k-均值聚类

k-均值聚类
k-均值聚类

K-均值聚类算法

摘要关于对生活中各种各样的数据的聚类分类问题己经成为众多学者的研究热题之一。聚类方法有很多种,其中最简单的形式便是划分式聚类,划分式聚类试图将给定的数据集合分割成不相交的子集,使具体的聚类准则是最优的。一种最流行的基于最小聚类误差平法和的聚类方法是K-均值算法。然而,K-均值算法是一个局部搜索的算法,它存在一些严重的不足,比如K值需要预先确定、聚类结果的好坏依赖于初始点的选取。本文对聚类进行了简单的介绍,并对K-均值算法进行了研究分析。

关键词数据挖掘;聚类分析;K-均值聚类算法

1.引言

在因特网无处不在的今天,人们所面临的形形色色的数据量呈急速增长状态。然而,在数据如此海量的同时,人们却缺乏对这些数据中所隐含的信息或知识的充分理解。在这种需求情况下,数据挖掘技术应运而生。

聚类分析作为数据挖掘在实际应用中的主要任务之一,是数据挖掘中一个很活跃的研究领域,与其他学科的研究方向具有很好的的交叉性。在识别数据内部结构方面具有极其重要的作用。

K-均值聚类算法是聚类分析中的一种基本划分式方法。由于其算法简便易懂,且在计算速度上具有无可比拟的优势,通常被作为大样本聚类分析的首选方案。

2.数据挖掘中聚类分析算法的相关介绍

聚类分析是多元统计分析方法中的一种,是非监督模式识别的一个重要分支。所谓聚类就是按照事物的某些属性,把事物聚集成簇,使簇内的对象之间具有较高的相似性,而不同簇的对象之间的相似程度较差。聚类是一个无监督的学习过程,它同分类的根本区别在于:分类是需要事先知道所依据对象的类别特征,而聚类是要找到这个对象的类别特征,因此,在很多应用中,聚类分析作为一种数据预处理过程,是进一步分析和处理数据的基础。

2.1 关于聚类分析的概述

聚类问题是普遍存在于众多领域的基本问题,如模式识别、图像处理、机器学习和统计学等。聚类的基本形式定义为在已给的数据集合中寻找数据点集的同类集合。每一个集合叫做一个类,并确定了一个区域,在区域中对象的密度高于其他区域中的密度。其他区域中的密度。

Everitt在1974年给出的定义:

聚类就是“将数据分成许多类簇,其中一个类簇内的实体是相似的,不同类簇的实体是不相似的;一个类簇是测试空间中点的会聚,同一类簇的任意两个点间的距离小于不同类簇的任意两个点间的距离;类簇可以描述为一个包含密度相对较高的点集的多维空间中的连通区域,它们借助包含密度相对较低的点集的区域与其他区域(类簇)相分离。”

2.2 聚类分析中的数据类型

在这里,给出聚类分析中常用的数据结构,假设我们要进行聚类的实体集合共包含n 个实体,每个实体有p 个属性,大多数的聚类算法在内存中都采用以下两种数据结构网:

(1)数据矩阵

数据矩阵即实体一属性的结构,我们用矩阵中的行来表示每一个实体,列来表示某种属性,则n 个实体,p 个属性的集合可以用一个n ×p 维的矩阵来表示,第i 个实体的第j 个属性在矩阵中表示为ij x ,数据矩阵如下:

1112122212ij p p n n np x x x x x x x x x ????????????

(2)相异度矩阵

相异度矩阵用来存储的是实体之间的差异性,n 个实体的相异度矩阵表示为n ×n 维的矩阵,用d (A ,B )来表示实体A 与实体B 的相异性,一般来讲,是一种量化的表示方式,则含有n 个实体的集合X={}12,,n x x x 的相异度矩阵表示如下:

213132120(,)0(,)(,)0(,)(,)0n n d x x d x x d x x d x x d x x ????????????????

在这里,(,)i j d x x 为某种相似性度量函数,一般情况下为非负值。

2.3聚类算法的分类

现有的聚类算法中,没有任何一种算法可以普遍适用于揭示各式各样的数据集合的数据结构,目前存在众多的聚类算法,一般情况下我们根据所要进行聚类数据的数据类型、聚类的目的及其应用,可以选择不同的聚类算法。目前存在的聚类分析算法大致上可分为层次聚类算法、划分式聚类算法、基于密度的聚类算法、基于网格的聚类算法、基于模型的聚类算法等,另外,根据类簇间的重叠程度可分为硬性聚类和模糊聚类。

3.K-均值聚类算法的研究与分析

3.1 K-均值聚类算法的基本思想

一九六七年,麦克奎因提出了K-均值聚类算法,用来处理数据聚类的问题,该种算法由于其算法简便,又很早提出,因此在科学和工业领域的应用中影响力极为广泛。该算法解决的是将含有n 个数据点(实体)的集合X={}12,,n x x x 划分为k 个类簇j C 的问题,j=1,

2,…,k ,算法首先随机选取k 个数据点作为k 个类簇的初始簇中心,集合中每个数据点被划分到与其距离最近的簇中心所在的类簇之中,形成了k 个聚类的初始分布。对分配完的每一个类簇计算新的簇中心,然后继续进行数据分配过程,这样迭代若干次后,若簇中心不再发生变化,则说明数据对象全部分配到自己所在的类簇中,聚类准则函数收敛,否则继续进行迭代过程,直至收敛。这里的聚类准则函数一般采用聚类误差平方和准则函数。本算法的一个特点就是在每一次的迭代过程中都要对全体数据点的分配进行调整,然后重新计算簇中心,进入下一次的迭代过程,若在某一次迭代过程中,所有数据点的位置没有变化,相应的簇中心也没有变化,此时标志着聚类准则函数已经收敛,算法结束。

3.2 K-均值聚类算法的算法流程

原始的K-均值聚类算法:

输入:数据集X={}12,,n x x x ,聚类数目k;

输出:k 个类簇j C ,j=1,2,…,k ,

[stepl]令I=1,随机选取k 个数据点作为k 个类簇的初始簇中心,j m (I),j=1,2,…,k;

[step2]计算每一个数据点与这k 个簇中心的距离(,())i j d x m I ,i=1,2,…,n ,j=1,2,…,k ,如果满足

{}(,())min (,()),1,2,i j i j d x m I d x m I j k ==

则i j x C ∈;

[step3]计算k 个新的聚类中心

1

1(1),1,2,j

i j N j i i j x C m I x j k N =∈+==∑ [step4]判断:若(1)(),1,2,j j m I m I j k +≠= ,则I=I+1,返回step2;否则,算法结束。 K-均值聚类算法在执行过程中还可以加入聚类准则函数来终止迭代过程,一般采用聚类误差平方和准则函数,即在上面算法流程中的step4中计算聚类误差平方和J ,然后加入判断,若两次的J 值没有明显变化,则说明J 值已经收敛,结束算法,否则转入step2继续执行。

具体流程如下:

[Stepl][初始化]随机指定k 个聚类中心()12,,k m m m ;

[Step2][分配i x ]对每一个样本i x ,找到离它最近的聚类中心,并将其分配到该类;

[SteP3][修正簇中心]重新计算各簇中心11,1,2,i N i ij j i

m x i k N ===∑ ; [Step4][计算偏差] 2

11i n k ij i i j J x m ===-∑∑; [Step5][收敛判断]如果J 值收敛,则return 12(,,,)k m m m ,算法终止;否则,转Step2。

从上面的算法思想及流程中可以看出,k 个类簇的初始簇中心点的选取对聚类的最终结果至关重要,算法中,每一次迭代都把数据点划分到与其距离最近的簇中心所在的类簇中去,然后重新计算簇中心,进而反复迭代,直到每一个数据点都不再重新划分为止。

3.3 K-均值算法的优缺点分析

K-均值算法是一种基于划分的聚类算法,它通过不断的迭代过程来进行聚类,当算法收敛到一个结束条件时就终止迭代过程,输出聚类结果。由于其算法思想简便,又容易实现,因此K 一均值算法己成为一种目前最常用的聚类算法之一。然而K-means 过分依赖于初始中心点的选取,且容易受噪音点的影响。为解决这一问题,出现了各种基于全局最优化思想的K 一均值聚类方法,比如模拟退火算法、遗传算法等。然而这些技术并没有得到广泛认可,在许多实际应用中还是反复利用K-均值聚类算法来解决问题。

K-均值聚类算法采用迭代式的过程对样本点进行分配来寻求最终的聚类结果,其终止条件是所有样本的位置不再变化,其迭代过程可以概括如下:(l)分配样本点,即对每个样本点,将其分配到与其距离最近的簇中心所在的类簇中;(2)重新计算簇中心,对于每一个重新分配后的类簇,重新计算其簇中心。

和大多数的聚类算法一样,K-均值聚类算法也有其自身的局限,主要局限如下:

(1)K-均值聚类算法中的聚类数目即K 值需要由用户预先给出。从K-均值聚类算法的算法流程中可以看出,K 值作为一个需要预先确定的参数,在已知的前提下才能执行K-均值聚类算法,而在实际应用中,需要聚类的数据究竟要分成多少个类别,往往不是被用户所知的。当聚类数目不被人所知的情况下,人们往往需要结合其它算法来获取聚类数目,即K 值。往往获取K 值的代价要比K-均值聚类算法的代价大得多,因此K 值的不确定性是K-均值聚类算法的一个很大的不足之处。

(2)K-均值聚类算法严重依赖于初始簇中心点的选取。K-均值聚类算法随机的选取K 个初始簇中心点,并针对这K 个簇中心点进行迭代运算,即重新分配数据点和重新计算簇中心的运算,直到所有的数据点位置不再变化或聚类误差准则函数不再变化。这样就导致了K-均值聚类算法对初始簇中心点的严重依赖性。初始簇中心点选取不当很容易造成聚类结果陷入局部最优解甚至或导致错误的聚类结果。

(3)K-均值聚类算法的聚类结果容易受噪音点数据的影响。在K-均值聚类算法中,每次对于簇中心的重新计算,都是通过对每一个类簇中所有数据点求均值,这样,当数据集中存

在噪音点数据时,均值点的计算将导致聚类中心(即簇中心)偏离数据真正密集的区域,而趋向噪音点数据歹这样导致聚类结果的不准确。因此,当数据集中存在远离所有数据点的噪音点时,聚类结果将很大程度上受这些噪音点的影响,导致聚类结果的错误,所以K-均值聚类算法对噪声点和孤立点非常敏感。

(4)K-均值聚类算法无法发现任意形状的簇。K-均值聚类算法采用距离函数作为度量数据点间相似度的方法,这里的距离函数多采用欧氏距离,同时采用聚类误差平方和准则函数作为聚类准则函数,对于基于欧式距离的聚类算法而言,其只能发现数据点分布较均匀的类球状簇,对于聚类误差平方和准则函数而言,当类簇大小差别较大,形状较不规则时,容易造成对较大的类簇进行分割来达到目标函数取极小值的目的,因此容易造成错误的聚类结果。

(5)K-均值聚类算法不适用于大数据量的聚类问题。K-均值聚类算法每次迭代过程都要调整簇中心及重新分配数据点,因此,当数据量比较大的时候,这些迭代过程的计算量是相当大的,算法的时间开销也是巨大的,因此,由于需要大量的计算时间,因此K-均值聚类算法在待聚类数据量较大的时候并不适用。

4.总结及展望

本文简单介绍了数据挖掘中的聚类。聚类分析是数据挖掘领域的研究热点之一,主要用于发现数据之间的分布信息及内在结构,聚类分析既可以作为一个独立的分析数据的技术,又可以为其他数据挖掘算法完成数据预处理的步骤。因此,聚类分析是一项在实际应用中十分重要的研究课题。

还介绍了K-均值算法的一些研究分析。K-均值聚类算法是聚类分析算法中一种最常用的聚类方法之一。由于其算法思想简单,利用反复迭代的技术来得到最佳聚类中心,要注意,这里的“最佳”聚类中心往往只是局部最优解,K-均值聚类算法常常会陷入局部最优解而结束算法的迭代过程。

经典的K-均值聚类算法有需要改进之处,比如算法的伸缩性、算法如何能识别任意形状的簇,算法对于初始点的敏感性等等。在以后的工作中可以详细分析目前现有的改进算法加以研究,提取每种算法的创新之处。其次,在确定K值的问题上,还可以结合许多其它方法,来达到实现K值的目的,再应用K-均值聚类算法进行聚类。最后,可以尝试把算法应用到具体的实际问题中,扩展应用领域,来检验算法的可行性。

实验三 K-均值聚类算法实验报告

实验三 K-Means聚类算法 一、实验目的 1) 加深对非监督学习的理解和认识 2) 掌握动态聚类方法K-Means 算法的设计方法 二、实验环境 1) 具有相关编程软件的PC机 三、实验原理 1) 非监督学习的理论基础 2) 动态聚类分析的思想和理论依据 3) 聚类算法的评价指标 四、算法思想 K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。 实验代码 function km(k,A)%函数名里不要出现“-” warning off [n,p]=size(A);%输入数据有n个样本,p个属性 cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性 %A(:,p+1)=100; A(:,p+1)=0; for i=1:k %cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心 m=i*floor(n/k)-floor(rand(1,1)*(n/k)) cid(i,:)=A(m,:); cid; end Asum=0; Csum2=NaN; flags=1; times=1; while flags flags=0; times=times+1; %计算每个向量到聚类中心的欧氏距离 for i=1:n

for j=1:k dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离 end %A(i,p+1)=min(dist(i,:));%与中心的最小距离 [x,y]=find(dist(i,:)==min(dist(i,:))); [c,d]=size(find(y==A(i,p+1))); if c==0 %说明聚类中心变了 flags=flags+1; A(i,p+1)=y(1,1); else continue; end end i flags for j=1:k Asum=0; [r,c]=find(A(:,p+1)==j); cid(j,:)=mean(A(r,:),1); for m=1:length(r) Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); end Csum(1,j)=Asum; end sum(Csum(1,:)) %if sum(Csum(1,:))>Csum2 % break; %end Csum2=sum(Csum(1,:)); Csum; cid; %得到新的聚类中心 end times display('A矩阵,最后一列是所属类别'); A for j=1:k [a,b]=size(find(A(:,p+1)==j)); numK(j)=a; end numK times xlswrite('data.xls',A);

K均值聚类算法优缺点

J.B.MacQueen 在 1967 年提出的K-means算法[22]到目前为止用于科学和工业应用的诸多聚类算法中一种极有影响的技术。它是聚类方法中一个基本的划分方法,常常采用误差平方和准则函数作为聚类准则函数,误差平方和准则函数定义为: (3-1)其中,是类中数据对象的均值,即,(j=1,2,…,n),是K个聚类中心,分别代表K个类。 K-means算法的工作原理:算法首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数已经收敛。本算法的一个特点是在每次迭代中都要考察每个样本的分类是否正确。若不正确,就要调整,在全部样本调整完后,再修改聚类中心,进入下一次迭代。如果在一次迭代算法中,所有的样本被正确分类,则不会有调整,聚类中心也不会有任何变化,这标志着已经收敛,因此算法结束。 算法描述如下: 算法:K-means。划分的 K-means 算法基于类中对象的平均值。 输入:类的数目K和包含N个对象的数据库。 方法: ① 对于数据对象集,任意选取K个对象作为初始的类中心; ② 根据类中对象的平均值,将每个对象重新赋给最相似的类; ③ 更新类的平均值,即计算每个类中对象的平均值; ④ Repeat ②③; ⑤ 直到不再发生变化。 其中,初始聚类中心的选择对聚类结果的影响是很大的,如图3.1,图a是三个类的实际分布,图b是选取了好的初始聚类中心(+字标记的数据对象)得到的结果。图c是选取不好的初始聚类中心得到的结果,从中可以看到,选择初始聚类中心是很关键的。 a b c

K 均值聚类算法(原理加程序代码)

K-均值聚类算法 1.初始化:选择c 个代表点,...,,321c p p p p 2.建立c 个空间聚类表:C K K K ...,21 3.按照最小距离法则逐个对样本X 进行分类: ),(),,(min arg J i i K x add p x j ?= 4.计算J 及用各聚类列表计算聚类均值,并用来作为各聚类新的代表点(更新代表点) 5.若J 不变或代表点未发生变化,则停止。否则转2. 6.),(1∑∑=∈=c i K x i i p x J δ 具体代码如下: clear all clc x=[0 1 0 1 2 1 2 3 6 7 8 6 7 8 9 7 8 9 8 9;0 0 1 1 1 2 2 2 6 6 6 7 7 7 7 8 8 8 9 9]; figure(1) plot(x(1,:),x(2,:),'r*') %%第一步选取聚类中心,即令K=2 Z1=[x(1,1);x(2,1)]; Z2=[x(1,2);x(2,2)]; R1=[]; R2=[]; t=1; K=1;%记录迭代的次数 dif1=inf; dif2=inf; %%第二步计算各点与聚类中心的距离 while (dif1>eps&dif2>eps) for i=1:20 dist1=sqrt((x(1,i)-Z1(1)).^2+(x(2,i)-Z1(2)).^2); dist2=sqrt((x(1,i)-Z2(1)).^2+(x(2,i)-Z2(2)).^2); temp=[x(1,i),x(2,i)]'; if dist1

K-均值聚类分析

1案例题目: 选取一组点(三维或二维),在空间内绘制出来,之后根据K均值聚类,把这组点分为n类。 此例中选取的三维空间内的点由均值分别为(0,0,0),(4,4,4),(-4,4,-4), 协方差分别为 300 030 003 ?? ?? ?? ?? ?? , 000 030 003 ?? ?? ?? ?? ?? , 300 030 003 ?? ?? ?? ?? ?? 的150个由mvnrnd函数随机 生成。 2原理运用与解析: 2.1聚类分析的基本思想 聚类分析是根据“物以类聚”的道理,对样本或指标进行分类的一种多元统计分析方法,它们讨论的对象是大量的样本,要求能合理地按各自的特性进行合理的分类。对于所选定的属性或特征,每组内的模式都是相似的,而与其他组的模式差别大。一类主要方法是根据各个待分类模式的属性或特征相似程度进行分类,相似的归为一类,由此将待分类的模式集分成若干个互不重叠的子集,另一类主要方法是定义适当的准则函数运用有关的数学工具进行分类。由于在分类中不需要用训练样本进行学习和训练,故此类方法称为无监督分类。 聚类的目的是使得不同类别的个体之间的差别尽可能的大,而同类别的个体之间的差别尽可能的小。聚类又被称为非监督分类,因为和分类学习相比,分类学习的对象或例子有类别标记,而要聚类的例子没有标记,需要由聚类分析算法来自动确定,即把所有样本作为未知样本进行聚类。因此,分类问题和聚类问题根本不同点为:在分类问题中,知道训练样本例的分类属性值,而在聚类问题中,需要在训练样例中找到这个分类属性值。 聚类分析的基本思想是认为研究的样本或变量之间存在着程度不同的相似性(亲疏关系)。研究样本或变量的亲疏程度的数量指标有两种:一种叫相似系数,性质越接近的样本或变量,它们的相似系数越接近1或-1,而彼此无关的变量或样本它们的相似系数越接近0,相似的为一类,不相似的为不同类。另一种叫距离,它是将每一个样本看做p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。 2.2动态聚类法思想

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

K-均值聚类法实例解析

例: 为了更深入了解我国环境的污染程度状况,现利用2009 年数据对全国31个省、自治区、直辖市进行聚类分析。 解:现在要分析我国各个地区的环境污染程度,案例中选择了各地区“工业废气排放总量”、“工业废水排放总量”和“二氧化硫排放总量”三个指标来反映不同污染程度的环境状况,同时选择了北京等省市的数据加以研究。这个问题属于典型的多元分析问题,需要利用多个指标来分析各省市之间环境污染程度的差异。因此,可以考虑利用快速聚类分析来研究各省市之间的差异性,具体操作步骤如下。 1)打随书光盘中的数据文件9-2.sav,选择菜单栏中的【A nalyze(分析)】→【Classify(分 类)】→【K-Means Cluster(K均值聚类)】命令,弹出【K-Means Cluster Analysis(K均值聚类分析)】对话框。 2)在左侧的候选变量列表框中将X1、X2和X3变量设定为聚类分析变量,将其添加至 【Variables(变量)】列表框中;同时选择Y作为标识变量,将其移入【Label Cases by (个案标记依据)】列表框中。 3)在【Number of Clusters(聚类数)】文本框中输入数值“3”,表示将样品利用聚类分析 分为三类,如下图所示。 4)单击【Save(保存)】按钮,弹出【K-Means Cluster Analysis:Save(K均值聚类分析: 保存)】对话框;勾选【Cluster membership(聚类新成员)】和【Distanc e from cluster center (与聚类中心的距离)】复选框,表示输出样品的聚类类别及距离,其他选项保持系统默认设置,如下图所示,单击【Continue(继续)】按钮返回主对话框。

基于Matlab环境下的K均值聚类算法

基于Matlab环境下的K均值聚类算法 摘要:为了将模式识别方法与图像处理技术相结合,掌握利用均值聚类算法进行图行处理,往往能得到比较好的处理结果,本文在matlab环境下,对有效图像点进行K均值聚类算法,与传统K近邻聚类方法比照,得出了比较好的实验效果。 关键词:K均值聚类算法matlab 图像 引言 k-means算法,也被称为k-平均或k-均值,是一种得到最广泛使用的聚类算法。它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点,算法的主要思想是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准则函数达到最优,从而使生成的每个聚类内紧凑,类间独立。 1、K-均值聚类的分析 K-均值聚类的目的是将数据拆成K个不同的群组,该算法的特点是运算结果受到所选择的聚类中心数目、初始位置、模式样本的几何性质以及读入次序的影响。 具体的算法如下: 1、在n维空间中随机生成K个中心点 2、将每个数据项分配给与其距离最近的中心点。 3、将中心点位置移动到所有分配给它的数据项的中心。如果中心点位置没有改变,则结束算法,否则回到第二步。 2、K均值聚类算法与K近邻算法的区别 K近邻算法的基本思想是是使体积为数据的函数,而不是样本N的函数。K-最近邻也是一种用来进行预测的算法。它的工作原理是接受一个用以进行数值预测的新数据项,然后将它与一组已经赋过值的数据项进行比较。算法会从中找出与待预测数据最为接近的K项,并且这K项其求均值以得到最终的结果。优点:能利用复杂函数进行数值预测,又简单易懂,并且我们可以很容易在算法中实现查看用哪些近邻进行预测。缺点:每次进行预测,它都会使用所有的样本,这会导致效率的低下。因此,寻找缩放因子是一种很乏味的事情。 3、K均值聚类法分为如下几个步骤

k-均值聚类

K-均值聚类算法 摘要关于对生活中各种各样的数据的聚类分类问题己经成为众多学者的研究热题之一。聚类方法有很多种,其中最简单的形式便是划分式聚类,划分式聚类试图将给定的数据集合分割成不相交的子集,使具体的聚类准则是最优的。一种最流行的基于最小聚类误差平法和的聚类方法是K-均值算法。然而,K-均值算法是一个局部搜索的算法,它存在一些严重的不足,比如K值需要预先确定、聚类结果的好坏依赖于初始点的选取。本文对聚类进行了简单的介绍,并对K-均值算法进行了研究分析。 关键词数据挖掘;聚类分析;K-均值聚类算法 1.引言 在因特网无处不在的今天,人们所面临的形形色色的数据量呈急速增长状态。然而,在数据如此海量的同时,人们却缺乏对这些数据中所隐含的信息或知识的充分理解。在这种需求情况下,数据挖掘技术应运而生。 聚类分析作为数据挖掘在实际应用中的主要任务之一,是数据挖掘中一个很活跃的研究领域,与其他学科的研究方向具有很好的的交叉性。在识别数据内部结构方面具有极其重要的作用。 K-均值聚类算法是聚类分析中的一种基本划分式方法。由于其算法简便易懂,且在计算速度上具有无可比拟的优势,通常被作为大样本聚类分析的首选方案。 2.数据挖掘中聚类分析算法的相关介绍 聚类分析是多元统计分析方法中的一种,是非监督模式识别的一个重要分支。所谓聚类就是按照事物的某些属性,把事物聚集成簇,使簇内的对象之间具有较高的相似性,而不同簇的对象之间的相似程度较差。聚类是一个无监督的学习过程,它同分类的根本区别在于:分类是需要事先知道所依据对象的类别特征,而聚类是要找到这个对象的类别特征,因此,在很多应用中,聚类分析作为一种数据预处理过程,是进一步分析和处理数据的基础。 2.1 关于聚类分析的概述 聚类问题是普遍存在于众多领域的基本问题,如模式识别、图像处理、机器学习和统计学等。聚类的基本形式定义为在已给的数据集合中寻找数据点集的同类集合。每一个集合叫做一个类,并确定了一个区域,在区域中对象的密度高于其他区域中的密度。其他区域中的密度。 Everitt在1974年给出的定义: 聚类就是“将数据分成许多类簇,其中一个类簇内的实体是相似的,不同类簇的实体是不相似的;一个类簇是测试空间中点的会聚,同一类簇的任意两个点间的距离小于不同类簇的任意两个点间的距离;类簇可以描述为一个包含密度相对较高的点集的多维空间中的连通区域,它们借助包含密度相对较低的点集的区域与其他区域(类簇)相分离。” 2.2 聚类分析中的数据类型

K-means聚类算法基本思想讲解学习

K-m e a n s聚类算法基 本思想

精品文档 K-means聚类算法基本思想 聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。K-means也是聚类算法中最简单的一种。以星团划分为例,,首先随机选取k个宇宙中的点(或者k个星星)作为k 个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为 ,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的 星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。 K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。 聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。 聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。 在聚类问题中,给我们的训练样本是,每个,没有了y。 K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下: 1、随机选取k个聚类质心点(cluster centroids)为。 2、重复下面过程直到收敛 { 对于每一个样例i,计算其应该属于的类 对于每一个类j,重新计算该类的质心 } K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。质心 代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距 离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。 下图展示了对n个样本点进行K-means聚类的效果,这里k取2。 收集于网络,如有侵权请联系管理员删除

k均值课程设计报告

模式识别课程设计报告 姓名:陈继智 学号: 20091002205 班级序号: 191094 01 指导老师:蒋良孝 时间: 2012年4月

K均值聚类(k-means)优化 ——基于遗传算法 一、K均值聚类的算法和遗传算法的概述 1、K均值聚类(k-means)就是将对物理或抽象对象的集合分组成为由类似的对象组成的多个簇的过程。聚类分析是指事先不知样本的类别,而利用样本的先验知识来构造分类器(无监督学习),可以用两个准则来做(1)聚类准则函数,(2)误差平方和准则(最常用的)。 2、遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种自适应全局优化搜索算法。生物的进化过程主要是通过染色体之间的交叉和变异来完成的,与此相对应,遗传算法中最优解的搜索过程也模仿了生物的进化过程,使用遗传操作数作用于群体进行遗传操作,从而得到新一代群体,其本质是一种求解问题的高效并行全局搜索算法。它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程,从而得到最优解或准最优解。算法以适应度函数为依据,通过对群体个体施加遗传操作实现群体内个体结构重组的迭代处理。在这一过程中,群体个体一代代地优化并逐渐逼近最优解。鉴于遗传算法的全局优化性,本文给出了一种基于遗传算法的K均值聚类算法来克服K均值算法的局部性。二、K均值算法的基本思想 K均值算法是一种使用最广泛的聚类算法。算法以K为参数,把n个对象分为K个簇,使簇内具有较高的相似度,而簇间相似度较低。算法首先随机选择K个对象,每个对象初始地代表了一个簇的平均值或中心,对剩余的每个对象根据其与各个簇中心的距离,将它赋给最近的簇,然后重新计算每个簇的平均值,不断重复该过程,直到准则函数收敛。准则函数如下: 其中,ix为簇C的平均值。i K均值算法的描述如下: (1)任意选择K个记录作为初始的聚类中心。 (2)计算每个记录与K个聚类中心的距离,并将距离最近的聚类作为该点所属的类。 (3)计算每个聚集的质心(聚集点的均值)以及每个对象与这些中心对象的距离,并根据最小距离重新对相应的对象进行划分。重复该步骤,直到式(1)不再明显地发生变化。 三、基于遗传算法的K均值聚类算法 本文将遗传算法应用到聚类分析中,把遗传算法的全局优化能力与聚类分析的局部优化能力相结合来克服聚类算法的局部性,在种群进化过程中,引入K均值操作,同时,为了避

K均值聚类算法

k均值算法是模式识别的聚分类问题,这是用C#实现其算法 以下是程序源代码: using System; using System.Drawing; using System.Collections; using https://www.360docs.net/doc/8915520477.html,ponentModel; using System.Windows.Forms; using System.Data; namespace KMean_win { /// /// Form1 的摘要说明。 /// public class Form1 : System.Windows.Forms.Form { /// /// 必需的设计器变量。 /// private https://www.360docs.net/doc/8915520477.html,ponentModel.Container components = null; private static int k = 2; //类数,此例题为2类 private static int total = 20; //点个数 private int test = 0; private PointF[] unknown = new PointF[total]; //点数组 private int[] type = new int[total]; //每个点暂时的类 public PointF[] z = new PointF[k]; //保存新的聚类中心 public PointF[] z0 = new PointF[k]; //保存上一次的聚类中心private PointF sum; private int temp = 0; private System.Windows.Forms.TextBox textBox1; private int l = 0; //迭代次数 //构造函数,初始化 public Form1() { unknown[0]=new Point(0,0); unknown[1]=new Point(1,0); unknown[2]=new Point(0,1); unknown[3]=new Point(1,1); unknown[4]=new Point(2,1); unknown[5]=new Point(1,2); unknown[6]=new Point(2,2); unknown[7]=new Point(3,2); unknown[8]=new Point(6,6); unknown[9]=new Point(7,6); unknown[10]=new Point(8,6);

K-Means聚类算法及实现代码

K-Means算法 k-means 算法接受参数k ;然后将事先输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 假设要把样本集分为c个类别,算法描述如下: (1)适当选择c个类的初始中心; (2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类; (3)利用均值等方法更新该类的中心值; (4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。 #include #include #include #define _NUM 3 //预定义划分簇的数目 using namespace std; /** 特征对象,表示一个元组,一个元组有两个数值属性 **/ struct Tuple { int attr1; int attr2; }; /** 获取两个特征对象之间的距离,在此以欧基米德距离作为距离度量标准 **/ double getDistXY(Tuple t1, Tuple t2) { return sqrt((t1.attr1 - t2.attr1) * (t1.attr1 - t2.attr1) + (t1.attr2 - t2.attr2) * (t1.attr2 - t2.attr2)); } /** 计算簇的中心点,在此以簇中所有对象的平均距离来计算中心点 **/ Tuple getMeansC(vector c)

(完整版)matlab实现Kmeans聚类算法

题目:matlab实现Kmeans聚类算法 姓名 学号

背景知识 1.简介: Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans 等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量。K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度。),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans 和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些

点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点。 当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量) 2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。但这也并不意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上

K-Means聚类算法

K-means聚类算法综述 摘要:空间数据挖掘是当今计算机及GIS研究的热点之一。空间聚类是空间数据挖掘的一个重要功能。K-means聚类算法是空间聚类的重要算法。本综述在介绍了空间聚类规则的基础上,叙述了经典的K-means算法,并总结了一些针对K-means算法的改进。 关键词:空间数据挖掘,空间聚类,K-means,K值 1、引言 现代社会是一个信息社会,空间信息已经与人们的生活已经密不可分。日益丰富的空间和非空间数据收集存储于空间数据库中,随着空间数据的不断膨胀,海量的空间数据的大小、复杂性都在快速增长,远远超出了人们的解译能力,从这些空间数据中发现邻域知识迫切需求产生一个多学科、多邻域综合交叉的新兴研究邻域,空间数据挖掘技术应运而生。空间聚类分析方法是空间数据挖掘理论中一个重要的领域,是从海量数据中发现知识的一个重要手段。K-means算法是空间聚类算法中应用广泛的算法,在聚类分析中起着重要作用。 2、空间聚类 空间聚类是空间数据挖掘的一个重要组成部分。作为数据挖掘的一个功能,空间聚类可以作为一个单独的工具用于获取数据的分布情况,观察每个聚类的特征,关注一个特定的聚类集合以深入分析。空间聚类也可以作为其它算法的预处理步骤,比如分类和特征描述,这些算法将在已发现的聚类上运行。 空间聚类规则是把特征相近的空间实体数据划分到不同的组中,组间的差别尽可能大,组内的差别尽可能小。空间聚类规则与分类规则不同,它不顾及已知的类标记,在聚类前并不知道将要划分成几类和什么样的类别,也不知道根据哪些空间区分规则来定义类。(1)因而,在聚类中没有训练或测试数据的概念,这就是将聚类称为是无指导学习(unsupervised learning)的原因。(2) 在多维空间属性中,框定聚类问题是很方便的。给定m个变量描述的n个数据对象,每个对象可以表示为m维空间中的一个点,这时聚类可以简化为从一组非均匀分布点中确定高密度的点群。在多维空间中搜索潜在的群组则需要首先选择合理的相似性标准。(2)已经提出的空间聚类的方法很多,目前,主要分为以下4种主要的聚类分析方法(3): ①基于划分的方法 包括K—平均法、K—中心点法和EM聚类法。它们都是采用一种迭代的重定位技术,尝试通过对象在划分间移动来改进聚类效果。由于这类方法适用于发现大小相近的球状簇,故常用在设施选址等应用中。 ②基于层次的方法 此法只是对对象集合进行分解。根据层次的分解方式,这类方法可分为凝聚和分裂两种, Birch, Cure 和Chameleon是上述方法的改进。 ③基于密度的方法 对给定类中的每个数据点,在一个给定范围的区域中必须包含超过某个阈值的数据点,才继续聚类。它可以用来发现任意形状的簇,过滤“噪声”。代表性的方法有:DBscan,Optics和Denclue。 ④基于栅格的方法 把对象空间划为有限的数据单元,形成一个网格结构。该方法处理速度快,处理时间独立于数据对象的数目。常用的方法有STING、WaveCluster以及CLIQUE等。 在这些方法中,K-means(k—均值)算法是一种应用十分广泛的聚类分析方法。 3、经典的K-Means算法 K-means聚类问题的假设是有一组N个数据的集合X={x1,x2,x3,…,x n}待聚类。K

K-means聚类算法基本思想

K-means聚类算法基本思想 聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。K-means 也是聚类算法中最简单的一种。以星团划分为例,,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的 质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。 重复迭代第一步和第二步直到质心不变或者变化很小。 K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM 思想。 聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。 在聚类问题中,给我们的训练样本是,每个,没有了y。 K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下: 1、随机选取k个聚类质心点(cluster centroids)为。 2、重复下面过程直到收敛{ 对于每一个样例i,计算其应该属于的类 对于每一个类j,重新计算该类的质心 } K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。质心代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然

K-均值聚类法

基于K均值聚类的图像二值化 [摘要] 在机器视觉和模式识别的研究中,将图像变换为二值图像是能够更高效识别图像中的特定区域或者目标的关键。提出了一种基于k均值聚类算法的图像二值化方法。该方法使用基于距离的聚类算法,根据图像二值化的领域知识,图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果。实验结果证明,针对复杂环境下的自然图像,该方法在效果和效率上非常好。 [关键词] 二值图像;k均值聚类算法;图像二值化

一、引言 为了改善图像分割的效果,将数据挖掘中的聚类方法引入到图像分割领域(二值化处理领域)。将k-means方法用于图像分割,首先随机选择k个阈值点,然后将图像分割成k个部分,计算出每一部分的灰度均值代替先前的k个阈值点。重复此过程,直到算法稳定为止。针对高分辨率的彩色图像,利用谱聚类算法改善了图像分割的效果。利用灰度直方图和谱聚类算法将图像转化为二值图像。最近10年来,各种机器学习算法也不断地被研究者应用到各个领域。利用聚类算法提取图像中的文本。分别阐述了k-medoids算法的理论及其改进方法。基于前人的研究方法和研究成果,将k均值聚类算法应用到图像的二值化处理过程中能够得到效果较好的二值图像。 二、K均值聚类 (一)简介 K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 k个初始类聚类中心点的选取对聚类结果具有较大的影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离将每个对象重新赋给最近的簇。当考察完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来。如果在一次迭代前后,J的值没有发生变化,说明算法已经收敛。

K均值聚类分析

1 案例题目: 选取一组点(三维或二维),在空间内绘制出来,之后根据K 均值聚类, 把这组点分为n 类。(0,0,0),(4,4,4),(-4,4,-4) ,协方差此例中选取的三维空间内的点由均值分别 为 3 0 0 0 0 0 3 0 0 0 3 0 0 3 0 0 3 0 的150 个由,mvnrnd ,函数随机生成。分别为 3 0 3 3 0 0 0 0 0 2 原理运用与解析:

2.1 聚类分析的基本思想 聚类分析是根据“物以类聚”的道理,对样本或指标进行分类的一种多元统计分析方法,它们讨论的对象是大量的样本,要求能合理地按各自的特性进行合理的分类。对于所选定的属性或特征,每组内的模式都是相似的,而与其他组的模式差别大。一类主要方法是根据各个待分类模式的属性或特征相似程度进行分 类,相似的归为一类,由此将待分类的模式集分成若干个互不重叠的子集,另一类主要方法是定义适当的准则函数运用有关的数学工具进行分类。由于在分类中不需要用训练样本进行学习和训练,故此类方法称为无监督分类。 聚类的目的是使得不同类别的个体之间的差别尽 可能的大,而同类别的个体之间的差别尽可能的小。聚类又被称为非监督分类,因为和分类学习相比,分类学习的对象或例子有类别标记,而要聚类的例子没有标记,需要由聚类分析算法来自动确定,即把所有样本作为未知样本进行聚类。

因此,分类问题和聚类问题 精品资料 根本不同点为:在分类问题中,知道训练样本例的分类属性值,而在聚类问题中, 需要在训练样例中找到这个分类属性值。 聚类分析的基本思想是认为研究的样本或变量之间存在着程度不同的相似性(亲疏关系)。研究样本或变量的亲疏程度的数量指标有两种:一种叫相似系 数,性质越接近的样本或变量,它们的相似系数越接近1 或-1,而彼此无关的变 量或样本它们的相似系数越接近0,相似的为一类,不相似的为不同类。另一种叫距离,它是将每一个样本看做p 维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。 2.2 动态聚类法思想

数据挖掘-K均值聚类算法的优缺点

K均值聚类算法的优缺点 J.B.MacQueen 在 1967 年提出的K-means算法[22]到目前为止用于科学和工业应用的诸多聚类算法中一种极有影响的技术。它是聚类方法中一个基本的划分方法,常常采用误差平方和准则函数作为聚类准则函数,误差平方和准则函数定义为: (3-1)其中,是类中数据对象的均值,即,(j=1,2,…,n),是K个聚类中心,分别代表K个类。 K-means算法的工作原理:算法首先随机从数据集中选取 K个点作为初始聚类中心,然后计算各个样本到聚类中的距离,把样本归到离它最近的那个聚类中心所在的类。计算新形成的每一个聚类的数据对象的平均值来得到新的聚类中心,如果相邻两次的聚类中心没有任何变化,说明样本调整结束,聚类准则函数已经收敛。本算法的一个特点是在每次迭代中都要考察每个样本的分类是否正确。若不正确,就要调整,在全部样本调整完后,再修改聚类中心,进入下一次迭代。如果在一次迭代算法中,所有的样本被正确分类,则不会有调整,聚类中心也不会有任何变化,这标志着已经收敛,因此算法结束。 算法描述如下: 算法:K-means。划分的 K-means 算法基于类中对象的平均值。 输入:类的数目K和包含N个对象的数据库。 方法: ① 对于数据对象集,任意选取K个对象作为初始的类中心; ② 根据类中对象的平均值,将每个对象重新赋给最相似的类; ③ 更新类的平均值,即计算每个类中对象的平均值; ④ Repeat ②③; ⑤ 直到不再发生变化。 其中,初始聚类中心的选择对聚类结果的影响是很大的,如图3.1,图a是三个类的实际分布,图b是选取了好的初始聚类中心(+字标记的数据对象)得到的结果。图c是选取不好的初始聚类中心得到的结果,从中可以看到,选择初始聚类中心是很关键的。

利用Kmeans聚类分析技术分析学生成绩

利用K m e a n s聚类分析技术分析学生成绩 This manuscript was revised on November 28, 2020

利用K-means聚类分析技术分析学生成绩 摘要:数据挖掘是在海量的数据中寻找模式或规则的过程。数据聚类则是数据挖掘中的一项重要技术,就是将数据对象划分到不同的类或者簇中,使得属于同簇的数据对象相似性尽量大,而不同簇的数据对象相异性尽量大。 目前数据挖掘技术在商业、金融业等方面都得到了广泛的应用,而在教育领域的应用较少,随着高校招生规模的扩大,在校学生成绩分布越来越复杂,除了传统成绩分析得到的一些结论外,还有一些不易发现的信息隐含其中,因而把数据挖掘技术引入到学生成绩分析中,有利于针对性地提高教学质量。本论文就是运用数据挖掘中的聚类分析学生成绩的,利用学生在选择专业前的各主要学科的成绩构成,对数据进行选择,预处理,挖掘分析等。运用聚类算法分析学生对哪个专业的强弱选择,从而为具有不同成绩特征的同学在专业选择及分专业后如何开展学习提供一定的参考意见。 关键字:数据挖掘聚类分析学生成绩分析 Abstract:Data mining is a process that in the vast amounts of data looking for patterns or rules. Data clustering is an important data mining technology for people to understand and explore the inherent relationship between things. Clustering is to partition data objects into different categories, or clusters, making the similarity with the clusters of data as large as possible. While the dissimilarity of different clusters of data as large as possible. Nowadays data mining technology is widely used in business and finance. But it is less used in education field. With the increase of enrollment in universities, there are more and more students in campus, and that makes it more and more complex in the distribution of students" records. Besides some conclusions from traditional record analysis, a lot of potential information cannot be founded. Importing the data mining technology to students" record analyzing makes it more convenient and improve the teaching quality. In this paper, clustering technique in data mining is used to students' performance analysis, the use of data structure of main subject before the students specialized in choice of mode, pretreatment and data mining. Using clustering technology to analyse which professional students are good at, so as to choose how to learn professional and give some reference opinions after students of different grades choose their majors. Keywords : Data Mining , Clustering Technology , Students' Achievement 1.概述 背景 随着我国经济的发展,网络已被应用到各个行业,人们对网络带来的高效率越来越重视,然而大量数据信息给人们带来方便的同时,也随之带来了许多新问题,大量数据资源的背后隐藏着许多重要的信息,人们希望能对其进行更深入的分析,以便更好地利用这些数据,从中找出潜在的规律。那么,如何从大量的数据中提取并发现有用信息以提供决策的依据,已成为一个新的研究课题。高校是教学和科研的重要基地,也是培养人才

相关文档
最新文档