐冲击磨损零件。造纸工业上做箱盖板、刮水板、压密部件、接头、传动机械的密封轴杆、偏导轮、刮刀、过滤器等;运输工业上做粉状材料的料斗、料仓、滑槽的衬里。

超高分子量聚乙烯纤维的发展

超高分子量聚乙烯纤维的发展 在总结阐述超高分子量聚乙烯纤维概念、用途的基础上,分析其在国内外不同国家的发展与应用现状,并重点阐释其在我国的产生、发展历程及取得的巨大成果;对世人了解我国超高分子量聚乙烯纤维发展状况,具有重要的释疑意义。 1超高分子量聚乙烯纤维概述 超高分子量聚乙烯纤维是继碳纤维和芳纶纤维之后的世界第三代高强、高模、高科技的特种纤维。超高分子量聚乙烯纤维在水中的自由断裂长度可以延伸至无限长,而在相同粗细的情况下,超高分子量聚乙烯纤维能承受8倍于钢丝绳的最大质量,在军事、工业、航空、航天等领域均有重要应用。超高分子量聚乙烯纤维最重要的功能就是能够起到防弹、防刺的作用,用其制作的防弹衣质量、强度与传统的防弹衣相比都要轻得多,强度也高很多。超高分子量聚乙烯纤维若按质量计算其强度,要比芳纶高出40%,可以称之为当今世界上强度最高的聚乙烯纤维。在世界三大特种纤维中,超高分子量聚乙烯纤维质量最轻,化学稳定性也最好,而且具有耐磨、耐弯曲性能、张力疲劳性能以及抗切割性能。但超高分子量聚乙烯纤维在世界上也属于稀缺物资,其生产技术难度是很大的,目前,在国际上只有美国、荷兰、日本的三家化工公司能够进行工业化生产,而国内年产量则较少,多存在装置规模小等问题。据预测,在未来10年,世界对超高分子量聚乙烯纤维的年需求量将达到20万吨以上,市场发展潜力巨大。在我国,其已被列为国家"十一五"期间重点研发产品。 2国外超高分子量聚乙烯纤维生产与发展现状 1)超高分子量聚乙烯纤维在荷兰的发展 荷兰帝斯曼公司是世界上生产迪尼玛品牌高性能聚乙烯纤维的最大厂商。该公司于2006年在美国北卡罗来纳州建成并投产了高强聚乙烯纤维迪尼玛的生产线,这是该公司的第三次扩产扩能,这就使该公司生产超高分子量聚乙烯纤维的生产线数量达到了9条。自此,其在全球的迪尼玛纤维生产能力提高了约18%,达到了4700吨/年。而主要应用于单向防弹板制作的此类纤维生产能力则提高25%,达到了2500吨/年。目前,北卡罗来纳州的格里维尔装置可以向全球用户生产供应这种纤维,但必须首先满足美国军事工业的需要。世界对该种纤维的需求正在快速的增长。 2)超高分子量聚乙烯纤维在美国、日本等国家的发展

超高分子量聚乙烯市场分析报告

超高分子量聚乙烯(UHMWPE)市场分析报告 1 国外生产状况 国际市场上,超高分子量聚乙烯(UHMWPE)生产企业主要有德国的Ticona公司、巴西的Polialden公司、荷兰的DSM公司和日本三井化学公司等。其中,Ticona 公司生产能力为11万吨/年(含在中国独资企业产能),Polialden为4.5万吨/年,DSM为1万吨/年,全球总生产能力超过20万吨/年。Ticona公司是全球最大的UHMWPE生产厂,约占全球50%市场份额,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,种类齐全,并覆盖全球市场。DSM公司的特长是能生产特殊牌号的UHMWPE树脂,如:超细料及纤维料等,并且以自用为主,产品基本不外销。巴西Polialden公司主要是接管了原美国MONTELL的经营业务,发展速度很快,能为用户稳定提供分子量在300万—600万的原料,主要用于生产板材和异型材,占据北美市场。 国外超高分子量聚乙烯的主要生产商见表1。 表1 国外超高分子量聚乙烯的主要生产商及产品牌号 生产厂商(国家树脂牌号(商标 Hostalen GUR Ticon(德国 UTEC)Polialden 巴Stamylan UHDS(荷兰 HI-ZEX MILLION三井化学公司(日本SUNFINE_U旭化成工业公司(日本)SHOREKSPA-5SSIH 昭和油化(日本)

Novatec 三菱工程塑料公司(日本)A-C1200-1232 Allied(美国) LS501 Usi(美国) Marlex 6002 5003 (美国)Phillips公司Ticona德国1.1 Ticona公司是德国化学品集团塞拉尼斯(CELANESE)的工程聚合物业务子公司,生产能力为11万吨/年,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,注册商标为Hostalen。其主要产品牌号见表2。表2 Ticona公司主要产品牌号 Polialden公司是巴西Braskem公司的下属子公司,于2002年购买了Basell公司的UHMWPE技术,在切换式HDPE装置上生产这种聚合物。2004年,巴西Braskem 公司扩大位于巴西Bahia州Camacari的UHMWPE装置能力,产能从3万吨/年扩增至4.5万吨/年,新增产能于2005年初投用。Braskem公司的主要产品牌号见表3。 表3 Braskem公司的主要产品牌号

超高分子量聚乙烯的合成及应用成型研究

超高分子量聚乙烯的合成及应用成型研究 超高分子量聚乙烯(UHMWPE),是乙烯的线性均聚物,与高密度聚乙烯(HDPE)的结构类似,但平均链长为标准等级HDPE的10~100倍,其分子量一般都在300万以上。它最早由Karl Ziegler合成,具有优良的抗张强度、耐冲击、耐滑移、耐磨、耐化学腐蚀以及自润滑等性能,通过了美国FDA和USDA的认证,广泛应用于化工、机械、食品、医疗、军工、纺织、采矿等行业。 1 聚合工艺 乙烯的聚合主要受聚合温度、压力、催化剂组成及用量、外给电子体和氢气的影响,有高压聚合、气相聚合、淤浆聚合与溶液聚合这几种工艺,然而能用于UHMWPE聚合的却只有淤浆聚合与气相聚合。 1.1 淤浆工艺 淤浆工艺主要包括搅拌釜工艺与环管工艺。搅拌釜工艺包括Hostalen工艺和CX工艺,目前大约2/3的UHMWPE聚合采用Hostalen的连续搅拌釜工艺。此工艺最早是由德国Hoechst公司(现Basell公司)为高密度聚乙烯(HDPE)所开发,典型的工艺流程见图1,它使用双釜反应器,可通过串联或并联生产出单峰或者双峰的HDPE产品。而UHMWPE和HDPE淤浆工艺最主要的差别还是在工艺条件的优化、助催化剂/三价钛的配比上。此外,由于UHMWPE产物为粉末状,UHMWPE不需要造粒工序。Sudhakar P通过优化工艺条件而用传统Ziegler-Natta合成了分子量在400万~600万之间的UHMWPE。 上海化工研究院在1996年开发出以氯化镁、四氯化钛、钛酸酯类或苯甲酸酯为催化体系的单釜聚合工艺,经聚合、过滤、汽提、干燥后分子量达500万,产品性能与Hostalen工艺产品相似,填补了国内空白。 1.一号反应器; 2.二号反应器; 3.后反应器; 4.离心分离器; 5.流化床干燥器; 6.粉末处理器; 7.膜回收系统; 8.溶剂精制与单体回收系统; 9.挤压造粒 图1 典型Hostalen工艺流程 环管工艺主要有Phillips公司的Phillips单环管工艺和Ineos公司的InnoveneS双环管工艺。Phililips公司利用改性后的二氧化硅或氧化铝固定的Ti、Zr、Hf来生产UHMWPE,聚合中不需加入氢气,投资少,但对催化剂的要求较高。 在UHMWPE淤浆聚合过程中,控制反应热是聚合成败的关键。通过调节乙烯在溶剂中的浓度和催化剂的加入量可以达到控制反应热的效果,如果反应中的热量不能及时移出,将会造成催化剂失活。另外,控制反应器中铝的加入量,对增加分子量也具有显著的效果。 1.2 气相工艺

超高分子量聚乙烯管材企业标准

UHMW-PE管材企业标准 前言 本公司研制生产的产品超高分子量聚乙烯管材,目前尚无国家标准、行业标准和地方标准,根据GB/T1.3-1997《标准化工作导则产品标准编写规定》,编制了本产品标准,作为本企业组织生产及经营活动的依据。 本标准由公司提出并起草。 本标准主要起草人: 本标准自发布之日起开始实施。 1范围 本标准规定了用超高分子量聚乙烯树脂为主要原料,经挤出成型的超高分子量聚乙烯管材(以下简称“管材”)的尺寸规格、技术要求、试验方法、检验规则、标志、包装、运输、贮存。 本标准适用于超高分子量聚乙烯管材。 本标准规定的管材适用于固体颗粒、粉末的耐磨耗气力输送,浆体(固液混合物)的耐磨水力输送以及各种流体、气体的输送。 2引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准中最新版本可能性。 GB/T1043-1993硬质塑料简支梁冲击试验方法 GB/T1634-1979塑料弯曲负载热变形温度(简称热变形温度)试验方法 GB/T2918-1998塑料试样状态调节和试验的标准环境 GB/T3960-1983塑料滑动摩擦磨损试验方法 GB/T6111-1985长期恒定内压下热塑性塑料管材耐破坏时间的测定方法 GB/T7155.1-1987热塑料塑料管材及管件密度的测定第1部分:聚乙管材及管件基准密度的测定 GB/T8804.2-1988热塑性塑料管材拉伸性能试验方法聚乙烯管材 GB/T8806-1988塑料管材尺寸测量方法 GB/T17219-1998生活饮用水输配水设备及防护材料的安全评价标准 3定义 3.1 超高分子量聚乙烯:粘均分子量在150万以上的线形结构聚乙烯称为“超高分子量聚乙烯”,为白色粉末状树脂。 3.2 标准尺寸比(SDR):管材的公称外径与公称壁厚的比值。SDR=dn/en

超高分子量聚乙烯的性能

超高分子量聚乙烯(UHMWPE)综合了所有塑料的优越性能,其耐冲击、耐磨损、耐化学腐蚀、自身润滑、吸收冲击能这五个特性是目前即存塑料中所具有的最高数值,这种新型塑料制品的杰出性能在欧美各国受到普遍重视。超高分子量聚乙烯树脂是由乙烯、丁二烯单体在催化剂的作用下聚合而成的粘均分子量大于150万~700万的热塑性工程塑料,被称为"神奇的塑料" 。 产品性能 1、机械性能 指标名称单位测试方法指标 密度g/cm3 ASTM1505 0.94 断裂强度MPa D638 42 断裂伸长率% D638 350 简支梁缺口冲击 Kj/m2 D256 ≥100强度 2.热性能: 指标名称单位测度方法指标 融点℃ASTMD2117 136 维卡软化点℃ASTMD1512 134 热膨帐系数10-4/℃ASTMD648 1.5 热变形温度 ℃ASTMD648 90 (4.6kg/cm2) 3.电性能: 指标名称单位测试方法指标 体积电阻系数欧姆.厘米ASTMD257 1017 表面电阻系数欧姆ASTMD257 1013 电介质强度千伏/毫米ASTMD149 900 介电系数106赫芝ASTMD150 2.3 4.耐寒性 高密度聚乙烯分子量超过50万时,脆化温度降至-140℃。超高分子量聚乙烯甚至可以在液氮或液氦下作用,其使用温度可达-269以下℃,仍有一定机械强度。 5. 耐磨性 超高分子量聚乙烯具有极佳的耐磨性,分子量越高,材料的耐磨性越好。 超高与其他材料磨耗对比参数 材料UHME-PE PTFE PA66 聚甲醛45#碳 不锈钢黄钢 钢 0.74 2.31 1.51 3.1 4.02 4.05 16.74 磨损率平 均值 注:耐磨耗性能试验条件: 沙/水=3/2(重要比) 选用16目~24目/时之间建筑用沙,试片转速800转/分,试片尽寸60mm×40mm×3mm,每个试片均磨7小时。 6.超高分子量聚乙稀磨损率比较

超高分子量聚乙烯管材企业标准

UHMW-PE 管材企业标准 、八 — 前言 本公司研制生产的产品超高分子量聚乙烯管材,目前尚无国家标准、行业标准和地方标准, 根据GB/T1.3-1997《标准化工作导则 产品标准编写规定》,编制了本产品标准,作为本企业组织 生产及经营活动的依据。 本标准由公司提出并起草。 本标准主要起草人: 本标准自发布之日起开始实施。 1 范围 本标准规定了用超高分子量聚乙烯树脂为主要原料,经挤出成型的超高分子量聚乙烯管材 (以下简称“管材” )的尺寸规格、技术要求、试验方法、检验规则、标志、包装、运输、贮存。 本标准适用于 超高分子量聚乙烯管材。 本标准规定的管材适用于固体颗粒、粉末的耐磨耗气力输送,浆体(固液混合物)的耐磨水 力输送以及各种流体、气体的输送。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示 版本均为有效。 所有标准都会被修订, 使用本标准的各方应探讨使用下列标准中最新版本可能性。 GB/T1043-1993 GB/T1634-1979 GB/T2918-1998 GB/T3960-1983 GB/T6111-1985 硬质塑料简支梁冲击试验方法 塑料弯曲负载热变形温度(简称热变形温度)试验方法 塑料试样状态调节和试验的标准环境 塑料滑动摩擦磨损试验方法 长期恒定 内压下热塑性塑料管材耐破坏时间的测定方法 GB/T7155.1-1987 热塑料塑料管材及管件密度的测定 的测定 GB/T8804.2-1988 热塑性塑料管材拉伸性能试验方法 GB/T8806-1988 塑料管材尺寸测量方法 GB/T17219-1998 生活饮用水输配水设备及防护材料的安全评价标准 3 定义 3.1 超高分子量聚乙烯:粘均分子量在 150 万以上的线形结构聚乙烯称为“超高分子量聚乙烯” 为白色粉末状 树脂。 3.2标准尺寸比(SDR :管材的公称外径与公称壁厚的比值。 SDR=dn/en 第 1 部分:聚乙管材及管件基准密度 聚乙烯管材

超高分子量聚乙烯

超高分子量聚乙烯 超高分子量聚乙烯英文名ultra-high molecular weight polyethylene(简称UHMWPE),是分子量100万以上的聚乙烯。分子式:—(—CH2-CH2—)—n—,密度:0.936~0.964g/cm3。 热变形温度(0.46MPa)85℃,熔点130~136℃。 超高分子量聚乙烯(UHMW-PE)是一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国AlliedChemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国于1964年最早研制成功并投入工业生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前产品分子量可达100万~400万以上。 超高分子量聚乙烯(UHMW-PE)的发展十分迅速,80年代以前,世界平均年增长率为8.5%,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。 超高分子量聚乙烯(UHMW-PE)平均分子量约35万~800万,因分子量高而具有其它塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,超高分子量聚乙烯(UHMW-PE)耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。 超高分子量聚乙烯(UHMW-PE)优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于超高分子量聚乙烯(UHMW-PE)优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节 由于超高分子量聚乙烯(UHMW-PE)熔融状态的粘度高达108Pa*s,流动性极差, 其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,超高分子 量聚乙烯(UHMW-PE)的加工技术得到了迅速发展,通过对普通加工设备的改造, 已使超高分子量聚乙烯(UHMW-PE)由最初的压制-烧结成型发展为挤出、吹塑和注 射成型以及其它特殊方法的成型。 一般加工技术 (1)压制烧结

超高分子量聚乙烯

超高分子量聚乙烯(UHMW-PE) 超高分子量聚乙烯(UHMW-PE)是一种新型的工程塑料,它几乎集中了各种塑料的优点:耐磨、耐冲击、不易粘附、自润滑、耐腐蚀,吸收冲击能、耐低温、卫生无毒、不易吸水等综合性能,事实上目前还没有一种单纯的高分子材料兼有如此众多的优异性能。 耐磨性:超高分子量聚乙烯的耐磨性在所有的塑料中首屈一指,磨损率比以耐磨著称的聚四氟乙烯还要小。下图是超高分子量聚乙烯与其它材料耐磨性比较,如此高的耐磨性以至于难以用一般的塑料磨耗实验法测试其耐磨程度,因而采用砂浆磨耗测试装置。 砂浆磨耗测试表 抗冲击性:超高分子量聚乙烯的抗冲击强度特别好,韧性高,在所有的塑料中名列前茅。无论是外力强冲击,还是内部压力波动,都难以使其开裂。 自润滑性:超高分子量聚乙烯的摩擦系数小(0.05-0.11),不易与其它物质亲和。有很高的自润滑性和不粘性,仅次于自润滑最好的聚四氟乙烯,因此在磨擦学领域被誉为成本性能非常理想的磨擦材料。

耐化学药品性:超高板材能耐各种酸,碱,盐及有机介质,在80℃的浓盐酸、75%的浓硫酸、20%的硝酸中性能稳定。在其它20℃和80℃的80种有机溶剂中浸渍30天,外表无任何反常现象,其它物理性能也几乎没有变化。 冲击能吸收性:超高分子量聚乙烯的冲击能吸收值在所有的塑料中最高,因而噪声阻尼性很好,具有优良的消音效果。 抗老化性:超高分子量聚乙烯的韧性大,它的耐低温性能非常优异,在-269℃低温下,仍具有一定的延展性,不会脆裂。热变形温度为85℃,使用温度可达90℃。性能稳定,抗老化性好,地面、地下埋没均可,50年不老化。 电性能:体积电阻大,达1017-18SL-CM,击穿电压达50KV/MM,介电常数为2.3。在较宽的温度及频率范围内,适宜用作电气工程的结构材料。 耐低温:超高分子量聚乙烯具有优异的耐低温性能,在液氦温度(-269℃)下仍具有延展性,在液氮中(-196℃)也能保持优异的冲击强度,不脆裂。在所有的塑料中超高分子量聚乙烯的耐低温性能是最优异的。 卫生无毒性:UHMW-PE卫生无毒。在食品加工工业,UHMW的自润滑性、易净化、低气味、味道传递性和耐沸水性得到利用。可用于接触食品和药物,可替代昂贵的不锈钢材料。

超高分子量聚乙烯综述

超高分子量聚乙烯纤维性能及应用 摘要:超高分子量聚乙烯纤维有着高取向度,高结晶度,强力、模量高,抗冲击,耐腐蚀,耐光照,耐挠曲,耐磨损等优点。它的密度比水小,介电性能好。超高分子量聚乙烯纤维的缺点是使用温度不高,耐氧化性能差,抗蠕变性能差,表面加工困难。正是超高分子量聚乙烯纤维自身所具有的这些特点,它在抗冲击防护、低温、耐压、海洋工程、渔业等领域有着广泛地使用。 关键词:超高分子量聚乙烯纤维性能应用 The Properties and Applications of Ultra- high Molecular Weight Polyethylene Fibre Abstract:Ultra-high molecular weight polyethylene (UHMWPE) fibre was high orientation degree,crystallinity,tensile strength and modulus,impact resistance,good corrosion resistance,light aging resistance,resistance to flexure,and wear resistance advantages etc.It had the small density than water,and good dielectric properties.The defect of UHMWPE fiber were that the used temperature was not high,oxidation resistance performance was poor,creep resistance was poor,and surfacing processing was difficult . Just UHMWPE fiber itself with these characteristics,it was widely used in the impact resistance,low temperature,pressure resistance,ocean engineering,fishery,etc.Key words:ultra-high molecular weight polyethylene(UHMWPE) fibre;properties; applications 一超高分子量聚乙烯纤维的性能 超高分子量聚乙烯纤维是自上个世纪80年代发展起来的一种高性能纤维,工业化生产采用凝胶纺丝超倍拉伸技术,是凝胶纺丝技术中的代表产品。一问世便以出色的性能受到市场的关注。20多年的发展过程中,生产技术不断改进,性能、产量均有长足的进步。现如今,该种纤维世界范围内生产能力超过1万吨/年,商业级顶级产品的强度能达到40cN/dtex。 超高分子聚乙烯纤维具有高取向度,高结晶度,微纤沿拉伸方向排列规整度高,使用电子显微镜还能够观察到“串晶”结构。这些结构赋予其良好的机械性能:沿纤维轴向方向,纤维具有很高的耐拉伸性,比强度,比模量都较高;即使在很低的温度下,该纤维仍能够保持柔软,有研究表明,即使在-150℃的条件下,纤维也无脆化点[1]。该纤维的缺点也很明显,

超高分子量聚乙烯市场分析报告优选稿

超高分子量聚乙烯市场 分析报告 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

超高分子量聚乙烯(U H M W P E)市场分析报告 1国外生产状况 国际市场上,超高分子量聚乙烯(UHMWPE)生产企业主要有德国的Ticona公司、巴西的Polialden公司、荷兰的DSM公司和日本三井化学公司等。其中,Ticona公司生产能力为11万吨/年(含在中国独资企业产能),Polialden为4.5万吨/年,DSM为1万吨/年,全球总生产能力超过20万吨/年。Ticona公司是全球最大的UHMWPE生产厂,约占全球50%市场份额,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,种类齐全,并覆盖全球市场。DSM公司的特长是能生产特殊牌号的UHMWPE树脂,如:超细料及纤维料等,并且以自用为主,产品基本不外销。巴西Polialden公司主要是接管了原美国MONTELL的经营业务,发展速度很快,能为用户稳定提供分子量在300万—600万的原料,主要用于生产板材和异型材,占据北美市场。 国外超高分子量聚乙烯的主要生产商见表1。 表1国外超高分子量聚乙烯的主要生产商及产品牌号

1.1德国Ticona公司 Ticona公司是德国化学品集团塞拉尼斯(CELANESE)的工程聚合物业务子公司,生产能力为11万吨/年,可以生产适用于板材、异型材、蓄电池隔板、纤维、过滤器材等各种规格、牌号的产品,注册商标为Hostalen。其主要产品牌号见表2。 表2Ticona公司主要产品牌号 1.2巴西Polialden公司

对超高分子量聚乙烯的开发与应用分析(精)

对超高分子量聚乙烯的开发与应用分析 关键词:超高分子量聚乙烯工程塑料 1 引言UHMWPE是 一种线型结构的具有优异综合性能的热塑性工程塑料。世界上最早由美国 Allied Chemical公司于1957年实现工业化,此后德国Hoechst公司、美国Hercules公司、日本三井石油化学公司等也投入工业化生产。我国上海高桥化工厂于1964年最早研制成功并投入工业生产,70年代后期又有广州塑料厂和 北京助剂二厂投入生产。限于当时条件,产物分子量约150万左右,随着工艺技术的进步,目前北京助剂二厂的产品分子量可达100万~300万以上。UHMWPE的发展十分迅速,80年代以前,世界平均年增长率为8.5%,进入80年代以后,增长率高达15%~20%。而我国的平均年增长率在30%以上。1978年世界消耗量为12,000~12,500吨,而到1990年世界需求量约5万吨,其中美国占70%。UHMWPE平均分子量约35万~800万,因分子量高而具有其它 塑料无可比拟的优异的耐冲击、耐磨损、自润滑性、耐化学腐蚀等性能。而且,UHMWPE耐低温性能优异,在-40℃时仍具有较高的冲击强度,甚至可在-269℃下使用。UHMWPE优异的物理机械性能使它广泛应用于机械、运输、纺织、造纸、矿业、农业、化工及体育运动器械等领域,其中以大型包装容器和管道的应用最为广泛。另外,由于UHMWPE优异的生理惰性,已作为心脏瓣膜、矫形外科零件、人工关节等在临床医学上使用。 2 UHMWPE的成型加工 由于UHMWPE熔融状态的粘度高达108Pa*s,流动性极差,其熔体指数几乎为零,所以很难用一般的机械加工方法进行加工。近年来,UHMWPE的加工技术得到了迅速发展,通过对普通加工设备的改造,已使UHMWPE由最初的压制-烧结成型发展为挤出、吹塑和注射成型以及其它特殊方法的成型。 2.1 一般加工技术(1)压制烧结压制烧结是UHMWPE最原始的加工方法。此法生产效率颇低,易发生氧化和降解。为了提高生产效率,可采用直接电加热法〔1〕;另外,Werner和Pfleiderer公司开发了一种超高速熔结加工法 〔2〕,采用叶片式混合机,叶片旋转的最大速度可达150m/s,使物料仅在几 秒内就可升至加工温度。(2)挤出成型挤出成型设备主要有柱塞挤出机、单螺杆挤出机和双螺杆挤出机。双螺杆挤出多采用同向旋转双螺杆挤出机。60年代大都采用柱塞式挤出机,70年代中期,日、美、西德等先后开发了单螺杆挤出工艺。日本三井石油化学公司最早于1974年取得了圆棒挤出技术的成功。北京化工大学于1994年底研制出Φ45型UHMWPE专用单螺杆挤出机,并于1997年取得了Φ65型单螺杆挤出管材工业化生产线的成功。(3)注塑成型日本三井石油化工公司于1974年开发了注塑成型工艺,并于1976年实现了商业化,之后又开发了往复式螺杆注塑成型技术。1985年美国Hoechst公司也实现了UHMWPE的螺杆注塑成型工艺。北京塑料研究所1983年 对国产XS-ZY-125A型注射机进行了改造,成功地注射出啤酒罐装生产线用UHMWPE托轮、水泵用轴套,1985年又成功地注射出医用人工关节等。(4)吹塑成型UHMWPE加工时,当物料从口模挤出后,因弹性恢复而产生一定 的回缩,并且几乎不发生下垂现象,故为中空容器,特别是大型容器,如油箱、大桶的吹塑创造了有利的条件。UHMWPE吹塑成型还可导致纵横方向强度均衡的高性能薄膜,从而解决了HDPE薄膜长期以来存在的纵横方向强度不一致,容易造成纵向破坏的问题。 2.2 特殊加工技术 2.2.1 冻胶纺丝以冻胶纺丝—超拉伸技术制备高强度、高模量聚乙烯纤维是70年代末出现的一种

超高分子量聚乙烯加工技术详解

超高分子量聚乙烯加工技术 超高分子量聚乙烯安阳超高工业技术有限责任公司 摘要:超高分子量聚乙烯英文简称UHMW-PE,它是一种来源丰富、价格适中、 性能优异的一类热塑性工程塑料,由于具有耐冲击性、耐腐蚀、耐磨损、自润滑性、无毒性及极优良的耐低温性等优点,被应用在许多领域。“性能卓越,加工困难”是UHMW-PE的一大特点,其原因就在于UHMW-PE的分子链极长,致使分子链互相缠结,很难呈规则排列,在引起聚集态变化的同时(如:结晶度偏低-65%~85%,密度偏低~m3),大分子链间的无规缠结又使UHMW-PE对热运动反应迟缓,当加热到熔点以上时,熔体呈现橡胶状高粘弹体状,熔体粘度高达,熔体流动速率几乎为零,造成UHMW-PE临界剪切速率很低,易产生熔体破裂等缺陷。因此,很难用常规的聚合物加工方法来成型UHMW-PE制品,在一段时间内限制了UHMW-PE的推广使用,故研究UHMW-PE的成型加工显得尤为重要。常用的成型方法有模压成型法(1965年前后)、挤出成型法(1970年前后)和注塑成型法(1975年前后)3种。本论文首先简要介绍一下UHMW-PE的性能及成型方法,然后分别对它的单螺杆挤出成型工艺和双螺杆挤出成型工艺做详细介绍。 关键词:性能;加工性能;成型方法;单螺杆挤出成型法;双螺杆挤出成型法1 UHMW-PE概述 UHMW-PE的发展简史 超高分子量聚乙烯通常是指相对分子质量在150万以上的线型聚乙烯,其英文全称为Ultra High Molecular Weight Polyethylene,简称UHMW-PE。UHMW-PE 在分子结构上与普通聚乙烯相同,其主链上的链节都是(-CH 2-CH 2 -),但普通聚乙 烯的分子量较低,约在5-30万之间,即使是高分子量高密度聚乙烯(HMWHPE),其重均分子量也仅为20-50万,而UHMW-PE的分子量高达巧于600万,德国甚至有分子量高达1000万以上的产品。 UHMW-PE是一种来源丰富、价格适中、性能优异的一类热塑性工程塑料,其耐冲击性、耐腐蚀、耐磨损、自润滑性、无毒性及极优良的耐低温性等优点,使该材料广泛应用于通用机械、化工机械、食品和造纸等领域,作为易磨损、易腐蚀、高冲击、低温及不能使用润滑油的各种零部件及料仓衬里、溜槽、滑道衬板、滑轨、油箱等。UHMW-PE材料的使用寿命不仅高于尼龙和聚四氛乙烯制品,且耐磨性远远超过不锈钢等金属制品。由于UHMW-PE具有优良的综合性能,在国外被称为“惊异的塑料”[1]。 UHMW-PE首先由西德Hoechest公司于1958年开发成功,其后美国Hercules 公司及日本三井油化相继较大规模地工业化生产,北京助剂二厂是国内UHMW-PE 的主要厂家。长期以来,UHMW-PE由于加工困难,致使UHMW-PE材料的推广应用受到一定限制。近年来由于加工技术的不断进步和发展,其应用领域也随之扩大。目前UHMW-PE制品的加工仍以压制烧结和柱塞法为主。七十年代中期以来,日本先后开发了单螺杆挤出和往复螺杆注射成型工艺,美国和西德也相继采用单螺杆挤出和注射成型法加工UHMW-PE制品。 UHMW-PE的合成方法

相关文档
最新文档