变频器电压检测电路新

变频器电压检测电路新
变频器电压检测电路新

变频器的电压检测电路(新)

——正弦变频器电压检测实际电路分析

一、电路构成和原理简析

电压检测电路,是变频器故障检测电路中的一个重要组成部分,旨在保障使IGBT逆变电路的工作电源电压在一特定安全范围以内,若工作电源危及IGBT(包含电源本身的储通电容)器件的安全时,实施故障报警、使制动电路投入工作、停机保护等措施。此外,少数机型还有对输出电压的检测,在一定程度上,起到对IGBT导通管压降检测的同样作用,取代驱动电路中IGBT的管压降检测电路。

1、电压检测电路的构成、电压采样方式及故障表现

图1 电路检测电路的构成(信号流程)框图

1、电压检测电路的电压采样形式(前级电路)

1)直接对DC530V电压采样

图2 DC530V电压检测电路之一

直接对P、N端DC530V整流后电源电压进行进行采样,形成电压检测信号。如阿尔法ALPHA2000型18.5kW变频器的电压检测电路,如图2所示。

电路中U14线性光耦合器的输入侧供电,由开关变压器的独立绕组提供的交流电压,经整流滤波、由78L05稳压处理得到5V电源所提供,电源地端与主电路N端同电位。输出侧供电,则由主板+5V所提供。

直流回路P、N端的DC530V电压,直接经电阻分压,取得约120mV的分压信号,输入U14(线性光耦合器,其工作原理前文已述)进行光、电隔离与线性放大后,在输出端得到放大了的检测电压信号,再由LF353减法放大器进一步放大,形成VPN直流电压检测信号,经CNN1端子,送入MCU主板上的电压检测后级电路。

2)由开关变压器次级绕组取得采样电路信号

图3 DC530V电压检测电路之二

图4 直流回路电压采样等效电路及波型示意图

主电路的DC550V直流电压检测信号,并不是从主电路的P、N端直接取得,而是“间接”从开关电源的二次绕组取出,这是曾经令一些检修人员感到困惑、找不到电压检测信号是从何处取出的一件事情,也成为该部分电路检修的一个障碍。电压采样电路如上图4所示。

在开关管VT截止期间,开关变压器TRAN中储存的磁能量,由次级电路进行整流滤波得到+5V工作电源,释放给负载电路;在VT饱和导通期间,TC2从电源吸取能量进行储存。

N3二级绕组上产生的电磁感应电压,正向脉冲出现的时刻对应开关管的截止时间,宽度较大,幅值较低,经二极管D12正向整流后提供负载电路的供电,有电流释放回路;反向脉冲出现的时刻对应开关管的饱和导通时间,宽度极窄,但并不提供电流输出,回路的时间常数较大(不是作为供电电源应用,只是由R、C电路取得电压检测信号),故能在电容C17上维持较高的幅值。开关管VT饱合导通时,相当于将N1绕组直接接入530V电源,因而在同一时刻N3绕组此时所感应的负向脉冲电压,是直接反映N1绕组供电电压高低的,并与其成线性比例关系——N3绕组感应电压的高低,仅仅取决于N1、N3绕组的匝数比。整流二极管D12和D11接于同一个次级绕组上,D12将“大面积低幅度”的正向脉冲整流作为+5V供电,而D11却将“小面积而幅度高”的负向脉冲做负向整流后,经R20、R18、R19、C19、C17等元件简单滤波处理后,将此能反映一次

主绕级供电高低的-42V电压信号,作为直流回电压的检测信号,送入MCU主板电路,供显示直流电压值和参与CPU程序控制之用。

直流电压检测电路与其它输出电源电压电路的显着不同,1)在于该电路整流电压的输出端无大容量滤波(电解)电容;2)输出电压回路中串接有数千欧姆或数十千欧姆的大阻值电阻。显然该路输出电压不能用作供电电源。3)同一绕组所整流得出的供电电源电压值,要数倍低于检测电压值。这是判断该电路为直流电压检测信号输出电路的3种依据。

3)通过对充电接触器辅助触点的状态检测,间接作出对直流回路是否正常的逻辑判断

上篇博文,在海利普HLP-P型15kW变频器电压检测电路原理及检修一文中,已作出详细的分析,当充电接触器未正常作出吸合动作,表现为辅助常开闭点没有在电容充电结束后,接触良好,检测信号输入MCU引脚后,MCU经逻辑分析,判断充电接触器的未正常动作,因而直流回路的供电电压“肯定”也是不正常的,因而有时检测充电接触器的辅助常开触点未闭合时,也会报出“直流回路欠电压”故障。

3)三相输入电源电压的检测电路

部分机型有了DC530V的电压检测,就省略了对3相输入电压的断相检测(DC530V的高低一定程度上也反映了三相电压电源电压的输入状况),有些机型的电压检测电路,则“面面俱到”,检测电路比较完善。

图5 三相输入电源电压检测电路

三相输入电源电压检测电路,将R、S、T端输入的电源电压先经电阻网络降压/限流,再经桥式整流电路变为六波头300Hz脉动直流,送入光耦合器输入侧,3相电源正常时,光耦输出侧为六波头300Hz的脉冲直流信号,或认为J2端子的35脚一直为低电平;电源任缺一相时,光耦输出侧为四波头200Hz的电压信号,或认为J2的35端子有出现高电平的时刻,经后级电路处理送入MCU,MCU判断缺相故障,报警并停机保护。光耦合器U15的输入侧串入稳压管Z19,使U15输出信号的动作“干脆利落”,对三相电源电压的不平衡也有检测作用。检测电路将输入模拟信号转化为映波头数目的“数字信号形式”,利于MCU的检测和判断。

4)3相输出电压/频率检测电路

3相输出电压检测电路,在少数变频器产品中有采用。其主要作用,是检测逆变电路的输出状态,由此起到对IGBT的保护作用,如同驱动电路的IGBT管压降检测与保护电路一样。有些变频器,驱动电路没有IGBT 管压降检测保护电路,对IGBT的保护,一定程度上依赖于三相输出电压检测电路——三相输出电压信号经电路转变为输出频率信号,再输入MCU,起到对逆变电路的6只IGBT是否正常工作的判断。

图6 输出电压/频率检测电路

这是一个典型仪用放大器的电路结构,N1、N2、N3前三级电路构成了双端输入、单端输出的差动放大电路,第四级接成反相放大器,将信号放大到一定幅度后推动U7光电耦合器。U、W输出端电压信号经R31、R34降压,D16、D17双向限幅,C17滤掉了高频载波信号,将信号还原为两相电压信号,加入N1、N2、N3组成的差动放大电路,再经N4放大后推动U7输出。N1、N2、N3电路又是V相电压信号的合成电路,输入的U、W两相信号中,包含了V相电压信号,经N1、N2、N3电路的合成作用,实际上N3输出的是表征着V相频率与时间基准的脉冲信号。耦合电容E13起到了隔直通交及对信号进行零电平“置位”的作用,以适应N4单电源供电电路的要求,N4则相当于一个整形电路,将N3输出信号整形为矩形脉冲信号输出,以驱动光电耦合器U7。当U7输出的信号满足要求时,说明U、V、W三相输出都是正常的。U7的输出信号反映了三相电压的输出状态,此信号输入到CPU,与内部时间基准相比较,通对脉冲计数的时间比对,从面可判断出是否存在输出缺相(d.f.)故障。故障时可实施停机保护。

(试分析)因输入端D16、D17两只二极管的嵌位作用,电路本身并不是用来对输入信号进行放大的,而

是实现了对三相脉冲信号的合成作用。电路输出的脉冲信号,并不是表征着输出电压幅度的模拟电压信号,而是表征着输出频率的脉冲信号。电路是通过电压信号检测输出频率,相当于完成了“模/数”转换的作用,将输入模拟电压信号,转变化“脉冲信号”输出。输出信号用于对逆变输出电路的检测,当逆变输出电路中某一臂IGBT在故障状态时,报出缺相故障,并实施停机保护。

2、电压检测电路的后级电路

电压检测电路的后级电路对信号的处理方式,同电流检测电路对信号的处理方式基本是相同的。

1)由前级电路送来的电压检测信号,进一步经模拟放大,或电压跟随,输入MCU相关引脚,供运行电压显示、过、欠压时延时报警。

2)以梯级电压比较器电路,将输入模拟电压信号转化为两个开关量报警信号,送入MCU相关引脚,用于启动直流制动电路、过压时保护停机。

电路实例的分析见下文。

3、电压检测电路的报警内容和故障表现

1)报警内容

LU:直流回路电压(直流高压侧)过低;O U:直流回路电压(直流高压侧)过高;HOU:瞬态过压;SOU:稳态过压;SLU:稳态欠压;ILP:R、S、T输入有缺相;OLP:U、V、W输出有缺相;主电路接触器未正常动作,等等。

2)若开关量信号硬件电路故障时,上电即报警,无法复位;模拟量信号误报警,一般可以复位的。当输入电源(直流回路DC530V)异常、充电接触器上电后未正常动作时,在上电、起动、停机过程中、运行中,均有可能报出1)中的各种故障内容。

下文结合实际电路,讲解故障检修方法。

二、正弦SINE300型7.5kW变频器电压检测与保护电路

该机型的电压检测电路共分三部分:输入电源电压检测电路、输出电压检测电路和直流电压(有时称高压侧,有时称直流母线)检测电路,对信号的作用、报警内容和故障信号屏蔽方法各有不同。

1、R、S、T输入电源电压检测电路,电源原理在上文(见图5后文)已有说明,此处从略。

图7三相输入电源电压检测电路

屏蔽“ILP”故障的方法:

变频器在上电后,和运行中,若发生电源缺相故障,或三相输入电源电压检测电路本身故障时,均会显示“ILP”故障代码,报缺相故障,处于停机保护状态。在检修过程中,若为变频器引入单相AC380V维修电源,检测电路上电即报缺相故障,整机控制电路电路停止工作,给下一步的上电检修带来不便。

将光耦合器U15的3、4脚暂时用导线短路,或用焊锡短路,使U1的61脚变为0V低电平,人为形成一个“三相输入电源电压正常”的信号,可以屏蔽“ILP”故障报警。

2、U、V、W输出电压检测电路

图8 三相输出电压检测电路

U、V、W输出电压检测电路,采用一块标注为SINE2的单元电路板,将输出电压检测信号由SINE2电路转化为输出频率(开关量)信号,输入U1的43脚。SINE2内部电路构成,请参阅上文图6电路。电路工作状态,是在变频器运行状态下,MCU是对输入43脚的矩形脉冲波头数进行计数,判断有无输出缺相故障的,检修过程中,不需屏蔽该信号。

3、直流电压检测电路

1)模拟信号处理电路

直流电压检测电路的电压采样信号,取自开关变压器的二次绕组,负向电压经整流滤波,得到+15V供电电源,与-15V电源一起,提供检测电路中运算放大器的正、负供电电源;正向电压(对应开关管饱和导通时刻)经D12整流,R11、R107、C60、C63等元件分压和滤波后,得到直流电压采样信号,经J2/J5排线端子的30脚进入MCU主板(后级电压检测电路)的直流电压检测电路。

图9 直流电压检测电路

送入MCU主板的电压采样信号,先经由U17与外围元件组成的电压跟随器电路进行缓冲,U17的1脚输出信号,一路经R49限流、D9信号电压钳位电路、C27滤除高频成分后,输入MCU的模拟信号输入端122脚,用于直流电压值显示,检测信号幅度过低时,变频器报SLU(意为稳态欠压)故障,实施停机保护;当U17的1脚输出的检测信号电压偏高时,MCU报出“瞬时过压”故障信号,同时使主电路的直流制动电路开始工作,使直流电压下降于正常值以内。

2)开关量信号处理电路

U17的1脚输出信号,又经R208、C514、R209组成的排形滤波电路,得到较为稳定的电压检测信号,输入由U30、U6组成的开关量报警信号形成电路,当U30的同相输入端检测电压高于反相输入端“设定的动作阀值”时,U30的输出端7脚变为高电平信号,经D30钳位于5V电平上,由U6(施密特反相器)倒相为0V故障报警信号,输入MCU的106脚。变频器报SOU(意为稳态过压,指启动直流制动电路后仍无效果),停机保护。

4、电压检测电路的报警及故障(误报警)表现:

1)输入电源电压过低,超过(MCU内部程序设定值),上电过程中可能报出欠电压故障;变频器的供电电源缺相时报出缺相故障;

2)检测电路本身故障,上电后报出过、欠压故障,变频器处于保护状态,不接受起动信号。

5、电压检测电路故障检修实例(以图7/8/9电路为例)

﹝故障实例1﹞送修用户反映:变频器上电后,报SLU(意为稳态欠压)故障,不能开机运行。

1)变频器接入AC380V维修电源,上电后报ILP(输入缺相)故障,从电源/驱动板上找到如图7所示的三相输入电源电压检测电路,先用导线将光耦合器的3、4脚短接,以屏蔽输入缺相故障信号。

2)上电后,变频器报SLU(意为稳态欠压)故障。当U6的12脚电平变化时,变频器应该报过电压故障,故首先排除开关量报警信号形成电路的故障。检测U17和各个引脚电压值,判断U17本身没有问题,可能为3脚输入电压信号过低所致(见图9)。

3)检查D12、R100等元件,也无异常。试将R4短接,以提升电压检测信号的电压值,上电不再显示SLU故障,可正常操作运行。分析电压检测信号电压低落的原因,可能为电阻分压回路的电阻变值,如R100电阻值变大,或R107的电阻值变小所致,或C60、C1、C63等电容漏电所致,而以电容漏电的可能性为大。当焊下C63再为变频器上电时,不再误报欠电压故障,测量电容C63的两引脚,有数千欧姆的漏电电阻值。用0.01uF~0.1uF范围以内的瓷片电容,代换后,上电试机,变频器工作正常。

﹝故障实例2﹞变频器上电后,显示SOU(意为稳态过压)。本机的过电压开关量信号报警电路由U30、U6等电路组成(见图9),正常状态下,U30的7脚为低电平,U6的信号输出端12脚为高电平。现在的测试结果是,U30的7脚电平状态正常,测U6的12脚为0V低电平,进一步,测U6的信号输入端13脚为高电平,从U6的输入端、输出端信号的电平状态,判断U6是好的,故障出在前级电路。

但检测U30的7脚输出状态也是对的,故障终点落在电阻R216身上,该电路断路或电阻值变大时,会使U6的13脚输入电压变为高电平,电路误输出过电压报警信号。焊下R216测量,其电阻值已变大为12kΩ,更换R216,故障排除。

咸庆信

2012年10月1日

中华工控网原创文章,转载请注明出处

通用变频器的过电流保护功能

当变频器的输出侧发生短路或电动机堵转时,变频器将流过很大的电流,从而造成电力半导体的损坏。为了防止过电流,变频器中设置有过电流保护电路。当电流超过某一数值时,变频器或者通过关断电力半导体器件切断输出电流,或者调整电动机的运行状态减少变频器的输出电流。 例如,如果电动机的启动时间设置过短,或者转动惯量太大时,启动时常会发生过电流,这时可以重新设置启动时间。对于新一代变频器,在电流超过额定电流的一定范围内,允许变频器运行一段时间,变频器的输出频率保持不变,此时电动机的启动时间将比设定时间要长。如果启动时间设置太短,则切断变频器的输出。 变频器为了实现过电流保护,需要从变频器的硬件和软件两个方面采取措施。由于软件处理时受到采样时间以及微处理器的处理速度的限制,因此对于某些快速变化的过电流不能进行保护。这种情况下,通常采用硬件电路进行保护。例如,在主电路电力半导体器件驱动电路中包括过电流的检测和封锁驱动信号的保护电路,它不经过CPU的处理,可以实现对变频器的快速保护。当硬件保护电路动作时,它还会给CPU发出中断信号,CPU据此进行相应的处理。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/8917647882.html,/

变频器检测电路原理与维修

变频器检测电路例举 故障检测电路的主体电路还是由由运算放大器构成,通常,运算放大器被接成以下几种 类型的电路,完成着对信号模拟放大、比较输出和精密整流三种工作任务。 一、反相放大器电路: 图6.19 运算放大器反相放大电路 运算放大器,具有输入阻抗高(不取用信号源电流)、输出阻抗低(负载特性好)、放 大差模信号(两输入端信号之差)、抑制共模信号(两输入端极性与大小相同)和交、直流 信号都能提供线性放大的优良特性。 上图( 1 )、(2 )、(3 )、在电路形式上为反相放大器,输出信号与输入信号相位相反, 又称为倒相放大器。电路对输入电压信号有电压和电流的双重放大作用,但在小信号电路中,只注重对电压信号的放大和处理。电路的电压放大倍数取决于R2 (反馈电阻)与R1 (输入电阻)两者的比值。R3 为偏置电阻,其值为R1 、R2 的并联值。因R2 、R1 的选值(比值)不同,可完成三种信号传输作用,即构成反相放大器、反相器和衰减器三路信号处理电 路。(1 )电路为反相放大器电路,电路放大倍数为 5 ;( 2 )电路为倒相器,对输入信号起到倒相输出作用,无放大倍数,不能称为放大器了。或输入0 ∽5V 信号,则输出0 ∽-5V 倒相信号;( 3 )电路为衰减器电路,若输入0 ∽10V 信号,输出0 ∽-3 。3V 倒相信号, 为一个比例衰减器。 图(1 )、(2 ),(3 )电路,有两个特征: 1 、输入、输出信号反相; 2 、无论是放大或 衰减或倒相电路,输出信号对输入信号维持一个比例输出关系,可以笼统地称为反相放大器, 因为倒相器的放大倍数为 1 ,而衰减器恰恰也是利用了电路的放大作用。 有趣的是,此三种反相放大器,在电流、电压检测电路中,都有应用。以电流检测电路为例: 这是因为,串于三相输出端的电流互感器内置放大器,输出信号已达伏特级的电压幅度,而CPU 的输入信号幅度又须在5V 以下的电压幅度内,故反续电流信号处理电路,有的采用 了有一定放大倍数的反相放大器;有的采用了倒相器电路,只是根据CPU 输入电压信号极 性的要求,只对信号进入了倒相处理,并不须再进行放大;部分电路为适配后级电路的信号 幅度范围,甚至采用了衰减器电路,对电流互感器来的电压信号衰减一下,再送入后级电路。检测电路中的模拟信号电路的供电,根据放大交流信号的要求,一般采用正、负15V 双电源供电。根据反相放大器的电路形式和运算放大器的电路特性,我们可找到相应的检测方法:

变频器电压电流典型检测方法

变频器电压电流典型检测方法 1.前言 变频器最主要的特点是具有高效率的驱动性能及良好的控制特性。简单地说变频器是通过改变电机输入电压的频率来改变电机转速的。从电机的转速公式可以看出,调节电机输入电压的频率f,即可改变电机的转速n。目前几乎所有的低压变频器均采用图1所示主电路拓扑结构。 部分1为整流器,作用是把交流电变为直流电,部分2为无功缓冲直流环节,在此部分可以采用电容作为缓冲元件,也可用电感作为缓冲元件。部分3是逆变器部分,作用是把直流电变为频率可调整的三相交流电。中间环节采用电容器的这种变频器称之为交直交电压型变频器,这种方式是目前通用型变频器广泛应用的主回路拓扑。本文将重点讨论这种结构在电压、电流检测设计中应注意的一些问题。变频器在运行过程中为什么要对电压、电流进行检测呢这就需要从电机的结构和控制特性上说起: ①三相异步电动机的转矩是由电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。 ②变频器运行中,过载起动电流为额定电流的~倍;过流保护为额定电流的~3倍(根据不同性质的负载要求选择不同的过流保护点);另外还有电流闭环无跳闸、失速防止等功能都与变频器运行过程中的电流有关。 ③为了改善变频器的输出特性,需要对变频器进行死区补偿,几种常用的死区补偿方法均需检测输出电流。 ④电动机在运转中如果降低指令频率过快,则电动状态将变为发电状态运行,再生出来的能量贮积在变频器的直流电容器中,由于电容器的容量和耐压的关系,就需要对电压进行及时、准确地检测,给变频器提供准确、可靠的信息,使变频器在过压时进行及时、有效的保护处理。同时变频器上电过程、下电过程都需要判断当前直流母线电压的状态来判断程序下一步的动作。 鉴于电压、电流检测的重要性,在变频器设计中采用对电压、电流进行准确、有效检测的方法是十分必要的。 2.在线测量电压的几种方案设计 变频器的过电压或欠电压集中表现在直流母线的电压值上。正常情况下,变频器直流电压为三相全波整流后的平均值。若以380V线电压计算,则平均直流电压。在过电压发生时,直流母线的储能电容将被充电,主电路内的逆变器件、整流器件以及滤波电容等都可能受到损害,当电压上升至约800V左右时,变频器过电压保护功能动作;另外变频器发生欠压时(350V左右)也不能正常工作。对变频器而言,有一个正常的工作电压范围,当电压超过或低于这个范围时均可能损坏变频器,因此,必须在线检测母线电压,常用的电压检测方案有三种。 1)变压器方案 图2中,P为直流母线电压正(+),N为直流母线电压负(-)。 变频器控制回路的电源电压一般采用开关电源的方式来获得,利用开关变压器的特点,在副边增加一组绕组N4(匝数根据实际电路参数决定)作为母线电压的采样输出,开关变压器的原边电压为母线电压,而副边输出电压随着原边输入电压的变化而线性地发生变化,这样既能起到强弱电隔离作用又能起到降压作用,把此采样信号经过处理可以送到DSP内进行A/D采样实现各种保护工作。 2)线性光耦方案

中达VFD变频器电流检测电路

中达VFD-B型22kW变频器电流检测与保护电路 ——故障报警代码解密之一 本例机型的电流检测与保护电路,其电路结构与信号处理方式分为: 1)前级电流检测信号处理电路,用电流互感器取得输出电流信号; 2)电流检测电路的模拟信号处理电路,将前级电流检测信号进行模拟放大后,输入MCU 引脚; 3)接地故障信号处理电路,用比较器电路取得开关量故障报警信号; 4)过流故障信号处理电路,用比较器电路取得开关量故障报警信号。 为了检修上的方便,电流检测信号的输入端、输出端和运算放大器的输入、输出脚,标注了静态电压值,读者也可由标注电压值的不同,比较处于线性放大器区的模拟信号处理电路,和处于非线性放大区的电压比较器电路,两者的特点和不同。由之“推测”出变频器运行中对动态信号的处理过程,和故障时开关量输出信号的变化趋势。 注意:MCU主板电路中,部分小体积贴片电阻,没有阻值标注,只能标出在线测量值。如同属1kΩ电阻,以下电路图中标注102(有标注电阻)的,是实际值;标注为1kΩ(无标注电阻)的,是在线测量值,请读者予以注意。 1、前级电流检测信号处理电路 电流互感器CS1~CS3分别取出U、V、W运行电流信号,由集成运算放大器DU1内部3组放大器和外围元件构成的同相比例放大器,将信号电压放大约1.5倍后,送入后级电流检测电路。 注意,因电流互感器CS1~CS3焊装于一块小线路板上,经J1*/DJ2端子输入至DU1进行放大,再经DJP1/J1端子排引入MCU主板电路,检修过程中,为了测量方便,当J1*与DJ2的端子排脱离时,因3级同相放大器的同相输入端“悬空”,会使输出端电压由0V变为-13.6V (三组放大器的供电为+15V、-15V),则后级电路因输入异常的“过电流信号”,形成故障停机报警信号。 若J1*与DJ2的端子排脱离后,再为控制板上电,则报出“GFF”故障代码,意为输出端“接地故障”;若在上电后使之脱离,则报出“OC”故障代码,意为“过电流故障”。可见,当电流检测电路的“源头”产生异常时,后级各个检测电路同时有了异常信号输出时,MCU 先行判断并报出比较严重的故障,如接地故障等,以起到警示作用。操作显示面板显示OC或GFF故障代码时,可以操作面板STOP/RESET按键进行故障复位。 屏蔽该故障的方法,是解决DU1同相输入端子悬空的问题,可暂时将DU1的5、10、12脚短接后,再接供电电源地。

变频器电路中的制动电路

变频器电路中的制动控制电路 一、为嘛要采用制动电路 因惯性或某种原因,导致负载电机的转速大于变频器的输出转速时,此时电机由“电动”状态进入“动电”状态,使电动机暂时变成了发电机。一些特殊机械,如矿用提升机、卷扬机、高速电梯等,风机等,当电动机减速、制动或者下放负载重物时,因机械系统的位能和势能作用,会使电动机的实际转速有可能超过变频器的给定转速,电机转子绕组中的感生电流的相位超前于感生电压,并由互感作用,使定子绕组中出现感生电流——容性电流,而变频器逆变回路IGBT两端并联的二极管和直流回路的储能电容器,恰恰提供了这一容性电流的通路。电动机因有了容性励磁电流,进而产生励磁磁动势,电动机自励发电,向供电电源回馈能量。这是一个电动机将机械势能转变为电能回馈回电网的过程。 此再生能量由变频器的逆变电路所并联的二极管整流,馈入变频器的直流回路,使直流回路的电压由530V左右上升到六、七百伏,甚至更高。尤其在大惯性负载需减速停车的过程中,更是频繁发生。这种急剧上升的电压,有可能对变频器主电路的储能电容和逆变模块,造成较大的电压和电流冲击甚至损坏。因而制动单元与制动电阻(又称刹车单元和刹车电阻)常成为变频器的必备件或首选辅助件。在小功率变频器中,制动单元往往集成于功率模块内,制动电阻也安装于机体内。但较大功率的变频器,直接从直流回路引出P、N端子,由用户则根据负载运行情况选配制动单元和制动电阻。 一例维修实例: 一台东元7300PA 75kW变频器,因IGBT模块炸裂送修。检查U、V相模块俱已损坏,驱动电路受强电冲击也有损坏元件。将模块和驱动电路修复后,带电机试机,运行正常。即交付用户安装使用了。 运行约一个月时间,用户又因模块炸裂。检查又为两相模块损坏。这下不敢大意了,询问用户又说不大清楚。到用户生产现场,算是弄明白了损坏的原因。原来变频器的负载为负机,因工艺要求,运行三分钟,又需在30秒内停机。采用自由停车方式,现场做了个试验,因风机为大惯性负荷,电机完全停住需接近20分钟。为快速停车,用户将控制参数设置为减速停车,将减速时间设置为30秒。在减速停车过程中,电机的再生电能回馈,使变频器直流回路电压异常升高,有时即跳出过电压故障而停机。用户往往实施故障复位后,又强制开机。正是这种回馈电能,使直流回路电压异常升高,超出了IGBT的安全工作范围,而炸裂了。 此次修复后,给用户说明情况,增上了制动单元和制动电阻器后,变频器投入运行,几年来再未发生模块炸裂故障。 此种制动方式,加快机械惯性能量的消耗,利于缩短停车进程,将电机的再生发电能

变频器检测电路

变频器电压检测电路工作原理及故障实例分析 一、电路构成和原理简析 特定安全范围以内,若工作电源危及IGBT(包含电源本身的储通电容)器件的安全时,实施故障报警、使制动电路投入工作、停机保护等措施。此外,少数机型还有对输出电压的检测,在一定程度上,起到对IGBT导通管压降检测的同样作用,取代驱动电路中IGBT的管压降检测电路。 1、电压检测电路的构成、电压采样方式及故障表现 图1 电路检测电路的构成(信号流程)框图 1、电压检测电路的电压采样形式(前级电路) 1)直接对DC530V电压采样

图2 DC530V电压检测电路之一 直接对P、N端DC530V整流后电源电压进行进行采样,形成电压检测信号。如阿尔法ALPHA2000型18.5kW变频器的电压检测电路,如图2所示。 处理得到5V电源所提供,电源地端与主电路N端同电位。输出侧供电,则由主板+5V所提供。 直流回路P、N端的DC530V电压,直接经电阻分压,取得约120mV的分压信号,输入U14(线性光耦合器,其工作原理前文已述)进行光、电隔离与线性放大后,在输出端得到放大了的检测电压信号,再由LF353减法放大器进一步放大,形成VPN直流电压检测信号,经CNN1端子,送入MCU主板上的电压检测后级电路。 2)由开关变压器次级绕组取得采样电路信号 图3 DC530V电压检测电路之二 图4 直流回路电压采样等效电路及波型示意图 主电路的DC550V直流电压检测信号,并不是从主电路的P、N端直接取得,而是“间接”从开关电源的二次绕组取出,这是曾经令一些检修人员感到困惑、找不到电压检测信号是从何处取出的一件事情,也成为该部分电路检修的一个障碍。电压采样电路如上图4所示。 在开关管VT截止期间,开关变压器TRAN中储存的磁能量,由次级电路进行整流滤波得到+5V工作电源,释放给负载电路;在VT饱和导通期间,TC2从电源吸取能量进行储存。

变频器电路图-整流、滤波、电源及电压检测电路

变频器电路图-整流、滤波、电源及电压检测电路 以下仅仅对变频器电路图-整流、滤波、电源及电压检测电路的分析,好象论坛上发不了图纸. 1. 整流滤波部分电路 三相220V电压由端子J3的T、S、R引入,加至整流模块D55(SKD25-08)的交流输入端,在输出端得到直流电压,RV1是压敏电阻,当整流电压超过额定电压385V时,压敏电阻呈短路状态,短路的大电流会引起前级空开跳闸,从而保护后级电路不受高压损坏。整流后的电压通过负温度系数热敏电阻RT5、RT6给滤波电容C133、C163充电。负温度系数热敏电阻的特点是:自身温度超高,阻值赿低,因为这个特点,变频器刚上电瞬间,RT5、RT6处于冷态,阻值相对较大,限制了初始充电电流大小,从而避免了大电流对电路的冲击。 2. 直流电压检测部分电路 电阻R81、R65、R51、R77、R71、R52、R62、R39、R40组成串联分压电路,从电阻上分得的电压分别加到U15(TL084)的三个运放组成的射极跟随器的同向输入端,在各自的输出端得到跟输入端相同的电压(输出电压的驱动能力得到加强)。U13(LM339)是4个比较器芯片,因为是集电集开路输出形式,所以输出端都接有上接电阻,这几组比较器的比较参考电压由Q1(TL431)组成的高精度稳压电路提供,调整电位器R9可以调节参考电压的大小,此电路中参考电压是6.74V。如果直流母线上的电压变化,势必使比较器的输入电压变化,当其变化到超过6.74V的比较值时,则各比较器输出电平翻转,母线电压过低则驱动光耦U1(TLP181)输出低电平,CPU接收这个信号后报电压低故障。母线电压过高则U10(TL082)的第7脚输出高电平,通过模拟开关U73(DG418)从其第8脚输出高电平,从而驱动刹车电路,同时LED DS7点亮指示刹车电路动作。由整流二极管D5、D6、D7、D18、D19、D20组成的整流电路输出脉动直流电,其后级的检测电路可对交流电压过低的情况进行实时检测,检测报警信号也通过光耦U1输出。 3. 电源电路 U62(VIPER100SP)是内部带场效应管的开关电源控制芯片。母线电压+VPW通过保险F1加到开关变压器T1的第2脚,T1的第1脚和第2脚是初级线圈,U62内部集成了特别的启动电路,电路启动后,T1次级3、4、5脚输出的感应脉冲经整流滤波后得到电压检测电路所需的正负电压,正电压也同时提供给U62以维持其工作。T1其它次级输出的感应脉冲经整流滤波后分别供应U、V、W三相上桥光耦驱动所需电压(+VHU,0VHU)(+VHV,0VHV)(+VHW,0VHW),还有其它控制电路所需电压(+VSI,0VSI,-VSI)。芯片U56(LM2575S-ADJ)是一个PWM开关式输出稳压芯片,将+VSI电压降压并稳定为5V(+VSI5)供给CPU等芯片所需电路。 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。

变频器中常见的检测与保护电路共11页word资料

变频器中常见的检测与保护电路 您好,欢迎来到阿里巴巴 变频器中常见的检测与保护电路(2011/06/01 18:47)1引言 控制系统反馈量检测的精确程度,从某种意义上说,很大程度上决定了控制系统所能达到的控制品质。检测电路是变频调速系统的重要组成部分,它相当于系统的"眼睛和触觉"。检测与保护电路设计的合理与否,直接关系到系统运行的可靠性和控制精度。 2变频器常用检测方法和器件 2.1电流检测方法 图1电流互感示意图 电流信号检测的结果可以用于变频器转矩和电流控制以及过流保护信号。电流信号的检测主要有以下几种方法。 (1)直接串联取样电阻法 这种方法简单、可靠、不失真、速度快,但是有损耗,不隔离,只适用于小电流并不需要隔离的情况,多用于只有几个kva的小容量变频器中。 (2)电流互感器法 这种方法损耗小,与主电路隔离,使用方便、灵活、便宜,但线性度较低,工作频带窄(主要用来测工频),且有一定滞后,多用于高压大电流的场合。如图1所示。 图1中,r为取样电阻,取样信号为: us=i2r=i1r/m(1) 式中,m为互感器绕组匝数。 电流互感器测量同相的脉冲电流ip时,副边也要用恢复二极管整流,以消除原边复位电流对取样信号的影响,如图2(a)所示。在这种电路中,互感器磁芯单向磁化,剩磁大,限制了电流测量范围,可以在副边加上一个退磁回路,以扩展其测量范围,如图2(b)所示。 电流互感器检测后一般要通过整流后再用电阻取样,如图2(a)。由于主回路电流会有尖峰,如图3(a),这种信号用于峰值电流控制和保护都会有问题。

图2电流互感器及范围扩展 随着脉宽的减小,前沿后斜坡峰值可能比前沿尖峰还低,就会造成保护电路误动作,所以要对电流尖峰进行处理。处理的方法见图3(b),和rs并联一个不大的电容cs,再加一个合适的rc参数,就能有效地抑制电流尖峰。如图3(c)所示。 图3电流取样信号的处理 (3)霍尔传感器法 它具有精度高、线性好、频带宽、响应快、过载能力强和不损失测量电路能量等优点。其原理如图4所示。 图4中,ip为被测电流,这是一种磁场平衡测量方式,精度比较高,若lem的变流比为1:m,则取得电压us也符合式(1)。在通用变频器中霍尔传感器已成为电流检测的主力。 2.2电压检测方法 电压信号检测的结果可以用于变频器输出转矩和电压控制以及过压、欠压保护信号。电压信号的检测可用电阻分压、线性光耦、电压互感器或霍尔传感器等方法。 图4霍尔电流检测方法 (1)电阻分压法:用电阻网络将高压进行分压,得到按比例缩小的低电压。该方法使用简单,但其精度受外界环境(主要是温度)影响较大,且不能实现隔离,如果作为模拟反馈量进行a/d转换,需要加入隔离放大器。该方法适用于低压系统。 (2)电压互感器法:与电流互感器类似,只能用于检测交流电压,适用于高压系统中。 (3)霍尔电压传感器法:原理与霍尔电流传感器类似,如图5所示。 (4)线性光耦法:霍尔电压传感器具有反应速度快和精度高的特点,但是在小功率的变频器中,采用霍尔传感器的成本昂贵,而采用高性能的光耦则可降低成本。像hp公司生产的线性光耦hcnr200/201等具有很高的线性度和灵敏度,可精确地传送电压信号。图6是一个用 hcnr200/201测量电压的实际电路,光耦实际上起直流变压器的作用。图6中,原边运放采用的是单电源供电的lm2904,副边运放采用精密运

变频器原理与维修

变频器原理与维修 一、变频器原理介绍 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装臵。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。 整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM 波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型; 如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。 对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装臵时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加 二、变频器常见故障的分析与处理 1 变频器参数设臵类故障 在使用过程中变频器能否满足用户系统的要求,其参数设臵非常重要,如果参数设臵不

正确,变频器便不能正常工作。 1.1 变频器的参数设臵 生产厂在进行变频器出厂调试时,对变频器的每一个参数都设有一个默认值,这些默认参数值一般被称作工厂值。当用户使用的变频器是在这些参数值下工作时,则用户能以面板操作方式使变频器正常运行。但是,实际情况往往是面板操作并不能完全满足大多数用户传动系统的要求。所以,用户在正确使用变频器之前,必须要对变频器参数的默认值进行如下几个方面的辨识和重新设臵: 1)确认电机的功率、电流、电压、转速、最大频率等参数(这些参数可以从电机铭牌中查得)是否与默认值相符,如果不符时则要对默认值进行重新设臵; 2)确认变频器采取的控制方式(即速度控制、转矩控制、PID 控制或其他控制方式)后,一般还需要根据控制精度进行静态或动态辨识; 3)设定变频器的启动方式,一般变频器在出厂调试时设定为面板启动,用户可以根据实际情况选择自己的启动方式,可以用面板、外部端子、通讯等方式; 4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定等,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式的综和。 当正确设臵以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 1.2 变频器参数设臵类故障的处理 一旦发生了参数设臵类故障时,变频器都不能正常运行,这时可根据产品说明书对参数设臵进行修改。如果修改后仍不行,则最好是把所有参数恢复到出厂值,然后按上述步骤重新设臵,注意每一个公司的变频器其参数恢复方式也不尽相同。 2 过电压故障及处理

变频器显示电流与电源电流表显示存在差别的说明

关于电流表上的电流显示与变频器面板上的电流显示 存在差别的说明 1、柜面上的电流表,测量的是变频器输入端的电流,是采用普通交流电流互 感器进行测量的; 2、变频器面板上显示的电流是变频器内部霍尔电流传感器测量所得的电流, 霍尔电流传感器测量的是变频器的输出电流; 3、普通交流电流互感器不能用来测量变频器输出端的电流,因为变频器的输 出电压、电流波形为PWM脉宽调制波形,采用普通的电流互感器或钳形 表难以测量变频器的输出电流,因此为了能够观察电机的运行电流,通常只能在变频器的输入端加装电流互感器; 4、变频器输入端电流互感器所测的电流与变频器面板上显示的电流存在差 别主要是因为: 输入电流的电压是380V的。变频器的输出是调频调压的信号,低频段时是降压输出的,而其输入功率约等于输出功率,所以负载电流会变 大。 即功率不变的情况下,输出电压降低了,输出电流增大了。 具体到变频器内部原理,因为变频器一般都是交直交变频器,内部有大容量电容储能。调压采用PWM脉宽调制技术。 5、通常情况都是以变频器显示的为准,因为AC/AC变频器是通过整流单 元(通常称电源模块)将3相交流(比如380V)整流(3相全波桥整)成直 流(540V),再通过控制单元,按照控制方式,比如矢量,V/F等及给定值,通过控制大功率开关管(通常称电机模块)的通断及其频率转换成高频交流信号接至变频电机。因此,普通的钳流表(其实也是一个电流互感器)所测电流不是很准确,需要专用高频信号测量的电流互感器,而在变 频器内部的输出回路的铜排上就是串了这样的设备,因此只要此元件不坏,肯定比普通钳流表准。?另外,关于输入侧的电流,正如以上说言,由于是 工频交流信号只要普通电流互感器,但电流和输出测不一定对应,但可以按照功率来大概推算,比如:输出电流240A,如果电压150V,则输出侧有效功率两者相乘约等于36KW,考虑到损耗则输入侧应该稍大于 36KW,比如按照38KW计算,则输入侧电流恰好=38KW/380V=100A。 (以上公式均为近似值)。 安装一台变频器,在五十赫兹运行时,输入电流十安,输出电流七十安,变频器七十五千瓦,电机七十五千瓦,另有一台,五十五千瓦,五十赫兹运行时,输入三十安,输出五十安, 一、输入,输出电流为什么相差这么大, 二、七十五千瓦变频器输入电流为什么这么小, 刘志斌17楼回复时间:2008-8-16 10:06:30

变频器电压检测电路(新)

103 变频器的电压检测电路(新) ――正弦变频器电压检测实际电路分析 一、电路构成和原理简析 电压检测电路,是变频器故障检测电路中的一个重要组成部分,旨在保障使 IGBT 逆变电路的工作电 源电压在一特定安全范围以内,若工作电源危及 IGBT (包含电源本身的储通电容)器件的安全时,实施 故障报警、使制动电路投入工作、停机保护等措施。此外,少数机型还有对输出电压的检测,在一定程度 上,起到对IGBT 导通管压降检测的同样作用,取代驱动电路中 IGBT 的管压降检测电路。 1、电压检测电路的构成、电压采样方式及故障表现 图1电路检测电路的构成(信号流程)框图 1、电压检测电路的电压采样形式(前级电路) 1)直接对 DC530V 电压采样 图2 DC530V 电压检测电路之一 模拟量信号 绕组电压检测 开关变压器二次 运行电压显示、程序控制用 模拟信号放大处理 MCU 模拟量输入端 模拟量信口一号 电压检测53 p N 端DC 过、欠压报警、启动直流制动 梯级电 压比较强开关量信号 开关量信号 输 入电 压检测 U V W 端 开关量信号 输 入电 压检测 R s T 端 R54A 2000 C47 —A I —— X7 220k 2W I 220k 2W 510 C48 2200 12 3 4 ^0666. U14 A7840 +5V R55 1002 C49 — C50 15V -15V VPN CNN1 CNN1 8 020T510P R54B 103 MC 数 字 I/O 口 78L05C 1 VOUT VIN 8 +15V LF353 I — R56 1002 R57 1002 A C51 1002

变频器的故障检测与保护电路

变频器的故障检测与保护电路 虽有时候令人头疼,但却是最令人产生检修兴趣的电路之一。 变频器故障检测电路,往往是变频器厂家在软、硬件电路设计上的浓笔重彩之处。 变频器电路中林林总总的各种故障检修电路,只有一个指向和目的——在变频器面临异常工作状态时,采取停机或其它保护措施,尽最大可能保护IGBT模块的安全。 究竟有哪些因素会影响乃至危及IGBT模块的安全呢? 1、电压因素: (1)、IGBT模块的供电电压过高时,将超出其安全工作范围,导致其击穿损坏;(2)、供电电压过低时,使负载能力不足,运行电流加大,运行电机易产生堵转现象,危及IGBT模块的安全; (3)、供电电压波动,如直流回路滤波(储能)电容的失容等,会引起浪涌电流及尖峰电压的产生,对IGBT模块的安全运行产生威胁; (4)、IGBT的控制电压——驱动电压低落时,会导致IGBT的欠激励,导通内阻变大,功耗与温度上升,易于损坏IGBT模块。 2、电流因素: (1)、过流,在轻、中度过流状态,为反时限保护区域;(2)、严重过流或短路状态,无延时速断保护; 3、温度因素: (1)、轻度温升,采到强制风冷等手段;(2)、温度上升到一定幅值时,停机保护; 4、其它因素: (1)、驱动电路的异常,如负截止负压控制回路的中断等,会使IGBT受误触通而损坏; (2)、控制电路、检测电路本身异常,如检测电路的基准电压飘移,导致保护动作起控点变化,起不到应有的保护作用。

相对于以上影响或危及IGBT模块的因素,则衍生了下述种类的保护电路。 1、电压检测电路: (1)、直流回路电压检测电路,用电阻分压网络直接对直流530V电压采样,或从开关电源次级整流电路间接对直流530V进行采样,由后续电路处理成模拟信号和数字开关量信号。其中模拟量信号用于直流回路的电压显示,输出控制等,而开关量信号用于故障报警、停机保护等; (2)、有的机型对三相交流输入电压进行检测,借以判断IGBT的供电状态,异常时停机保护; (3)、对驱动供电电压进行监测,常由驱动IC的内部保护电路执行此任务,预防IGBT出现欠激励现象; (4)、对充电接触器的触点状态进行检测,实际为直流回路电压的辅助检测。 2、电流检测电路: (1)、IGBT保护电路,检测IGBT在导通期间的管压降,判断IGBT是否处于过流、短路状态,实施软关断与停机保护措施; (2)、对三相输出电流进行采样,据过流程度不同,采取不同的保护手段,如降低运行频率、延时停机保护等。 (3)在逆变模块供电回路串接快熔保险管,实现对逆变模块的短路保护,对快熔管状态的检测; (4)、个别机型还对直流母线的电流进行采样,异常时采取保护动作;(5)、个别机型对输出电压/频率进行采样,实施对IGBT的保护。 3、温度检测电路: (1)、用温度传感器检测IGBT模块的温度; (2)、用温度传感器检测IGBT模块的温度,同时检测散热风扇的工作状态。 除了对IGBT的相关保护外,对其它元器件不需要保护吗?有无相关的故障检测电路呢? 对整流模块的保护,有的机型提供了用温度传感器形式的超温保护。有的没有。 有的机型在供电方面,提供了对CPU电路、控制电路的检测和保护,

变频器电压检测电路

变频器的电压检测电路(新) ——正弦变频器电压检测实际电路分析 一、电路构成和原理简析 电压检测电路,是变频器故障检测电路中的一个重要组成部分,旨在保障使IGBT 逆变电路的工作电源电压在一特定安全范围以内,若工作电源危及IGBT (包含电源本身的储通电容)器件的安全时,实施故障报警、使制动电路投入工作、停机保护等措施。此外,少数机型还有对输出电压的检测,在一定程度上,起到对IGBT 导通管压降检测的同样作用,取代驱动电路中IGBT 的管压降检测电路。 1、电压检测电路的构成、电压采样方式及故障表现 图1 电路检测电路的构成(信号流程)框图 1、电压检测电路的电压采样形式(前级电路) 1)直接对DC530V 电压采样 78L05C 8 P N 图2 DC530V 电压检测电路之一 直接对P 、N 端DC530V 整流后电源电压进行进行采样,形成电压检测信号。如阿尔法ALPHA2000型变

频器的电压检测电路,如图2所示。 电路中U14线性光耦合器的输入侧供电,由开关变压器的独立绕组提供的交流电压,经整流滤波、由78L05稳压处理得到5V 电源所提供,电源地端与主电路N 端同电位。输出侧供电,则由主板+5V 所提供。 直流回路P 、N 端的DC530V 电压,直接经电阻分压,取得约120mV 的分压信号,输入U14(线性光耦合器,其工作原理前文已述)进行光、电隔离与线性放大后,在输出端得到放大了的检测电压信号,再由LF353减法放大器进一步放大,形成VPN 直流电压检测信号,经CNN1端子,送入MCU 主板上的电压检测后级电路。 2)由开关变压器次级绕组取得采样电路信号 +5V -42V 图3 DC530V 电压检测电路之二 N +5V N1输入电压波形示意图V T 截止 VT 饱合导通 0V 530V 5V 0V -42V N3输出电压波形示意图 压采样等效电路T1 图4 直流回路电压采样等效电路及波型示意图 主电路的DC550V 直流电压检测信号,并不是从主电路的P 、N 端直接取得,而是“间接”从开关电源的二次绕组取出,这是曾经令一些检修人员感到困惑、找不到电压检测信号是从何处取出的一件事情,也成为该部分电路检修的一个障碍。电压采样电路如上图4所示。 在开关管VT 截止期间,开关变压器TRAN 中储存的磁能量,由次级电路进行整流滤波得到+5V 工作电源,释放给负载电路;在VT 饱和导通期间,TC2从电源吸取能量进行储存。 N3二级绕组上产生的电磁感应电压,正向脉冲出现的时刻对应开关管的截止时间,宽度较大,幅值较低,经二极管D12正向整流后提供负载电路的供电,有电流释放回路;反向脉冲出现的时刻对应开关管的饱和导通时间,宽度极窄,但并不提供电流输出,回路的时间常数较大(不是作为供电电源应用,只是由R 、C 电路取得电压检测信号),故能在电容C17上维持较高的幅值。开关管VT 饱合导通时,相当于将N1绕组直接接入530V 电源,因而在同一时刻N3绕组此时所感应的负向脉冲电压,是直接反映N1绕组供电电压高低的,并与其成线性比例关系——N3绕组感应电压的高低,仅仅取决于N1、N3绕组的匝数比。整

正弦变频器的电流检测电路

正弦SINE300型7.5kW变频器的电流检测电路 电源/驱动板与主板MCU由J2、J5排线端子连接,J2端子排之前的位于电源/驱动板的部分为电流检测的前级电路,J5端子以后的位于MCU主板的部分为后级电路。但考虑电路的衔接及电路分类、信号流程分析的方便,将正弦SINE300型7.5kW变频器电流检测与保护电路,分为前置电流检测电路、电流检测模拟信号处理电路一、电流检测模拟信号处理电路二、电流检测开关量信号形成电路等四个部分,旨在分析和说明本例机型对前置电路所输出的电流检测信号,在后续电路不同的处理方法,以生成模拟或开关量的多路电流检测信号,提供MCU内部运算控制、显示、故障报警、停机保护所需的各种信号。 UI WI VI 图1 前置电流检测电路 1、前置电流检测电路(见上图1) 前置电流检测电路,即J2/J5端子排之前、位于电源/驱动板的电流检测电路,由电流采样电阻、线性光耦合器、运放电路等组成。 本例机型的前置电路,只在U、V输出电流回路串接了R7、R60两只电流采样电阻,未采集W相电流检测信号。或者说,省去了W相的直接电流采样电路,而由采集到的U、V相电流信号,“间接合成”出W相信号。由电工-正弦交流理论可知,三相交流电具有固定的空间/电气相位关系,并相互构成电流回路,任意两意交流电中必定包含了第三相交流电的信息,在已知U、V相交流值的情况下,可由计算得出W相的交流值。 U、V相输出电流信号,在电流信号采样电阻R7、R60上转化为数十毫伏级的微弱电压信号,送入由

线性光耦合器U5、U7的输入侧,经光、电隔离和放大处理后,输出差分信号再送入后级U6内部两级运算放大器构成的差分放大器,形成UI、VI电流检测信号;UI、VI电流检测信号,先送入加法器电路U6(由U6的12、13、14脚内部电路和外围元件组成),经过矢量加减,得到“合成”W相电流检测信号WI,然后UI、VI、WI等3相输出电流检测信号,经J2/J5排线端子的25、26、28脚,输入MCU主板电路。 2、电流检测模拟信号处理电路一(见图2) UI 126 ADCINA0 引脚: 125 ADCINA1 WI VI 图2 电流检测模拟信号处理电路一 由前置电路来的UI、VI、WI电流检测信号,分作第一路电流检测信号,输入运放电路U40内部3组放大器和外围元件组成的电压跟随器电路,缓冲后由1、7、8脚输出,经D25、D26、D27保护二极管双向钳位(3只二极管为贴片3端器件,每只内含两只二极管),RC滤除高频干扰信号后,形成0~3V以内的电压信号,输入MCU的模拟信号输入端124、125、126脚。供内部程序运算,用于在操作显示面板显示运行电流值,起动过程中检测电流变化,进行VVV/F控制等。 图1、图2都用于对检测电流信号——表现为交流电压信号——模拟信号的处理和放大,可称为模拟信号放大电路。 3、电流检测模拟信号处理电路二(见图3) 由U6输出的UI、VI、WI电流检测信号,分作第二路电流检测信号,输入由运放电路U9内部4组放大器和外围元件组成的精密全波整流器电路,整流为六波头的脉冲动直流信号电压后,经U6反相器8、9、10脚内部放大器和外围元件构成的反相器,对信号进行倒相处理,形成IUVW综合电流信号,送入后级电路。 U9的1/2/3、8/9/10、12/13/14脚内部3组放大部与外接D4、D5、D6二极管及其它元件,组成精密半波整流器电路,UI、VI、WI电流检测信号同时送入反相求各电路(U9 5、6、7内部放大器和外围元件构成),U9内部4组放大器及外围元件组成了3相全波整流器电路,若运行频率为50Hz,则U9的7脚输出整流电压为六波头的频率值为300Hz的三相电流检测信号。

变频器中几种典型的在线电压电流检测方案设计

变频器中几种典型的在线电压电流检测方案设计 1. 前言 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置, 其最主要的特点是具有高效率的驱动性能及良好的控制特性。简单地说变频器是通过改变电机输入电压的频率来改变电机转速的。从电机的转速公式可以看出,调节电机输入电压的频率f,即可改变电机的转速n。目前几乎所有的低压变频器均采用图1所示主电路拓扑结构。 部分1为整流器,作用是把交流电变为直流电,部分2为无功缓冲直流环节,在此部分可以采用电容作为缓冲元件,也可用电感作为缓冲元件。部分3是逆变器部分,作用是把直流电变为频率可调整的三相交流电。中间环节采用电容器的这种变频器称之为交直交电压型变频器,这种方式是目前通用型变频器广泛应用的主回路拓扑。本文将重点讨论这种结构在电压、电流检测设计中应注意的一些问题。变频器在运行过程中为什么要对电压、电

流进行检测呢?这就需要从电机的结构和控制特性上说起: ①三相异步电动机的转矩是由电机的磁通与转子内流过电流之 间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。 ②变频器运行中,过载起动电流为额定电流的1.2~1.5倍;过流保护为额定电流的2.4~3倍(根据不同性质的负载要求选择不同的过流保护点);另外还有电流闭环无跳闸、失速防止等功能都与变频器运行过程中的电流有关。 ③为了改善变频器的输出特性,需要对变频器进行死区补偿,几种常用的死区补偿方法均需检测输出电流。 ④电动机在运转中如果降低指令频率过快,则电动状态将变为发电状态运行,再生出来的能量贮积在变频器的直流电容器中,由于电容器的容量和耐压的关系,就需要对电压进行及时、准确地检测,给变频器提供准确、可靠的信息,使变频器在过压时进行及时、有效的保护处理。同时变频器上电过程、下电过程都需要判断当前直流母线电压的状态来判断程序下一步的动作。 鉴于电压、电流检测的重要性,在变频器设计中采用对电压、电流进行准确、有效检测的方法是十分必要的。下面分别就几种方法进行探讨。 2.在线测量电压的几种方案设计

变频器电解电容器的检测方法

A、因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF的电容可用R×100 挡测量。 B、将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百KΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。 C、对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。 D、使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/8917647882.html,/

变频器电路原理详解经典

要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动! 变频器维修入门--电路分析图 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

广州科沃—工控维修的120 https://www.360docs.net/doc/8917647882.html, 驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路广州科沃—电梯维修的120 https://www.360docs.net/doc/8917647882.html, 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,内部都具有保护功能。 图2.4所示的电路是较典型的过流检测保护电路。由电流取样、信号隔离放大、信号放大输出三部分组成。

相关文档
最新文档