代数式求值方法

代数式求值方法
代数式求值方法

点击代数式求值方法

运用已知条件,求代数式的值是数学学习的重要容之一。它除了按常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的。下面举数例介绍常用的几种方法和技巧。

一、常值代换求值法

常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值。

例1 已知ab=1,求221111b

a +++的值 [解] 把ab=1代入,得

2

21111b a +++ =22b

ab ab a ab ab +++ =b a a b a b +++ =1

[评注] 将待求的代数式中的常数1,用a ·b 代入是解决该问题的技巧。而运用分式的基本性质及运用法则,对代入后所得的代数式进行化简是解决该问题的保证。

二、运用“非负数的性质”求值法

该法是指运用“若几个非负数的和为零,则每一个非负数应为零”来确定代数式中的字母的值,从而达到求代数式的值的一种方法。

例2 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求

b

a a

b +之值。

[解] ∵a 2b 2+a 2+b 2-4ab+1

=(a 2b 2-2ab+1)(a 2-2ab+b 2)

=(ab-1)2+(a-b)2

则有(ab-1)2+(a-b)2=0

∴???==-.

1,0ab b a

解得???==;1,1b a ?

??-=-=.1,1b a 当a=1,b=1时,

b

a a

b +=1+1=2 当a=-1,b=-1时,b a a b +=1+1=2 [评注] 根据已知条件提供的有价信息,对其进行恰当的分组分解,达到变形为几个非负数的和为零,这一新的“式结构”是解决本题的有效策略,解决本题要注意分类讨论的方法的运用。

三、整体代入求值法

整体代入法是将已条件不作任何变换变形,把它作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法。

例3 若x 2+x+1=0,试求x 4+2003x 2+2002x+2004的值。

[解] ∵x 4+2003x 2+2002x+2004

= x 4-x+2003x 2+2003x+2003+1

=x(x-1)(x 2+x+1)+2003(x 2+x+1)+1

又x 2+x+1=0

∴x 4+2003x 2+2002x+2004=1

[评注] ∵x 2+x+1=0 ∴x 不是实数,那么通过求出x 的值,再求代数式x 4+2003x 2+2002x+2004之值,显然枉然无望。对求值

的代数式进行适当的变形,将已知条件整体代入到求值的代数式中去,是解决本题的方法又是解决本题的技巧。

四、因式分解求值法

因式分解法求代数式的值是指将已知条件和求值的代数式之一或全部进行因式分解,达到求出代数式的值的一种方法。

例4 已知|a|+|b|=|ab|+1,求a+b之值

[解] ∵|a|+|b|=|ab|+1

∴|a|·|b|-|a|-|b|+1=0

(|a|-1)(|b|-1)=0

|a|=1 |b|=1

∴a=±1或b=±1.

则当a=1,b=1时,a+b=2

当a=1,b=-1时,a+b=0

当a=-1,b=1时,a+b=0

当a=-1,b=-1时,a+b=-2

[评注] 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A·B=0,则A=0或B=0”的思想来解决问题。另一种途径是对待求的代数式进行因式分解,分解成含有已知条件的代数式,然后再将已知条件代入求值。

五、运用倒数求值法

倒数法是指将已知条件或待求的代数式作倒数变形,从而达到求出代数式的值的一种方法。

例5 已知2311222--=-x x ,求)1

()1111(2x x x x x +-÷+--的值。

[解] 由已知,得23122

2--=-x x 所以,231212--=-

x 则2322

--=-x )1

()1111(2x x x x x +-÷+-- =2321122322--=-=-?-x

x x x x [评注] 采用此法要注意先对已知部分和求值的代数式进行化简变形,后再作选择。像本题先对待求的代数式进行化简得到结果为22x

-,根据这样一个“式结构”,再观察已知条件的“式结构”,显然想到,将已知条件采用倒数变形,用“化部分商”的方法,求出22x -

的值代入。 六、分解质因数求值法

此法是将有关信息进行分解重组,运用质因数的特有的性质,求出代数式中所含字母的值,从而达到求出代数式的值的一种方法。

例6 已知m 、n 为正整数,且12+22+92+92+m 2=n 2,求2m-n 的值。

[解] ∵n 2=m 2+167

∴(n-m)(n+m)=1×167

又m 、n 为正整数,167是质数

∴ ?

??==???=+=-.83,84;167,1m n n m m n 即 当m=83,n=84时,2m-n=2×83-84=82

[评注] m 、n 为正整数,167是质数,是由“(n-m)(n+m)=1×167得到n-m=1且m+n=167”这一结论的重要保证,离开了这一条件,则m 、n 之值难以确定,那么代数式2m-n 的值就无法求出。

七、比值求值法

比值求值法是指已知条件中等式的个数少于所含字母的个数时,通过方程(组)将已知条件中所含字母的比值求出,从而求出代数式的值。

例7 设a+2b-5c=0,2a-3b+4c=0(c ≠0),求2222

22456323c b a c b a +-++的值。

[解] 把已知等式看作关于a ,b 的方程组

c b c a c b a c b a 2,0432052==?

??=+-=-+解得 ∵c ≠0 ∴a :b :c=1:2:1

设a=k, 则b=2k , c=k. ∴222222456323c

b a

c b a +-++=-57 [评注] 该法适合于求值的分式中的分子和分母的都含有相同的次数(齐次)的多项式。否则即是将求值的代数式中的字母的比值求出来,也不能达到求出代数式的值的目的。

八、用字母表示数求值法

字母表示 数求代数式就是将已知条件或求值的代数式中某些较复杂的部分用字母来表示,再通过计算或化简,从而求出代数式的值。

例8 设a=)2003

131211)(200413121( ++++++ -)2004131211( +++)2004

13121(+++ 求2004a-1之值

[解] 设A=2003

13121+++ 则a=A A A A ?++-++)2004

11()1)(20041( =A(1+A)+A A A A 2004

1)1()1(20041-+-+ =A A 2004

12004120041-+ =2004

1 ∴2004a-1=2004×2004

1-1=0 [评注] 我们用字母A 来代替已知条件中的2003

13121+++ 这种思想称之为“用字母表示数”的思想,它是一种重要的数学思想方法,是我们学习好数学的灵魂。对于遇到既复杂又重复出现的较大块模(指数或式),可考虑使用该种方法来解决问题。

九、“△”求值法

“△”法是指将已知条件中的某一参数作为变量,其余参数作为常量,构出一个一元二次方程,由二次方程必有实根得出△≥0,从而求出代数式的值。

例9 设a 、b 、c 、d 都是不为零的实数,且满足

(a 2+b 2)d 2+b 2+c 2=2(a+c)bd ,求b 2-ac 的值。

[解] 将已知等式整理成关于d 的二次方程

(a 2+b 2)d 2-2b(a+c)d+(b 2+c 2)=0

△=4b 2(a+c)2-4(a 2+b 2) (b 2+c 2)

=-4(b 2-ac)2

∵d 是实数,∴△≥0

即-4(b 2-ac)2≥0 则b 2-ac=0

[评析] 解决该题的绝妙之处是通过构造出现-4(b 2-ac)2≥0这样一个数学式子,运用该法一定要出现“若一个非正数大于0,则这个非正数必为零”这样一个结论,否则,不能运用该法确定有关参数的数值。

十、运用韦达定理逆定理求值法

运用韦达定理求代数式的值是将已知条件中式结构转化为两数之和,两数积的形式,根据它构造出一元二次方程,求出代数式的值。

例10 已知a 、b 、c 为实数且a+b=5 c 2=ab+b-9,求a+b+c 之值。

[解] ∵a+b=5 c 2=ab+b-9

∴???+=+=++9

)1(6)1(2c a b a b 则b ,a+1为t 2-6t+c 2+9=0两根

∵a ,b 为实数 ∴b ,a+1为实数,

则t 2-6t+c 2+9=0有实根

∴△=36-4(c 2+9)= -4c 2≥0

c=0

则a+b+c=5+0=5

[评注] 运用该法一定要注意将已知条件转化成两数之积及二数之和这一形式,从而达到构造一元二次方程的目的。

思考:若a 2-7a-5=0,b 2-7b-5=0,求

b a a b +之值,思考如何构造。

十一、配偶求值法

配偶法是指将一个不是轮换对称式的式子通过配对变形,将之变换成轮换对称式,从而达到求值的目的的一种方法。

例11 已知x 2-x-1=0的两根为a 、b ,求a

b 之值。 [解] 根据题意有???-==+.

1,1ab b a

∴32)(222-=-+=+=+ab

ab b a ab b a b a a b 设y=a

b ,则有y+31-=y , 即y 2+3y+1=0,

∴y=2

53±- [评注] 本题若将x 的值通过解一元二次方程求出来,再求2

1x x 的值,实在较复杂麻烦。但要求的代数式是关于两根的非轮换对称式的值,因为根据根与系数的关系,只能求出关于两根的轮换对称式的值,因此,想到必须将两根的“非轮换对称式”通过配偶成“轮换对称式”来解决问题。显然采用这种方法有相当大

的技巧性,我们在解题过程中要注意体会积累,化为数学素养。 十二、数形结合求值法

数形结合求值是指根据题目中的数或形的意义,利用“式结构”和“形结构”的特征及相互转化,达到求值的一种方法。 例12 如图,数轴上表示1、2的对应点分别为A 、B ,点B 关于点A 的对称点为C ,设点C 所表示的数为x ,求x+

x 2的值。

[解] 根据题意,得AB=2-1,AC=AB

∴AC=2-1 则x=1-(2-1)=2-2

故x+x 2=2-2+42

22=- [评注] 运用数形结合的思想求代数式的值,关键的是要根据“图形”或“代数式”所提供的信息,揭示“数”与“形”之间的规律,架设“数”与“形”之间的桥梁,谋求“数”与“形”的辩证统一。

十三、赋值求值法

赋值求值法是指代数式中的字母的取值由答题者自己确定,从而,求出所提供的代数式的值的一种方法。

13 自取一组a 、b 的值,求代数式222))((2)(b a b a ab b a b a b

a b a +-÷+---+的值。

C A B

-1 0 x 1 2

[解] ∵2

22))((2)(

b a b a ab b a b a b a b a +-÷+---+ =ab

b a b a b a b a ab 2))(())((22

+-?+- =a+b

∴当a=2,b=1时

原代数式的值=1+2=3

[评注] 解此类问题的方法通常是先化简所求值的代数式,然后给化简后的代数式中字母赋值,求出代数式的值,所要注意的是字母的取值,一定要使原代数式有意义,例如本例中要注意a 、b 的取值满足a ≠b 且a ≠-b 的条件,还要注意字母所取的值便于计算。

“代数式求值的常用方法”专题辅导

代数式求值的常用方法 代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧.本文结合2006年各地市的中考试题,介绍几种常用的求值方法,以供参考. 一、化简代入法 化简代入法是指把字母的取值表达式或所求的代数式进行化简,然后再代入求值. 例1先化简,再求值: () 11b a b b a a b ++ ++,其中a =,b =. 解:由a = ,b =得,1a b ab +==. ∴原式()()22()()()()ab a a b b a b a b ab a b ab a b ab a b ab a b ab +++=++===++++. 二、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 通过整体代入,实现降次、归零、约分,快速求得其值. 例2已知114a b -=,则2227a ab b a b ab ---+的值等于( ). A .6 B .-6 C .215 D .2 7 - 解:由114a b -=得, 4b a ab -=,即4a b ab -=-. ∴ ()()2242662272787a b ab a ab b ab ab ab a b ab a b ab ab ab ab -------= ===-+-+-+-.故选A. 例3若 1233215,7x y z x y z ++=++=,则111 x y z ++= . 解:把 1235x y z ++=与3217x y z ++=两式相加得,444 12x y z ++=, 即111412x y z ??++= ??? ,化简得,111 3x y z ++=.故填3. 三、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的

代数式的化简求值问题(含答案)

第二讲:代数式的化简求值问题 一、知识链接 1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关, 求()[] m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 因为() ()83825378522222++-=+--++-y x m x y x x x mx 所以 m =4 将m =4代人,()[] 44161644452222-=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。 分析: 因为8635=-++cx bx ax 当x =-2时,8622235=----c b a 得到8622235-=+++c b a , 所以146822235-=--=++c b a 当x =2时,635-++cx bx ax =206)14(62223 5-=--=-++c b a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数

代数式的化简求值

代数式的化简求值 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

代数式的化简求值问题 一、知识链接 1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整 式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方 程、函数等知识打下基础。 二、典型例题 例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关, 求()[] m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 变式练习:已知3=+y x ,2=xy ,求22y x +的值. 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。 变式练习:1.已知当2018=x 时,代数式524=++c bx ax ,当2018-=x 时,代数式__________24=++c bx ax 2.已知5=x 时,代数式52-+bx ax 的值是10,求5-=x 时,代数式52++bx ax 的值是多少

2008 2007 12007 2007 20072222323=+=++=+++=++a a a a a a a 2008200712007 200722007 2)1(2007 22007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数 变式练习:1.已知87322=++y x ,则___________9642=++y x 代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。 例4.已知012=-+a a ,求2007223++a a 的值. 分析:解法一(整体代人):由012=-+a a 得023=-+a a a 所以: 解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。 由012=-+a a ,得a a -=12, 所以: 解法三(降次、消元):12=+a a (消元、、减项) 变式练习:已知012=--x x ,求代数式201823+++-x x x 的值是多少 例5.若52z y x ==,且28-=+-z y x ,求z y x 1373-+的值是多少 变式练习:若5 43z y x ==,且10254=+-z y x ,求z y x +-52的值。 例6.三个数a 、b 、c 的积为负数,和为正数,且bc bc ac ac ab ab c c b b a a x +++++=, 则123+++cx bx ax 的值是_______。 变式练习:如果非零有理数c b a ,,满足0=++c b a ,那么 abc abc c c b b a a +++的值可能为哪些 家庭作业

代数式求值方法

点击代数式求值方法 运用已知条件,求代数式的值是数学学习的重要内容之 一。它除了按常规代入求值法,还要根据题目的特点,灵活运用恰当的方法和技巧,才能达到预期的目的。下面举数例介绍常用的几种方法和技巧。 一、常值代换求值法 常值代换法是指将待求的代数式中的常数用已知条件中的代数式来代换,然后通过计算或化简,求得代数式的值。 例1 已知ab=1,求221111b a +++的值 [解] 把ab=1代入,得 2 21111b a +++ =22b ab ab a ab ab +++ = b a a b a b +++ =1 [评注] 将待求的代数式中的常数1,用a ·b 代入是解决该问题的技巧。而运用分式的基本性质及运用法则,对代入后所得的代数式进行化简是解决该问题的保证。 二、运用“非负数的性质”求值法 该法是指运用“若几个非负数的和为零,则每一个非负数应为零”来确定代数式中的字母的值,从而达到求代数式的值

的一种方法。 例 2 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求 b a a b +之值。 [解] ∵a 2b 2+a 2+b 2-4ab+1 =(a 2b 2-2ab+1)(a 2-2ab+b 2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴???==-. 1,0ab b a 解得???==;1,1b a ? ??-=-=.1,1b a 当a=1,b=1时,b a a b +=1+1=2 当a=-1,b=-1时, b a a b +=1+1=2 [评注] 根据已知条件提供的有价信息,对其进行恰当的分组分解,达到变形为几个非负数的和为零,这一新的“式结构”是解决本题的有效策略,解决本题要注意分类讨论的方法的运用。 三、整体代入求值法 整体代入法是将已条件不作任何变换变形,把它作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法。 例3 若x 2+x+1=0,试求x 4+2003x 2+2002x+2004的值。

代数式求值的常用方法1

代数式求值的常用方法 代数式求值问题是历年中考试题中一种极为常见的题型,它除了按常规代入求值外,还要根据其形式多样,思路多变的特点,灵活运用恰当的方法和技巧.本文结合2006年各地市的中考试题,介绍几种常用的求值方法,以供参考. 一、化简代入法 化简代入法是指把字母的取值表达式或所求的代数式进行化简,然后再代入求值. 例1先化简,再求值: () 11b a b b a a b ++ ++,其中512a +=,51 2b -=. 解:由512a += ,51 2 b -=得,5,1a b ab +==. ∴原式()()22()()5()()ab a a b b a b a b ab a b ab a b ab a b ab a b ab +++=++===++++. 二、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 通过整体代入,实现降次、归零、约分,快速求得其值. 例2已知 114a b -=,则2227a ab b a b ab ---+的值等于( ). A .6 B .-6 C .215 D .2 7 - 解:由114a b -=得, 4b a ab -=,即4a b ab -=-. ∴()()2242662272787a b ab a ab b ab ab ab a b ab a b ab ab ab ab -------====-+-+-+-.故选A. 例3若 1233215,7x y z x y z ++=++=,则111 x y z ++= . 解:把 1235x y z ++=与3217x y z ++=两式相加得,444 12x y z ++=, 即111412x y z ??++= ??? ,化简得,111 3x y z ++=.故填3. 三、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法.这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围. 例4先化简2332 11 x x x +---,然后选择一个你最喜欢的x 的值,代入求值. 解:原式()()()312321 111111 x x x x x x x += -=-= +-----.

初中数学重点梳理:代数式求值方法

代数式求值方法 知识定位 学习了整式后,经常会遇到一些代数式的求值问题。代数式涉及的求值类型、方法和技巧是比较多的,比如:特殊值、换元、配方等。事实上,这些方法并不是绝对孤立不变的,有时需要多种方法一起使用才能灵活解决问题,解题时,要仔细观测,深入分析,以便选择合理的解题方法,做到简洁、快速解题。 知识梳理 知识梳理:代数式求值常用方法 1、利用非负数的性质 若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。目前,经常出现的非负数有,,等。 2、化简代入法 化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。 3、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。 4、特殊值法 有些试题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,把一般形式变为特殊形式进行判断,这时常常会使题目变得十分简单。 5、倒数法 倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。 6、参数法 若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母。 7、配方法

若已知条件含有完全平方式,则可通过配方,把条件转化成几个平方和的形式,再利用非负数的性质来确定字母的值,从而求得结果。 8、平方法 在直接求值比较困难时,有时也可先求出其平方值,再求平方值的平方根(即以退为进的策略),但要注意最后结果的符号。 例题精讲 【试题来源】 【题目】已知25x=2000,80y=2000,则?? ? ? ? ? + y x 1 1 =___________ 【答案】1 【解析】 【知识点】代数式求值方法 【适用场合】当堂练习题 【难度系数】2 【试题来源】 【题目】已知10m=20,10n= 1 5 ,求2 93 m n ÷的值. 【答案】81 【解析】 【知识点】代数式求值方法

初一:代数式的求值专题

——代数式的求值 类型一、利用分类讨论方法 【例1】 已知x =7,y =12,求代数式x +y 的值. 变式练习: 1、已知|x-1|=2,|y|=3,且x 与y 互为相反数,求y xy x 43 12--的值 2、|x|=4,|y|=6,求代数式|x+y|的值 3、已知1,1==y x ,求代数式2 22y xy x +-的值;

类型二、利用数形结合的思想方法 【例】有理数a ,b ,c 在数轴上的位置如图所示:试试代数式 │a +b │-│b -1│-│a -c │-│1-c │的值. 变式练习: 1、有理数a , b , c 在数轴上对应点如图所示,化简|b+a|+|a+c|+|c-b| 2、已知a ,b ,c 在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a| b a c 1 C B 0 A

题型三、利用非负数的性质 【例1】已知(a -3)2+│-b +5│+│c -2│=0.计算2a +b +c 的值. 【例2】 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求 b a a b 之值。 变式练习: 1、已知:│3x-5│+│2y+8│=0求x+y 2、若205×│2x-7│与30×│2y-8│互为相反数,求xy+x 题型四、利用新定义 【例1】 用“★”定义新运算:对于任意实数a ,b ,都有a ★b =b 2+1.例如,7★4=42+1=17,那么5★3=___;当m 为实数时,m ★(m ★2)=___.

变式练习: 1、定义新运算为a △b =(a +1)÷b ,求的值。6△(3△4) 2、假定m ◇n 表示m 的3倍减去n 的2倍,即 m ◇n=3m-2n 。 (2)已知x ◇(4◇1)=7,求x 的值。 3、规定1,1-=**-=*a b b a b a b a ,则)68()86(****的值为 ; 题型五、巧用变形降次 【例】已知x 2-x -1=0,试求代数式-x 3+2x +2008的值.

初中数学代数式化简求值题归类及解法

初中数学代数式化简求值题归类及解法 代数式化简求值是初中数学教学的一个重点和难点内容。学生在解题时如果找不准解决问题的切入点、方法选取不当,往往事倍功半。 一. 已知条件不化简,所给代数式化简 1.先化简,再求值: ()a a a a a a a a -+--++÷-+2214442 22 ,其中a 满足:a a 2 210+-=。(1) 2.已知x y =+ =-2222,,求( )y xy y x xy x xy x y x y x y ++-÷+?-+的值。(2-) 二.已知条件化简,所给代数式不化简 3.已知a b c 、、为实数,且 ab a b +=13,bc b c ac a c +=+=1415,,试求代数式 abc ab bc ac ++的值。(1 6 ) 三.已知条件和所给代数式都要化简 4.若x x +=13,则x x x 242 1++的值是( )。(1 8 ) 5.已知a b +<0,且满足a ab b a b 2 2 22++--=,求a b ab 33 13+-的值。(1-) 第十三讲 有条件的分式的化简与求值 能够作出数学发现的人,是具有感受数学中的秩序、和谐、整齐和神秘之美的能力的人. ————————彭加勒 【例题求解】 例1 若 a d d c c b b a ===,则 d c b a d c b a +-+-+-的值是_________________. 例2 如果03 1 2111,0=+++++=++c b a c b a ,那么222)3()2()1(+++++c b a 的值为 ( ). A .36 B .16 C .14 D .3 例3 已知16,2,12 2 2 =++=++=z y x z y x xyz , 求代数式++++x yz z xy 21 21y zx 21+的值. 例4 已知 1325))()(())()((=+++---a c c b b a a c c b b a ,求a c c c b b b a a +++++的值.

代数式求值的十种常用方法

代数式求值的十种常用方法 一、利用非负数的性质 若已知条件是几个非负数的和的形式,则可利用“若几个非负数的和为零,则每个非负数都应为零”来确定字母的值,再代入求值。目前,经常出现的非负数有,,等。 例1、若和互为相反数,则 =_______。 解:由题意知,,则且,解得 ,。因为,所以,故填37。 二、化简代入法 化简代入法是指先把所求的代数式进行化简,然后再代入求值,这是代数式求值中最常见、最基本的方法。 例2、先化简,再求值:,其中 ,。 解:原式。 当,时, 原式。 三、整体代入法 当单个字母的值不能或不用求出时,可把已知条件作为一个整体,代入到待求的代数式中去求值的一种方法。

通过整体代入,实现降次、归零、约分的目的,以便快速求得其值。 例3、已知,则=_______。 解:由,即。 所以原式 。 故填1。 四、赋值求值法 赋值求值法是指代数式中的字母的取值由答题者自己确定,然后求出所提供的代数式的值的一种方法。这是一种开放型题目,答案不唯一,在赋值时,要注意取值范围。 例4、请将式子化简后,再从0,1,2三个数中选择一个你喜欢且使原式有意义的x的值代入求值。 解:原式 。 依题意,只要就行,当时,原式或当时,原式。 五、倒数法 倒数法是指将已知条件或待求的代数式作倒数变形,从而求出代数式的值的一种方法。 例5、若的值为,则的值为

A. 1 B. –1 C. D. 解:由,取倒数得, ,即。 所以 , 则可得,故选A。 六、参数法 若已知条件以比值的形式出现,则可利用比例的性质设比值为一个参数,或利用一个字母来表示另一个字母。 例6、如果,则的值是 A. B. 1 C. D. 解:由得,。 所以原式 。

代数式的化简求值问题(含标准答案)

代数式的化简求值问题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

第二讲:代数式的化简求值问题 一、知识链接 1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式( ) x y x x x mx 5378522 2 2+--++-的值与x 无关, 求()[] m m m m +---4522 2 的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 因为() ()83825378522 2 2 2 ++-=+--++-y x m x y x x x mx 所以 m =4 将m =4代人,()[] 441616444522 2 2 -=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。 分析: 因为863 5=-++cx bx ax 当x =-2时,8622235=----c b a 得到862223 5-=+++c b a , 所以14682223 5-=--=++c b a 当x =2时,63 5-++cx bx ax =206)14(62223 5-=--=-++c b a

代数式求值(讲义)

代数式求值(讲义) ? 课前预习 1. 若a =1,则a +1=_____;若a 2=1,则a 2-3=_____; 若a +b =3,则2(a +b )=_____. 2. 对于代数式ax +4,当x =1时,ax +4=_______; 当x =2时,ax +4=_______; 当x =3时,ax +4=_______. 若代数式ax +4的值不受x 取什么值的影响,即与x 无关,只需a _______,理由是__________________. ? 知识点睛 1. 整体思想:从问题的整体性质出发,发现问题的整体结构特征,通过对问题 整体结构的分析和改造,对问题进行整体处理的解题思想叫做整体思想.整体代入是整体思想的一个重要应用. 2. 整体代入的思考方向 ①求值困难,考虑_____________; ②化简________________,对比确定________; ③_____________,化简. ? 精讲精练 1. 若a 2+2a =1,则代数式2(a 2+2a )3-5(a 2+2a )-7的值是_______. 2. 若代数式2a 2+3b 的值是6,则代数式4a 2+6b +8的值是_____. 3. 已知3440x x -+=,求代数式336102 x x -++的值. 4. 当1x =时,代数式31px qx ++的值是2 016;则当1x =-时,代数式31 px qx ++的值是________. 5. 当7x =时,代数式35ax bx +-的值是7;则当7x =-时,代数式35ax bx +-的 值是_______. 6. 当2x =时,代数式31ax bx -+的值是-17;则当1x =-时,代数式 31235ax bx --的值是_______.

代数式的化简求值

代数式的化简求值问题 一、知识链接 1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。 2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。 注:一般来说,代数式的值随着字母的取值的变化而变化 3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。 二、典型例题 例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关, 求()[] m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零 变式练习:已知3=+y x ,2=xy ,求22y x +的值. 利用“整体思想”求代数式的值 例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式6 35-++cx bx ax 的值。

2008 20071200720072007 2222323=+=++=+++=++a a a a a a a 变式练习:1.已知当2018=x 时,代数式524=++c bx ax ,当2018-=x 时,代数式 __________ 24=++c bx ax 2.已知5=x 时,代数式52-+bx ax 的值是10,求5-=x 时,代数式52++bx ax 的值是多少? 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值. 分析:观察两个代数式的系数 变式练习:1.已知87322=++y x ,则___________9642 =++y x 代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。 例4. 已知012=-+a a ,求2007223++a a 的值. 分析:解法一(整体代人):由012=-+a a 得 023=-+a a a 所以: 解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。

代数式求值的几种方法

代数式求值的几种方法-CAL-FENGHAI.-(YICAI)-Company One1

2 代数式求值的几种方法 代数式的求值问题,是初中代数基础知识与基本技能的重要内容。求代数式的值应对所给定的代数式加以具体情况具体分析,针对题设条件与所求代数式的本质特点及内在联系,灵活选用适当方法与技巧,方能使求解过程简捷、科学、合理。 一、公式法 例1 :已知a + b = 1 ,a 2 + b 2 = 2 求a 6 +b 6 的值 分析:本题若根据已知条件先求出a 、b 的值,然后代入所求式中计算,虽不失为一种思考途径,但求出的a 、b 的值均为复杂的无理数,而所求代数式中的a 、b 又均为高次幂,从而使运算非常复杂。若借助乘法公式先将所求代数式化为“a + b ”与“ab ”的结构形式,则问题的解答将简便得多。 解:由a + b = 1,有(a + b )2 =1 ,即1222=++b ab a 又a 2 + b 2 =2 ,∴a b = -2 1 ()()()()( )[]()()871 12141222121232322222223 443442266=???? ??--????????? ???-???? ??+?=+--++-+=--++=+∴b a ab b a b a b ab a b a b a b a b a b a b a

3 另外考虑a 7 + b 7 的值的求法 二、参数法 例2:若542c b a == ,求c b a c b a +--+2的值 分析:本题题设给出a 、b 、c 的三个连比式,若引入一个参数,则所求代数式的分子、分母均由三元转化为一元,从而通过化简而求解。 解:设k c b a === 5 42 ,由题意k ≠0,则a = 2k ,b = 4k ,c =5k 所以c b a c b a +--+2 = 133542544==+--+k k k k k k k k 三、倒数法 例3:已知 71 2=+-x x x ,求 1242++x x x 的值 分析:由已知式与所求式之间的结构及各自分子、分母的幂次数特点出发,本题使用“倒数法”较为简便。 解:由已知取倒数,则7112=+-x x x ,即7 81=+x x 再由未知式取倒数: 4915178111112 222224=-?? ? ??=-??? ??+=++=++x x x x x x x 所以1242++x x x = 1549 四、消元法

初一上册数学代数式求值试题.docx

初一上册数学代数式求值试题 一、选择题 ( 共 12 小题 ) 1.已知 m=1,n=0,则代数式 m+n的值为 () A. ﹣1 B.1 C. ﹣2 D.2 【考点】代数式求值 . 【分析】把 m、n 的值代入代数式进行计算即可得解. 【解答】解:当m=1,n=0 时, m+n=1+0=1. 故选 B. 【点评】本题考查了代数式求值,把 m、n 的值代入即可,比较简单 . 2. 已知 x2﹣2x﹣8=0,则 3x2﹣6x﹣18 的值为 () A.54 B.6 C. ﹣10 D.﹣18 【考点】代数式求值 . 【专题】计算题 . 【分析】所求式子前两项提取 3 变形后,将已知等式变形后代入计算即可求出值 . 【解答】解:∵ x2﹣ 2x﹣8=0,即 x2﹣2x=8, ∴3x2﹣ 6x﹣18=3(x2 ﹣2x) ﹣18=24﹣18=6. 故选 B. 【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型 . 3. 已知 a2+2a=1,则代数式 2a2+4a﹣1 的值为 ()

A.0B.1C. ﹣1D.﹣2 【考点】代数式求值 . 【专题】计算题 . 【分析】原式前两项提取变形后,将已知等式代入计算即可求出值. 【解答】解:∵ a2+2a=1, ∴原式 =2(a2+2a) ﹣1=2﹣1=1, 故选 B 【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键 . 4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是() A.4 ,2,1 B.2,1,4 C.1,4,2 D.2,4,1 【考点】代数式求值 . 【专题】压轴题 ; 图表型 . 【分析】把各项中的数字代入程序中计算得到结果,即可做出判断. 【解答】解: A、把 x=4 代入得: =2, 把x=2 代入得: =1, 本选项不合题意 ; B、把 x=2 代入得: =1, 把x=1 代入得: 3+1=4, 把x=4 代入得: =2,

代数式的求值技巧

代数式的求值 技术1、利用分类讨论方法 例1 已知x =7,y =12,求代数式x +y 的值. 分析 先利用绝对值的意义,求出字母x 和y 的值,再分情况讨论求值. 解 因为x =7,y =12,所以x =±7,y =±12. 所以当x =7,y =12时,原式=19; 当x =-7,y =-12时,原式=-19; 当x =7,y =-12时,原式=-5; 当x =-7,y =12时,原式=5. 所以代数式x +y 的值±19、±5. 技术2、利用数形结合的思想方法 例1 有理数a ,b ,c 在数轴上的位置如图所示:试试代数式│a +b │-│b -1│-│a -c │-│1-c │的值. 分析 由于只知道有理数a ,b ,c 在数轴上的位置,要想直接分别求出有理数a ,b ,c 是不可能的,但是,我们可以利用数形结合的思想方法,从数轴上发现有理数a ,b ,c 的符号,还可以准确地判定a +b 、b -1、a -c 、1-c 的符号,这样就可以化去代数式中的绝对值的符号. 解 由图可知,a +b <0,b -1<0,a -c <0,1-c >0, 所以│a +b │-│b -1│-│a -c │-│1-c │=-a -b -1+b -c +a -1+c =-2. 技术3、利用非负数的性质 例1 已知(a -3)2+│-b +5│+│c -2│=0.计算2a +b +c 的值. 分析 在等式(a -3)2+│-b +5│+│c -2│=0中有三个字母,要想分别求其值,可以利用平方和绝对值的非负性求解. 解 因为(a -3)2+│-b +5│+│c -2│=0,又(a -3)2≥0,│-b +5│≥0,│c -2│≥0. 所以a -3=0,-b +5=0,c -2=0,即a =3,b =5,c =2, 所以当a =3,b =5,c =2时,原式=2×3+5+2=13. 例2 若实数a 、b 满足a 2b 2+a 2+b 2-4ab+1=0,求b a a b +之值。 [解] ∵a 2b 2+a 2+b 2 -4ab+1 =(a 2b 2-2ab+1)(a 2-2ab+b 2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0 ∴? ??==-.1,0ab b a 解得???==;1,1b a ? ??-=-=.1, 1b a 当a=1,b=1时, b a a b +=1+1=2 b a c 1

代数式求值(整体代入一)(北师版)(含答案)

学生做题前请先回答以下问题 问题1:整体代入的思考方向 ①求值困难,考虑_____________; ②化简________________,对比确定________; ③整体代入,化简. 问题2:已知代数式2a2+3b=6,求代数式4a2+6b+8的值. ①根据2a2+3b=6无法求出a和b的具体值,考虑_____________; ②对比已知及所求,考虑把________作为整体; ③整体代入,化简,最后结果为______. 代数式求值(整体代入一)(北师版) 一、单选题(共13道,每道7分) 1.把看成一个整体,合并同类项的结果为( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:合并同类项 2.把看成一个整体,合并同类项的结果为( ) A. B.

C. D. 答案:B 解题思路: 试题难度:三颗星知识点:合并同类项 3.设,把用含的代数式表示并化简的结果为( ) A. B. C. D. 答案:C 解题思路: 试题难度:三颗星知识点:整体代入 4.设,把用含的代数式表示并化简的结果为( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:整体代入 5.若,则代数式的值为( ) A.0 B.4 C.6 D.2 答案:C 解题思路: 试题难度:三颗星知识点:整体代入 6.已知,则的值为( ) A.-1 B.0 C.1 D.3 答案:A 解题思路: 试题难度:三颗星知识点:整体代入 7.若,则代数式的值为( )

A.-1 B.1 C.-5 D.5 答案:A 解题思路: 试题难度:三颗星知识点:整体代入 8.已知代数式的值是4,则的值为( ) A.1 B.5 C.9 D.10 答案:C 解题思路: 试题难度:三颗星知识点:整体代入 9.若代数式的值为5,则代数式的值为( ) A.1 B.9 C.11 D.21 答案:B 解题思路:

(完整word版)代数式求值

代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解已知条件可变形为3x2+3x-1=0,所以 6x4+15x3+10x2 =(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1 =(3x2+3x-1)(2z2+3x+1)+1 =0+1=1. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,① 求a+b+c的值. 解将②式因式分解变形如下

即 所以 a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则 (a+b+c)2=a2+b2+c2+2(bc+ac+ab) =a2+b2+c2=1, 所以 a+b+c=±1.所以a+b+c的值为0,1,-1. 说明本题也可以用如下方法对②式变形: 即 前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式. 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解因为x+y=m,所以 m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,

初中奥数竞赛辅导资料之第六讲代数式求值

第六讲代数式的求值 代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、约分、根式的性质等等,经过恒等变形,把代数式中隐含的条件显现出来,化简,进而求值.因此,求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍. 1.利用因式分解方法求值 因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用. 分析 x的值是通过一个一元二次方程给出的,若解出x后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件. 解已知条件可变形为3x2+3x-1=0,所以 6x4+15x3+10x2 =(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1 =(3x2+3x-1)(2z2+3x+1)+1 =0+1=1. 说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答. 例2 已知a,b,c为实数,且满足下式: a2+b2+c2=1,① 求a+b+c的值. 解将②式因式分解变形如下

即 所以 a+b+c=0或bc+ac+ab=0. 若bc+ac+ab=0,则 (a+b+c)2=a2+b2+c2+2(bc+ac+ab) =a2+b2+c2=1, 所以 a+b+c=±1.所以a+b+c的值为0,1,-1. 说明本题也可以用如下方法对②式变形: 即 前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式. 2.利用乘法公式求值 例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值. 解因为x+y=m,所以 m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,

代数式求值的几种方法

代数式求值的几种方法 代数式的求值问题,是初中代数基础知识与基本技能的重要内容。求代数式的值应对所给定的代数式加以具体情况具体分析,针对题设条件与所求代数式的本质特点及内在联系,灵活选用适当方法与技巧,方能使求解过程简捷、科学、合理。 一、公式法 例1 :已知a + b = 1 ,a 2 + b 2 = 2 求a 6 +b 6 的值 分析:本题若根据已知条件先求出a 、b 的值,然后代入所求式中计算,虽不失为一种思考途径,但求出的a 、b 的值均为复杂的无理数,而所求代数式中的a 、b 又均为高次幂,从而使运算非常复杂。若借助乘法公式先将所求代数式化为“a + b ”与“ab ”的结构形式,则问题的解答将简便得多。 解:由a + b = 1,有(a + b )2 =1 ,即1222=++b ab a 又a 2 + b 2 =2 ,∴a b = -2 1 ()()()()( )[]()()871 12141222121232322222223 443442266=???? ??--????????? ???-???? ??+?=+--++-+=--++=+∴b a ab b a b a b ab a b a b a b a b a b a b a 另外考虑a 7 + b 7 的值的求法 二、参数法 例2:若542c b a == ,求c b a c b a +--+2的值 分析:本题题设给出a 、b 、c 的三个连比式,若引入一个参数,则所求代数式的分子、分母均由三元转化为一元,从而通过化简而求解。 解:设k c b a === 5 42 ,由题意k ≠0,则a = 2k ,b = 4k ,c =5k

代数式求值(讲义及答案)

代数式求值(讲义) ? 课前预习 1. 若a =1,则a +1=_____;若a 2=1,则a 2-3=_____; 若a +b =3,则2(a +b )=_____. 2. 对于代数式ax +4,当x =1时,ax +4=_______; 当x =2时,ax +4=_______; 当x =3时,ax +4=_______. 若代数式ax +4的值不受x 取什么值的影响,即与x 无关,只需a _______,理由是__________________. ? 知识点睛 1. 整体思想:从问题的整体性质出发,发现问题的整体结构特征,通过对问题整体 结构的分析和改造,对问题进行整体处理的解题思想叫做整体思想.整体代入是整体思想的一个重要应用. 2. 整体代入的思考方向 ①求值困难,考虑_____________; ②化简________________,对比确定________; ③_____________,化简. ? 精讲精练 1. 若a 2+2a =1,则代数式2(a 2+2a )3-5(a 2+2a )-7的值是_______. 2. 若代数式2a 2+3b 的值是6,则代数式4a 2+6b +8的值是_____. 3. 已知3440x x -+=,求代数式336102 x x -++的值. 4. 当1x =时,代数式31px qx ++的值是2 016;则当1x =-时,代数式31px qx ++的 值是________. 5. 当7x =时,代数式35ax bx +-的值是7;则当7x =-时,代数式35ax bx +-的值是 _______. 6. 当2x =时,代数式31ax bx -+的值是-17;则当1x =-时,代数式31235ax bx --的 值是_______.

最新例说化简求值的几种化简方式

例说初中代数化简求值题的几种化简方式 昭通市盐津县第三中学廖发蓉 邮编 657500 化简求值题是初中数学中最为常见的题型,是培养学生计算能力和综合运用数学知识的重要内容。从人教版义务教育教科书七年级《数学》(上册)第二章《整式》开始,化简求值题不仅贯穿于整个初中的各个学段,而且在初中学业水平考试及各类竞赛中都属必考内容。 在通常情况下,化简求值题比较复杂,这类题型具有形式多样、思路多变的特点。但学生在解题过程中,若能灵活运用恰当的化简技巧和方法,就能达到化繁为简、化难为易的效果。笔者经过多年的教学实践,归纳出化简求值题的几种化简方式,与同仁交流。 一、直接代入式 直接代入法是化简求值题中最简单、最基础的方法。 例1、已知:a=1,求代数式a2+a-2的值。 分析:观察本题,已知条件a的值非常具体,代数式a2+a-2的结构也很简单,不需要进行复杂的变形和化简,只需将所给的已知条件a=1代入所求代数式,即可求出代数式的值。 解:当a=1时原式= 12+1-2 =2-2 =0

二、已知化简式 例2、已知y x+ y2-4y+4=0,求代数式xy的值。 - 分析:观察所求的代数式xy可知,本题的结论简单、明了,只需知道x与y的值便可求出x与y的积的值。根据已知等式y x+ y2-4y+4=0的结构特点, - 利用二次根式和完全平方公式的非负性,结合性质“几个非负数的和为零,则每个数为零”,只需将已知条件进行化简,求出x、y与的值即可求出xy的值。 解:∵y x+ y2-4y+4=0 - ∴y x+ (y-2)2=0 - ∴x-y=0且y-2=0 解得: x=2 y=2 ∴原式=2×2=4 三、结论化简式 例3、已知x=2-3,求代数式(7+43)x2+(4+23)x+1的值。 分析:本题中x 的值是明确的、具体的,因此只需将结论,即所求代数式(7+43)x2 +(4+23)x+1进行化简后,将x 的值代入计算即可。观察代数式学生不难发现,(7+43)x2+(4+23)x+1是关于x的二次三项式,由于二次项系数(7+43)、一次项系数(4+23)中都含有二次根式3,学生不易发现(7+43)x2 +(4+23)x+1是完全平方公式。因此在化简过程中要善于引导学生根据完全平方公式的意义,找出各项系数的关系,利用拆分法可将(7+43)转化成(2+3)2的形式,反用乘法分配律可将(4+23)转化成2(2+3)的形

相关文档
最新文档