(并购重组)重组蛋白和多肽的分离纯化

(并购重组)重组蛋白和多肽的分离纯化
(并购重组)重组蛋白和多肽的分离纯化

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

蛋白的纯化

第二部分:蛋白的纯化 如何区分蛋白表达在上清还是包涵体? 破碎细胞后离心分别收集上清和沉淀,表达的蛋白可能分布在上清中也有可能分布在沉淀中,还有可能是二者中都有分布。 根据我们实验室的经验,超声碎菌之后,如果菌液比较清亮,沉淀比较少,那表达的蛋白基本上是可溶的。但如果超声完之后,菌液是浑浊的,而且当离心之后,离下的沉淀比较多,而且沉淀的颜色也比较白,那基本上就是包涵体了。包涵体是基因重组蛋白在大肠杆菌中高水平表达时所形成的无活性的蛋白质聚集体,难溶于氺,可溶于变性剂如尿素,盐酸胍等,其实,包涵体也就是我们常说的不可溶蛋白。对于后者,可将上清和沉淀分别跑一个PAGE,看看上清中的量能达到多少,对于某些蛋白来说,一部分是以包涵体形式表达,一部分是以可溶的形式表达,而且量也不少,可以满足后续实验的需要,这个时候最好是纯可溶的,因为包涵体即使最后复性,活性也不太可信。 对于沉淀跑SDS-PAGE,如何处理,用什么使其溶解,还有在大肠杆菌中表达的蛋白,在提取过程中,使用什么蛋白提取缓冲液。 沉淀用Buffer B重悬,(组成:8M尿素+10mMTRIS base+100mM NaH2PO4,用NaOH调节pH到8.0),1克沉淀(湿重)加5ml Buffer B,使其充分溶解(可以放在微量震荡器上震荡20min),然后室温下12000转离心20min,留上清,弃沉淀。 取10ul上清加入10ul 2xSDS上样缓冲液,就可以跑PAGE了。 无论是纯可溶蛋白还是包涵体,在菌体裂解这一步我用的都是Lysis Buffer(组成:10mM 咪唑+300mM NaCl+50mM NaH2PO4,用NaOH调节pH到8.0)每克菌体(湿重)加2-5ml Lysis Buffer,充分悬起后,加入溶菌酶4度作用半小时就可以超声破碎了。 包涵体,简单的说就是翻译的蛋白没有正确折叠而聚集在一起形成的,主要的是疏水作用。实际上就是很多个蛋白分子,这些蛋白并不是交联在一起的,用高浓度的尿素和盐酸胍可以使他们变性,解聚。 电泳检测的话,可以用SDS-PAGE检测,在上样之前,需要用上样缓冲液处理样品,处理后,包涵体也就解聚了,每个蛋白分子与SDS结合,形成了可溶物。 包涵体是不容易破碎的,超声可以破碎菌体释放里面的包涵体,但是不能破碎包涵体;但如果用水煮的话,包涵体会变性,会有一部分可溶于水,所以你跑的上清中有可能有包涵体存在,也有可能没有包涵体; 建议: 还是先将菌体超声破碎,然后离心,取沉淀和上清再跑一次电泳,如果沉淀上清中都有你要的蛋白,说明表达的结果是部分可溶;如果仅上清有就是可溶性表达;如果仅沉淀中有,就是完全包涵体了。不过,一般情况下,应该是第一者的可能性大。

蛋白质的分离纯化和表征

蛋白质的分离纯化和表征 第一节蛋白质的酸碱性质 各个解离基团的pK 值与游离氨基酸的不完全相同。等电点要用等电聚焦等方法测定。 第二节蛋白质分子的大小与形状

一、根据化学组成测定最低相对分子质量 假定某种微量成分只有一个,测出其百分含量后,可用比例式算出最低相对分子质量。 若测出两种微量成分的百分含量,分别用比例式算出的最低相对分子质量不相同时,可计算两个最低相对分子质量近似的最小公倍数。 例题:一种纯酶含亮氨酸(Mr 131)1.65%,含异亮氨酸(Mr131)2.48%,求最低相对分子质量。 解:按照Leu 的百分含量计算,最低Mr X1: X1=(100′ 131)/1.65=7939.4。 按照Ile 的百分含量计算最低Mr X2: X2=(100′ 131)/2.48=5282.3。 由于X1 和X2 数字差异较大,提示这种酶含Leu 和Ile 不止1 个,为了估算Leu 和Ile 的个数,首先计算: X1/X2=7939.4/5282.3≈1.5。 这种酶含任何氨基酸的个数均应是整数,说明该酶至少含有2 个Leu,3 个Ile,其最低相对分子质量为: 7939.4 ′2 =15878.8或5282.3×3=15846.9。 二、渗透压法测定相对分子质量 三、沉降分析法测定相对分子质量

基本原理: (一)离心力(centrifugal force,Fc) 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“Fc”由下式定义: F=m·a=m·ω2 r a—粒子旋转的加速度,m—沉降粒子的有效质量,ω—粒子旋转的角速度,r—粒子的旋转半径(cm)。 (二)相对离心力(relative centrifugal force,RCF) 由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF 值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF 就是实际离心场转化为重力加速度的倍数。

重组蛋白和多肽的分离纯化

重组蛋白和多肽的分离纯化 1.概述 分离纯化组成了基因工程的下游处理(downstream processing)阶段,这一过程又和上游过程紧密相联系,上游过程的诸方面影响到下游的分离纯化,所以在进行目标蛋白质表达纯化时要统一考虑和整体设计,并充分考虑上游因素对下游的影响,如是否带有亲和标签,是否进行分泌表达。目前应用最广泛的表达系统有三大类,分别是大肠杆菌表达系统、酵母表达系统和CHO细胞表达系统,不同的表达系统和培养方法显著影响下游的处理过程,目标蛋白表达是否形成包涵体,目标蛋白表达的定位(胞内、细胞内膜、周质空间和胞外),蛋白表达的量都依赖于所选择的表达系统。选择将所表达的蛋白分泌到细胞外或周质空间可以避免破碎细胞的步骤,并且由于蛋白质种类少,目标蛋白容易纯化;而在细胞质内表达蛋白,可能是可溶性表达,可能形成包涵体,可溶性的蛋白往往需要复杂的纯化步骤,而包涵体易于分离,纯度较高,但回收具有生物活性的蛋白却变的相当困难,需要对聚集的蛋白进行变复性,通常活性蛋白的得率比较低,表1列出了不同策略对表达、纯化的影响,对于其中的有些缺点可以通过一定的方法进行克服和避免,如利用DNA重组技术给外源蛋白加上一个亲和纯化的标签,有助于可溶性外源蛋白的选择性纯化,并能保护目标蛋白不被降解(96)。 表 1 重组蛋白不同表达策略的优点和缺点 表达策略优点缺点 分泌表达至细胞外增强正确二硫键的形成 降低蛋白酶对表达蛋白的降解 可获得确定的N末端 显著减少杂蛋白水平,简化纯化 不需要细胞破碎表达水平低 多数蛋白不能进行分泌表达表达蛋白需要进行浓缩 细胞周质空间表达增强正确二硫键的形成 可获得确定的N末端 显著减少杂蛋白水平,简化纯化好些蛋白不能分泌进入周质空间 没有大规模选择性的释放周质空间蛋白的技术 周质蛋白酶可引起重组蛋白酶解 胞内包涵体表达包涵体易于分离 保护蛋白质不被降解 蛋白质不具有活性对宿主细胞生长 没有大的影响,通常可获得高的表 达水平需要体外的折叠和溶解,得率较低具有不确定N末端 胞内可溶性蛋白表达不需要体外溶解和折叠 一般具有正确的结构和功能高水平的表达常难以得到需要复杂的纯化 可发生蛋白质的酶解 具有不确定的N末端 在细胞的提取物中,除了目标蛋白外,还含有其它各种性质的蛋白、核酸、多糖等。在这样一个混合体系中,蛋白质纯化要求将目标蛋白与其它的成分分离,得到一定的量,达到一定的纯度,同时要尽可能保留蛋白的生物活性,并使蛋白保持完整。所以蛋白质的分离纯化可以看作是一系列的分部收集过程,总是希望目标蛋白富集于其中的一个收集部位,而大量的杂蛋白存在于其它的收集部位。当然对目标蛋白纯度的要求要根据纯化蛋白的用途而定,对于治疗性的蛋白要求有大于99%的纯度,并对处方有活性和稳定性的要求,对于某些酶的纯度则要求较低,需要在纯度和得率之间进行一个平衡,所以下游的工艺流程取决于最终对目标蛋白的要求。 蛋白质的功能依赖于蛋白质的结构,对于有生物活性的蛋白质,在分离纯化过程中必须根据目标蛋白的特点,采用合适的操作条件和方法,保证目标蛋白的活性尽量不损失。除了在分离纯化的初期,要采用快速的方法除去影响目标蛋白稳定性的杂质,还要严格控制涉及蛋白质变性的各种因素,来避免蛋白质失去活性。蛋白质的构象稳定性可以通过测定蛋白质变性反应时折叠(f)和去折叠(u)间自由能的变化(ΔG f→u)来衡量,ΔG f→u越大蛋白质就越稳定。根据报导蛋白质的ΔG f→u在5—20kcal/molX围之间,单个氢键可造成0.5—2kcal/mol自由能的变化,一个离子对可造成0.4—1.0kcal/mol自由能的变化,因此ΔG f→u相对比较小,这样天然状态仅仅比去折叠状态稳定一点,所以必须克服蛋

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

药物分离纯化

1.什么是化学萃取?影响化学萃取的因素?溶质与萃取剂之间的化学作用? 2.什么事截留分子量?各种分离膜(如微滤、超滤、纳滤)的截留组分范围怎样? 3.什么是乳化现象?消除乳化的方法有哪些? 4.什么是反萃取、萃取相、萃余相? 5.什么是有效成分和有效部位? 6.什么是双水相萃取技术?有哪些特点? 7.什么是半仿生提取法?其优点有哪些? 8.什么是分子印迹技术,其特点如何? 9.什么是分子蒸馏,其操作过程如何,有哪些特点? 10.依据分离记理,色谱法分为哪几类? 11.根据料液和溶剂的接触和流动情况,萃取操作过程如何划分? 12.什么是凝胶色谱,其分离机理如何,有哪些用途?其操作过程如何? 13.什么是住色谱,如何操作? 14.活性氧化铝有哪些类型?特点是什么?其含水量关系如何? 15.何为浸漉法,去操作过程如何? 16.离子交换树脂有哪些类型,影响其选择性的因素?其操作过程如何? 17.容积提前中药有效成分时,选择溶剂的原则,常见容积大机型大小如何? 1分离纯化过程:通过物理、化学或生物等手段,或将这些方法结合,将某混合物系分离纯化成两个或多个组成彼此不同的产物的过程。 分离纯化技术:在工业中通过适当的技术手段与装备,耗费一定的能量来实现混合物的分离过程,研究实现这一分离纯化过程的科学技术。 1、药物分离的特点:(1)药物的品种繁多,结构复杂,不同来源的药物性质差别很大,采用的分离技术原理和方法也多种多样。(2)以天然形式存在的药物,或生物来源的药物通常含量较低,杂质的量远远大于有效成分的量。分离过程需要多种方法联合应用,使有效成分的含量不断提高。(3)药物中很多品种特别是天然成分和生物活性物质具有稳定性差、易分解、易变性等特点,在选择分离方法时需要考虑被分离物质的性质,采用适当的分离方法和条件,以保证产品的稳定性(4)从药物研究到药品生产,分离在量上的差别很大,小到 以鉴定、含量测定的6- 10g级,大到生产的吨级的纯化。(5)药品的质量要求高,必须达到国家标准,生产环境需要达到一定的洁净度,防止环境对产品的污染。 2、分离纯化方法按原理分为机械分离和传质分离。 3、萃取:将样品中的目标化合物选择性地转移到另一相中或选择性地保留在原来的相中(转移非目标化合物),从而使目标化合物与原来的复杂机体相互分离的方法。反萃取:调节水相条件,将目标产物从有机相转入水相的萃取操作。萃取相:当溶剂与混合液混合后成为两相,其中一个以萃取剂为主(溶有溶质)的称为萃取相。萃余相:另一个以原溶液为主的(即溶剂含量较低)称为萃余相。萃取液:利用蒸馏、蒸发和结晶等方法除去萃取相中的溶剂后得到的液体称为萃取液。萃余液:利用蒸馏、蒸发和结晶等方法除去萃余相中的溶剂后的液体称为萃余液。化学萃取:也称反应萃取,是利用脂溶性萃取剂与溶质之间的化学反应生成脂溶性复合分子实现溶质向有机相的分配。影响化学萃取的因素:(1)被萃取药物的结构(2)pH的影响(3)温度的影响(4)无机盐的存在(5)溶质的结构(6)萃取剂(7)稀释剂。 4、化学萃取中,溶质与萃取剂之间的化学作用主要有:(1)配位反应(2)阳离子交换反应(3)离子缔合反应萃取(4)协同反应萃取。 5、根据料液和溶剂的接触和流动情况,可以把萃取操作过程分成单级萃取操作和多级萃取

蛋白质分离与纯化教学设计课题

蛋白质分离与纯化教学设计 一、教学背景分析 【教材分析】 “蛋白质的分离与纯化”实验是《高中生物》选修1生物技术实践 5.3血红蛋白的提取与分离中的容。本节课的主要容包括蛋白质的提取、分离纯化等基本知识,主要要求学生掌握凝胶电泳的实验原理以及操作方法。“血红蛋白分离与纯化”实验不仅是学习血红蛋白的提取、分离纯化方法,而且也是进一步掌握蛋白质的组成、结构和功能的基础。 【学情分析】 到目前为止,学生已经学习了蛋白质的相关知识,对蛋白质有了一定的了解,“蛋白质的分离与纯化”实验目的是使学生体验从复杂细胞混合物体系中提取和纯化生物大分子的基本原理、过程和方法,虽然操作难度较大,但原理清晰,动手机会较多,学习兴趣很高。学生有必修“生命活动的主要承担者——蛋白质”的基础,在一定程度上掌握了蛋白质的组成、结构和功能等基础知识,学生在进行实验前还是能大概了解影响蛋白质分离纯化的因素的,再者经过老师的指导,实验能取得良好的结果的。 二、教学目标 【知识目标】 1.了解从血液中提取蛋白质的原理与方法。 2.说出凝胶电泳的基本原理与方法。 【能力目标】 运用凝胶电泳对蛋白质进行分离纯化。 【情感态度与价值观目标】 1.培养学生科学实验的观点。 2.初步形成科学的思维方式,发展科学素养和人文精神。 三、教学重难点

【教学重点】 从血液中提取蛋白质;凝胶电泳分离纯化蛋白质。 【教学难点】 样品预处理,色谱柱的装柱,纯化分离操作。 四、实验实施准备 【教师准备】 1.分组。学生按学科能力的强中弱平均分组,各组尽量平衡,各组自行分工,并由实验员统一安排实验过程。 2.实验材料:血液 仪器:试管、胶头滴管、烧杯、玻璃棒、离心机、研磨器、透析袋、电泳仪等。 试剂:20mmol/L磷酸缓冲液(pH为8.6)、蒸馏水、聚丙烯酸铵、生理盐水、5%醋酸水溶液等。 【学生准备】 1.预习实验“蛋白质分离纯化”,了解蛋白质的相关信息。 2.进行分组。 五、教学方法 【教法】分析评价法、任务驱动法、直观演示法 【学法】自主学习法、合作交流法 六、教学媒体 黑板、多媒体 七、课时安排 两个课时(80min) 一个课时用来讲述理论部分知识:样品处理与色谱柱分离纯化蛋白质的原理与方法; 另一课时用来进行实验。

药物分离与纯化

硕士学位课程考试试卷 考试科目:天然药物的分离与纯化 考生姓名:邱诗春 考生学号:20111902042 学院:生物工程学院 专业:生物学 考生成绩: 任课老师(签名) 考试日期:20 11 年11 月 5 日午时至时

姜黄中天然药物的分离与纯化 摘要:姜黄素是姜黄属植物中的主要活性成分,具有抗癌、抗氧化、抗炎、清除自由基、抗微生物以及对心血管系统、消化系统等多方面药理作用,有较好的临床应用价值和研发潜力。随着提取分离纯化技术的发展,目前有多种方法从植物中提取并分离姜黄素。本文对近年来研究姜黄素的酶法、渗漉法、水杨酸钠法、超临界CO2 萃取法、超声提取法及微波提取法等提取方法;大孔树脂吸附法、聚酰胺吸附法、活性炭色谱法、硅胶柱色谱法、乙酸沉淀法等分离纯化方法进行综述,为进一步开发利用姜黄素提供依据。 关键字:姜黄素;提取;分离 Abstract: Curcumin is one of the major active ingredients in plants of Curcuma L. and has many pharmacological effects, such as: anti-cancer, anti-oxidant, anti-inflammatory, free radical scavenging, and anti-microbial effect in the cardiovascular system and digestive system, and so on. It has better clinical application and developping potential of new drug. With the development of extraction and isolation technology, there are many ways to extract and isolate curcumin from plants. The recent studies of curcumin extraction methods, i.e. enzyme method, percolation method, sodium salicylate method, supercritical CO2, ultrasonic extraction and microwave extraction. Separation methods, i.e. polyamide adsorption, macroporous resin adsorption, polyamide adsorption, activated carbon chromatography, silica gel column chromatography and acid-precipitation method are reviewed to provide the basis evidence for further utilization of curcumin. Key words:curcumin; extraction; separation 姜黄(Curcuma longa)为多年生草本植物,其性味辛、苦、温,入心、肝、脾经,可行气破瘀,通经止痛,并且还有助消化特性,可以作为调味品、天然色素、天然染料,近年来因其具抗肿瘤、抗炎、抗氧化[1,2]等活性而倍受关注.姜

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理 (一)利用分子大小 1、透析:原理:利用蛋白质分子不能透过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖、水等分开。 方法:将待提纯蛋白质放在透析袋中放在蒸馏水中进行 涉及的问题: 如何加快透析过程 (1)加大浓度差,及时更换透析液 (2)利用磁力搅拌器 常用的半透膜:玻璃纸、火棉和其他材料合成 2、超过滤:原理:利用压力和离心力,强行使其他小分子和水通过半透膜,而蛋白质留在膜上 3、凝胶过滤层析:原理:当不同分子大小的蛋白质混合物流进凝胶层析柱时,比凝胶网孔大的分子不能进入珠内网状结构,排阻在凝胶珠以外,在凝胶珠缝隙间隙中向下移动。而比孔小的分子不同程度地进入凝胶珠内,这样由于不同大小分子所经历的路径不同而到分离。 结果:大分子先被洗脱下来,小分子后被洗脱下来 (二)利用溶解度差别 4、等电点沉淀:原理:不同蛋白质具有不同的等电点,当蛋白质混合物调到其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来.。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.当离子强度增加,足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析

(三)根据电荷不同 6、SDS-PAGE 全称十二烷基硫酸钠—聚丙烯酰胺凝胶电泳 原理:通过加热和SDS可以使蛋白质变性,多亚基的蛋白质也解离为单亚基,处理后的样品中肽链是处于无二硫键连接的,分离的状态。电泳时SDS-蛋白质复合物在凝胶中的迁移率不再受蛋白质原有电荷和形状的影响,而主要取决于蛋白质分子量。所以SDS-PAGE常用来分析蛋白质的纯度和大致测定蛋白质的分子量。 7、离子交换层析:原理:氨基酸分离常用阳离子交换树脂,树脂被处理成钠型,将混合氨基酸上柱,氨基酸主要以阳离子形式存在,在树脂上与钠离子发生交换,而被挂在树脂上。 氨基酸在树脂上结合的牢固程度取决于氨基酸与树脂之间的亲和力,决定亲和力的因素有:(1)主要是静电吸引力(2)氨基酸侧链同树脂之间的疏水作用氨基酸与阳离子交换树脂间的静电引力大小次序依次是: 碱性氨基酸R2+>中性氨基酸R+>酸性氨基酸R0。 因此洗脱顺序应该是: 酸性氨基酸中性氨基酸碱性氨基酸 为使氨基酸从树脂上洗脱下来采用逐步提高pH和盐浓度的方法

重组蛋白纯化基本策略

捕获阶段:目标是澄清、浓缩和稳定目标蛋白。中度纯化阶段:目标是除去大多数大量杂质,如其它蛋白、核酸、内毒素和病毒等。精制阶段:除去残余的痕量杂质和必须去除的杂质。分离方法的选择根据蛋白质的特殊性质采用不同的分离方法:蛋白质的性质方法电荷(等电点)离子交换(IEX)分子量凝胶过滤(GF)疏水性疏水(HIC)反相(RPC)特异性结合亲和(AC)每一种方法都有分辨率、处理量、速度和回收率之间的平衡。分辨率:由选择的方法和层析介质生成窄峰的能力来实现。总的来说,当杂质和目标蛋白性质相似时,在纯化的最后阶段分辨率是重要因素。处理量:一般指在纯化过程中目标蛋白的上样量。如上样体积、浓度等。速度:在初纯化中是重要因素,此时杂质如蛋白酶必须尽快除去。回收率:随着纯化的进行渐趋重要,因为纯化产物的价值在增加。在三阶段纯化策略中每一种方法的适用性见下表:技术主要特点捕获中度纯化精制样品起始状态样品最终状态IEX高分辨率高容量高速度低离子强度样品体积不限高离子强度或pH改变。样品浓缩HIC 分辨率好容量好高速度高离子强度样品体积不限低离子强度样品浓缩AC高分辨率高容量高速度结合条件特殊样品体积不限洗脱条件特殊样品浓缩GF高分辨率(使用Supedex)样品体积(<总柱体积的5%)和流速范围有限制缓冲液更换(如果需要)样品稀释RPC高分辨率需要有机溶剂在有机溶剂中,有损失生物活性的风险提示:1、通过组和各种方法使纯化步骤之间的样品处理减至最少,以避免需要调节样品。第一个步骤的产物的洗脱条件应适宜于下一个步骤的起始条件。2、硫酸铵沉淀是常用的样品澄清和浓缩方法,所以HIC是捕获阶段的理想方法。3、 GF很适宜在由浓缩效应的方法(IEX、 HIC、 AC)后使用,凝胶过滤对上样体积有限制,但不受缓冲液条件的影响。4、在捕获阶段选择对目标蛋白具有最高选择性或/和处理量的方法5、如果对目标蛋白的性质了解甚少的情况下,可采用IEX-HIC-GF的方法组合作为标准方案。6、只要目标蛋白耐受的情况下,可以考虑采用RPC 方法用于精制阶段。注:应该指出,三阶段纯化策略不是说所有的策略都必须是三个纯化步骤。所用的步骤数目取决于纯度要求和蛋白的最终用途。 蛋白质的蛋白质特性与分离纯化技术的选择 摘要:蛋白质的一级、二级、三级和四级结构决定了它的物理、化学、生物化学、物理化学和生物学性质,综述了不同蛋白质之间的性质存在差异或者改变条件是使之具有差异,利用一种同时多种性质差异,在兼顾收率和纯度的情况下,选择蛋白质提纯的方法。 关键词:蛋白质分离纯化 前言: 蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有成千种不同的蛋白质。蛋白质的分离和提纯工作是一项艰巨而繁重的任务,到目前为止,还没有一个单独的或一套现成的方法能把任何一种蛋白质从复杂的混合物中提取出来,但对任何一种蛋白质都有可能选择一套适当的分离提纯程序来获取高纯度的制品。

蛋白质的分离纯化方法

蛋白质的分离纯化方法 根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有 用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

【CN109810185A】一种重组人血清白蛋白的分离纯化方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910276004.5 (22)申请日 2019.04.08 (71)申请人 北京蛋白质组研究中心 地址 102206 北京市海淀区中关村生命科 学园生命园路38号 (72)发明人 钱小红 张养军 余谦 张普民  高方圆 焦丰龙 夏朝双 张汉卿  (74)专利代理机构 北京纪凯知识产权代理有限 公司 11245 代理人 关畅 (51)Int.Cl. C07K 14/765(2006.01) C07K 1/36(2006.01) C07K 1/18(2006.01) C07K 1/20(2006.01) C07K 1/30(2006.01) (54)发明名称 一种重组人血清白蛋白的分离纯化方法 (57)摘要 本发明公开了一种重组人血清白蛋白的分 离纯化方法。该方法首先采用热乙醇沉淀法从转 基因猪血浆中对重组人白蛋白进行粗提纯,再利 用两种色谱方法以串联方式进一步精纯化,即先 用阴离子交换色谱法进行第一步精纯化,再采用 反相色谱法或者凝胶色谱法进行二次精纯化。结 果表明,本发明能从转基因猪血浆中分离纯化出 高纯度的重组人血清白蛋白,并有望替代人血清 白蛋白用于临床用药和生化研究中。权利要求书2页 说明书5页 附图3页CN 109810185 A 2019.05.28 C N 109810185 A

权 利 要 求 书1/2页CN 109810185 A 1.一种对含有重组人血清白蛋白的血浆中的重组人血清白蛋白进行分离纯化方法,包括: 1)去除含有重组人血清白蛋白的血浆中的凝血因子和纤维蛋白原后,将所得血浆上清液用热乙醇沉淀法进行粗提纯,得到rHSA粗提取液; 2)将所述rHSA粗提取液脱盐浓缩后,用阴离子交换色谱柱洗脱,收集洗脱液即为第一步精纯化rHSA溶液; 3)将所述第一步精纯化rHSA溶液脱盐浓缩后,用反相色谱柱或凝胶色谱柱进行二次精纯化,即得到rHSA溶液,完成所述重组人血清白蛋白的分离纯化。 2.根据权利要求1所述的方法,其特征在于:所述含有重组人血清白蛋白的血浆按照如下步骤制得:对含有重组人血清白蛋白的血进行血浆抗凝处理后离心,收集上清液而得; 具体的,所述血浆抗凝处理步骤中,所用抗凝剂为柠檬酸钠水溶液;所述含有重组人血清白蛋白的血与抗凝剂的体积比为15:1~20:1;所述抗凝剂的浓度为70g/L~90g/L; 所述离心步骤中,离心力为1500-2500×g;具体为2000×g;时间为20-40min;具体为30min。 3.根据权利要求1或2所述的方法,其特征在于:所述步骤1)去除含有重组人血清白蛋白的血浆中的凝血因子和纤维蛋白原的方法包括:将所述含有重组人血清白蛋白的血浆冷冻沉淀,解冻后离心,收集上清液,即为所述血浆上清液; 具体的,所述冷冻沉淀步骤中,温度为-30--10℃;具体为-20℃; 所述解冻步骤中,温度为0-10℃;具体为4℃; 所述离心步骤中,离心力为4500-5500×g;具体为5000×g;时间为10-20min;具体为15min。 4.根据权利要求1-3中任一所述的方法,其特征在于:所述步骤1)热乙醇沉淀法包括:将所述血浆上清液与由蛋白保护剂、变性剂、氯化钠和水组成的混合液混匀后,调节pH至 5.0~7.0,在55℃~80℃,恒温保持20~60min,冷却至室温后调节pH至4.0~5.0,静置,一次离心,收集上清,淋洗所得沉淀,再进行二次离心,收集上清,合并两次上清,即为所述rHSA粗提取液。 5.根据权利要求4所述的方法,其特征在于:所述蛋白保护剂为辛酸钠;所述辛酸钠在由蛋白保护剂、变性剂、氯化钠和水组成的混合液中的浓度为5~10g/L; 所述变性剂为有机溶剂;具体为乙醇;所述氯化钠在由蛋白保护剂、变性剂、氯化钠和水组成的混合液中的浓度为5~9g/L;所述由蛋白保护剂、变性剂、氯化钠和水组成的混合液的体积用量与所述血浆上清液相同; 所述变性剂的用量为所述血浆上清液体积的8%~12%; 所述静置步骤中,温度为室温;时间为1-3h;具体为2h; 所述淋洗步骤中,所用淋洗液为pH值为4.8的蒸馏水; 所述一次离心和二次离心步骤中,离心力为4500-5000×g;具体为5000×g;时间为50-70min;具体为60min。 6.根据权利要求1-5中任一所述的方法,其特征在于:所述步骤2)中,所用流动相A为0.02mol/L Tris-HCl,流动相B为0.02mol/L Tris-HCl+0.3mol/L NaCl; 所用阴离子交换色谱柱为DEAE弱阴离子交换色谱柱;流速为1mL/min;柱温为室温;检 2

相关文档
最新文档