SKF摩擦力矩计算公式

SKF摩擦力矩计算公式
SKF摩擦力矩计算公式

/ 产品/ 互动工程型录/ 滚动轴承/ 轴承的选择和应用原则/ 摩擦/

摩擦

新的SKF摩擦力矩计算模型 - 油浴润滑中的阻力损失

由于阻力损失是产生摩擦最重要的额外原因,因此额外的影响因素减少到只考虑阻力损失部分M阻力。

在油浴润滑中,轴承是部分地,或在特殊的情况下,完全地被淹没。在这些条件下,油槽的大小、几何形状和油层的选用会对轴承摩擦力矩有显著的影响作用。对于一个非常大的油浴,不考虑油槽大小间的任何相互作用以及靠近轴承运行的其它机械部件带来的任何影响(如: 外部润滑油搅动、齿轮或凸轮),作为油槽油

层的一个函数,轴承阻力损失可以从图

2 中标定的变量V M求得近似值,作为油层H和轴承平均直径d m= (d + D) 的一个函数,见

图2所示。在轴承速度不超过参考速度时,则图解2的情况适用。当速度更快、油层高时,其它的因素可能会对结果产生重要影响。

图解2中的变量 V M在与球轴承中阻力损失的摩擦力矩相关时,表示为:

M阻力=V M K球d m5n2

在与滚子轴承相关时,表示为:

M阻力= 10 V M K钢板卷Bd m4n2。

M阻力=阻力损失的摩擦力矩,Nmm

V M=

根据图解2,作为油层的一个函数变量

K球=与球轴承相关的常数,参看以下

K滚动=与滚子轴承相关的常数,参看以下

d m=轴承的平均直径,mm

B=轴承内圈宽度,mm

n=转速,r/min

与球轴承相关的常数定义为

K球= (i rw K Z(D + d))/(D - d) 10-12

与滚子轴承相关的常数定义为

K滚动= (K L K Z(D + d))/(D - d) 10-12

K球=与球轴承相关的常数

K滚动=与滚子轴承相关的常数

i rw=球列的数量

K Z=与轴承型号相关的几何形状常数

K L=与滚子轴承型号相关的几何形状常数

d=轴承孔径,mm

D=轴承外径,mm

阻力损失部分M阻力用摩擦计算程序计算。

注意:

计算喷油润滑的阻力损失时,可以用油浴润滑模型,油层为滚动体直径的一半,并把所得的M阻力数值乘以2。计算立式转轴配置的阻力损失时,可以用完全浸没轴承的模型求出其近似值,再将求出的M阻力值乘上一个系数,这个系数等于浸没部分的宽度(高度) 与总轴承宽度(高度)的比。

新的SKF摩擦力矩计算模型 - 低速度低粘度的混合润滑

在工作条件数值κ≤2的时候,轴承应用处于混合润滑状态;金属之间偶尔可能接触,使摩擦增大。有关转动速度及粘度函数的一个典型轴承摩擦力矩的概况,请参见

图解3。在启动阶段,由于润滑油膜形成以及轴承完全进入弹性流体动压润滑(EHL)状态,所以随着转速增加或粘度增大,摩擦力矩会减少。当转速或粘度进一步增加时,由于油膜增厚,磨擦也随之增大,直到高速缺油和热量作用再次将磨擦减小。

滑动摩擦系数可以用以下公式计算:

μsl= φblμbl+ (1 - φbl) μEHL

其中

μsl=滑动摩擦系数

φbl=混合润滑的权重因子

μbl=系数取决于润滑剂的添加剂组合成分,近似值为0,15。

μEHL=全油膜应用中的摩擦系数是:

–用于矿物油润滑0,05

–用于合成油润滑0,04

–用于变速器油润滑0,1

如果是圆柱或圆锥滚子轴承,改用以下摩擦数值:

–用于圆柱滚子轴承0,02

–用于圆锥滚子轴承0,002

滑动摩擦力矩的权重因子可以用图解4中的方程式估算。

其中

φbl=滑动摩擦力矩的权重因子

e=自然对数的基数 = 2,718

n=转速,r/min

ν=运行温度中的润滑剂运动粘度是mm2/s

(油脂润滑时为基油粘度)

d m=轴承的平均直径

= 0,5 (d + D), mm

或从图解中得到。

对球面滚子推力轴承而言,计算G sl(由摩擦计算程序计算),方程式中的常数2,6应以100取代。因子φbl和摩擦系数μsl由摩擦计算程序计算。

滚动轴承摩擦力矩测量技术

滚动轴承摩擦力矩测量技术 (轴承研讨会资料) 洛阳轴研科技股份有限公司仪器开发部 2003年3月21日

目 录 一、轴承摩擦力矩测量的目的意义 二、轴承摩擦力矩的特性 三、轴承摩擦力矩的种类及其定义 四、轴承摩擦力矩的组成部分 五、轴承摩擦力矩的影响因素 六、轴承摩擦力矩的计算方法 七、轴承摩擦力矩的测量原理和测量方法 八、国内外轴承摩擦力矩测量仪简介 九、轴承摩擦力矩测量技术的发展趋势

一、轴承摩擦力矩测量的目的意义: 滚动轴承在旋转过程中,由于其外圈、内圈、保持架、钢球、密封圈五大件之间互相接触,故存在着摩擦阻力。 轴承摩擦阻力的性能一般按两种方法进行评定,一种是灵活性检查:采用徒手检查的方法,检查轴承在旋转时的阻滞现象,以定性的粗略判断其轴承摩擦阻力大小。另一种是以摩擦力矩来衡量,这也是一种科学的客观的测量方法。 轴承摩擦阻力影响轴承寿命,影响主机制导系统的可靠性和精确性的重要因素。尤其对于高科技使用的轴承,如:陀螺仪轴承、卫星消旋天线轴承、运载大箭轴承、飞行平台轴承等等,均需要更加严格的摩擦力矩测量。 总之目前世界各国对于精密轴承质量的重点要求,已经由尺寸精度、几何精度、成品的旋转精度等方面转向了轴承的动态性能方面-----摩擦力矩和振动的测量,这也是使用单位最关心的两个重要技术性能指标。 因此,轴承摩擦力矩测量技术的研究目的就是研究如何合理评定,准确测量轴承的摩擦性能,为改进轴承设计参数、改进加工工艺和分析轴承摩擦力矩的影响因素,提供一个可靠的手段。从而提高轴承质量,提高主机精度,满足使用单位对轴承摩擦性能的技术要求,这对尖端科学技术的发展和国防建设都有着重要意义。 二、轴承摩擦力矩的特性: 为了阐明摩擦力矩测量技术首先对轴承摩擦力矩的特性(图1)进行分析。 图1 轴承摩擦力矩特性曲线 M max---最大摩擦力矩 M mcp---平均摩擦力矩 1.摩擦力矩是轴承内外圈角变位的函数M = f (H),从式中可以看出轴承在旋转过程中每个位置都具有一个摩擦力矩值,即被测量轴承摩擦力矩是个随机变量。可以在测量过程中提取最大力矩,平均力矩和力矩差值等性能指标,用于分析轴承摩

电机输出扭矩计算公式

电动机输出转矩 转矩(英文为torque ) 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系,转矩的测量对传动轴载荷的确定与控制、传动系统工作零件的强度设计以及原动机容量的选择等都具有重要的意义。此外,转矩与功率的关系T=9549P/n 电机的额定转矩表示额定条件下电机轴端输出转矩。转矩等于力与力臂或力偶臂的乘积,在国际单位制(SI)中,转矩的计量单位为牛顿?米(N?m),工程技术中也曾用过公斤力?米等作为转矩的计量单位。电机轴端输出转矩等于转子输出的机械功率除以转子的机械角速度。直流电动机堵转转矩计算公式TK=9.55KeIK 。 三相异步电动机的转矩公式为: S R2 M=C U12 公式[2 ] R22+(S X20)2 C:为常数同电机本身的特性有关;U1 :输入电压; R2 :转子电阻;X20 :转子漏感抗;S:转差率 可以知道M∝U12 转矩与电源电压的平方成正比,设正常输入电压时负载转矩为M2 ,电压下降使电磁转矩M下降很多;由于M2不变,所以M小于M2平衡关系受到破坏,导致电动机转速的下降,转差率S上升;它又引起转子电压平衡方程式的变化,使转子电流I2上升。也就是定子电流I1随之增加(由变压器关系可以知道);同时I2增加也是电动机轴上送出的转矩M又回升,直到与M2相等为止。这时电动机转速又趋于新的稳定值。 转矩的类型 转矩可分为静态转矩和动态转矩。 静态转矩是值不随时间变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 动态转矩是值随时间变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。振动转矩的值是周期性波动的;过渡转矩是机械从一种工况转换到另一种工况时的转矩变化过程;随机转矩是一种不确定的、变化无规律的转矩。 根据转矩的不同情况,可以采取不同的转矩测量方法。 转矩=9550*功率/转速 同样 功率=转速*转矩/9550 平衡方程式中:功率的单位(kW);转速的单位(r/min);转矩的单位(N.m);9550是计算系数。

什么是扭矩 扭矩计算公式和单位

什么是扭矩扭矩计算公式和单位 2008年01月07日 10:07 转载作者:本站用户评论(0) 关键字: 什么是扭矩 扭矩:扭矩是使物体发生转动的力。发动机的扭矩就是指发动机从曲轴端输出的力矩。在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。 扭矩和功率一样,是汽车发动机的主要指数之一,它反映在汽车性能上,包括加速度、爬坡能力以及悬挂等。它的准确定义是:活塞在汽缸里的往复运动,往复一次做有一定的功,它的单位是牛顿。在每个单位距离所做的功就是扭矩了。是这样的,扭矩是衡量一个汽车发动机好坏的重要标准,一辆车扭矩的大小与发动机的功率成正比。举个通俗的例子,比如,像人的身体在运动时一样,功率就像是身体的耐久度,而扭矩是身体的爆发力。对于家用轿车而言,扭矩越大加速性越好;对于越野车,扭矩越大其爬坡度越大;对于货车而言,扭矩越

大车拉的重量越大。在排量相同的情况下,扭矩越大说明发动机越好。在开车的时候就会感觉车子随心所欲,想加速就可加速,“贴背感”很好。现在评价一款车有一个重要数据,就是该车在0-100公里/小时的加速时间。而这个加速时间就取决于汽车发动机的扭矩。一般来讲,扭矩的最高指数在汽车2000-4000/分的转速下能够达到,就说明这款车的发动机工艺较好,力量也好。有些汽车在5000/分的转速左右才达到该车扭矩的最高指数,这说明“力量”就不是此车所长。 扭矩在物理学中就是力矩的大小,等于力和力臂的乘积,国际单位是牛米Nm,此外我们还可以看见kgm、lb-ft这样的扭矩单位,由于G=mg,当g=9.8的时候,1kg=9.8N,所以1kgm =9.8Nm,而磅尺lb-ft则是英制的扭矩单位,1lb=0.4536kg;1ft=0.3048m,可以算出1lb-ft =0.13826kgm。在人们日常表达里,扭矩常常被称为扭力(在物理学中这是2个不同的概念)。现在我们举个例子:8代Civic 1.8的扭矩为173.5Nm@4300rpm,表示引擎在4300转/分时的输出扭矩为173.5Nm,那173.5N的力量怎么能使1吨多的汽车跑起来呢?其实引擎发出的扭矩要经过放大(代价就是同时将转速降低)这就要靠变速箱、终传和轮胎了。引擎释放出的扭力先经过变速箱作“可调”的扭矩放大(或在超比挡时缩小)再传到终传(尾牙)里作进一步的放大(同时转速进一步降低),最后通过轮胎将驱动力释放出来。如某车的1 挡齿比(齿轮的齿数比,本质就是齿轮的半径比)是3,尾牙为4,轮胎半径为0.3米,原扭矩是200Nm的话,最后在轮轴的扭力就变成200×3×4=2400Nm(设传动效率为100%)在除以轮胎半径0.3米后,轮胎与地面摩擦的部分就有2400Nm/0.3m=8000N的驱动力,这就足以驱动汽车了。 若论及机械效率,每经过一个齿轮传输,都会产生一次动力损耗,手动变速箱的机械效率约在95%左右,自排变速箱较惨,约剩88%左右,而传动轴的万向节效率约为98%。整体而言,汽车的驱动力可由下列公式计算: 扭矩×变速箱齿比×最终齿轮比×机械效率 驱动力= ———————————————————— 轮胎半径(单位:米) 小结:1kgm=9.8Nm 1lb-ft=0.13826kgm 1lb-ft=1.355Nm 一般来说,在排量一定的情况下,缸径小,行程长的汽缸较注重扭矩的发挥,转速都不会太高,适用于需要大载荷的车辆。而缸径大,行程短的汽缸较注重功率的输出,转速通常较高,适用于快跑的车辆。简单来说:功率正比于扭矩×转速 补充一点:为什么引擎的功率能由扭矩计算出来呢? 我们知道,功率P=功W÷时间t 功W=力F×距离s 所以,P=F×s/t=F×速度v

扭矩和功率的计算公式推导及记忆方法(全)

扭矩和功率及转速的关系式,是电机学中常用的关系式,近期在百度知道上常有看到关于扭矩和功率及转速的相关计算式的问答,一般回答者都是直接给出计算公式,公式中的常数采用近似值,常数往往不容易记住,本文的目的就是帮助大家方便的记住这些公式,并在工程应用中熟练的使用。 一记住扭矩和功率的公式形式 扭矩和功率及转速的关系式一般用于描述电机的转轴的做功问题,扭矩越大,轴功率越大;转速越高,轴功率越大,扭矩和转速都是产生轴功率的必要条件,扭矩为零或转速为零,输出轴功率为零。因此,电机空转或堵转就是轴功率等于零的两个特例。 功率和扭矩及转速成正比,扭矩和功率的关系式具有如下形式: P=aTN 上式中,a为常数,对应的有: T=(1/a)(1/N)P 即扭矩和功率成正比,和转速成反比。 记忆方法: 记住扭矩T和功率P成正比,扭矩T和转速N成反比,而系数a不必记忆。 二记住力做功的基本公式 提问者通常都知道上述关系式,问题的焦点在于常数a的具体数值。 如果不是经常使用该公式,的确很难记住这个常数,本人亦是如此。 不过,只要记住扭矩和转速公式的推导方式,可以很快推导出结果,得到系数a的准确值。 我们知道力学中力做功的功率计算公式为: P=FV(2) 上述公式为力做功的基本公式。然而,基本公式中没有出现扭矩T和转速N。 如果我们注意到:扭矩实际上就是力学上的力矩。就很容易联想到扭矩T和力F的关系。 由于力矩等于力F和力臂的乘积,而力臂是轴的半径r,因此有: T=Fr或 F=T/r(3)

图2 扭矩和力臂的关系 记忆方法: N是力的单位,m是长度的单位,因此,力等于扭矩除以长度,而长度就是半径r。扭矩的单位是N.m, 三掌握角速度和速度的转换方法 第二节告诉我们,扭矩与轴的半径有关,可是,扭矩和功率的关系式(1)中,并无轴半径的参数r,也无力做功基本公式(2)中的速度V。 这就引导我们去思考,将速度V变换为转速N后,转速N与扭矩T相乘,应该可以抵消掉轴半径r。实际正是如此: 电动机轴面上任意一点的速度与旋转的角速度及轴半径成正比,即: V=ωr(4) 记忆方法: 圆弧的长度等于角度乘以半径,圆周运动的速度等于角速度乘以半径。 四扭矩和功率的基本公式 将式(3)和(4)代入式(2),得到: P=Tω(5) 式(5)为扭矩和功率的基本公式,这个公式,我们可以按照上述方式推导,不过最好的办法还是直接记住。 记忆方法: 角速度ω和转速N都可以反映转速,采用角速度时,扭矩和功率成正比,扭矩和转速成反比,且正反比的系数均为1,因此,这是扭矩和功率的基本公式。 五单位转换

扭矩计算公式和单位

扭矩计算公式和单位 扭矩:扭矩是使物体发生转动的力。发动机的扭矩就是指发动机从曲轴端输出的力矩。在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。 扭矩和功率一样,是汽车发动机的主要指数之一,它反映在汽车性能上,包括加速度、爬坡能力以及悬挂等。 它的准确定义是:活塞在汽缸里的往复运动,往复一次做有一定的功,它的单位是牛顿。在每个单位距离所做的功就是扭矩了。是这样的,扭矩是衡量一个汽车发动机好坏的重要标准,一辆车扭矩的大小与发动机的功率成正比。举个通俗的例子,比如,像人的身体在运动时一样,功率就像是身体的耐久度,而扭矩是身体的爆发力。对于家用轿车而言,扭矩越大加速性越好;对于越野车,扭矩越大其爬坡度越大;对于货车而言,扭矩越大车拉的重量越大。在排量相同的情况下,扭矩越大说明发动机越好。在开车的时候就会感觉车子随心所欲,想加速就可加速,“贴背感”很好。现在评价一款车有一个重要数据,就是该车在0-100公里/小 时的加速时间。而这个加速时间就取决于汽车发动机的扭矩。 一般来讲,扭矩的最高指数在汽车2000-4000/分的转速下能够达到,就说明这款车的发动机工艺较好,力量也好。有些汽车在5000/分的转速左右才达 到该车扭矩的最高指数,这说明“力量”就不是此车所长。 扭矩在物理学中就是力矩的大小,等于力和力臂的乘积,国际单位是牛米Nm,此外我们还可以看见kgm、lb-ft这样的扭矩单位,由于G=mg,当g=9.8的时候,1kg=9.8N,所以1kgm=9.8Nm,而磅尺lb-ft则是英制的扭矩单位, 1lb=0.4536kg;1ft=0.3048m,可以算出1lb-ft=0.13826kgm。在人们日常表达里,扭矩常常被称为扭力(在物理学中这是2个不同的概念)。现在我们举个例子:8 代Civic 1.8的扭矩为173.5Nm@4300rpm,表示引擎在4300转/分时的输出扭矩为173.5Nm,那173.5N的力量怎么能使1吨多的汽车跑起来呢?其实引擎发出的扭矩要经过放大(代价就是同时将转速降低)这就要靠变速箱、终传和轮胎了。引擎释放出的扭力先经过变速箱作“可调”的扭矩放大(或在超比挡时缩小)再传到终传(尾牙)里作进一步的放大(同时转速进一步降低),最后通过轮胎将驱动力释放出来。如某车的1挡齿比(齿轮的齿数比,本质就是齿轮的半径比)是3,尾牙为4,轮胎半径为0.3米,原扭矩是200Nm的话,最后在轮轴的扭力就变成200×3×4=2400Nm(设传动效率为100%)在除以轮胎半径0.3米后,轮胎与地面摩擦的部 分就有2400Nm/0.3m=8000N的驱动力,这就足以驱动汽车了。 若论及机械效率,每经过一个齿轮传输,都会产生一次动力损耗,手动变速箱的机械效率约在95%左右,自排变速箱较惨,约剩88%左右,而传动轴的万向 节效率约为98%。整体而言,汽车的驱动力可由下列公式计算: 扭矩×变速箱齿比×最终齿轮比×机械效率 驱动力= ———————————————————— 轮胎半径(单位:米) 小结:1kgm=9.8Nm 1lb-ft=0.13826kgm 1lb-ft=1.355Nm

SKF摩擦力矩计算公式

S K F摩擦力矩计算公式 Revised by Petrel at 2021

https://www.360docs.net/doc/896563992.html,/产品/互动工程型录/滚动轴承/轴承的选择和应用原则/摩擦/ 摩擦 新的SKF摩擦力矩计算模型-油浴润滑中的阻力损失 由于阻力损失是产生摩擦最重要的额外原因,因此额外的影响因素减少到只考虑阻力损失部分M阻力。 在油浴润滑中,轴承是部分地,或在特殊的情况下,完全地被淹没。在这些条件下,油槽的大小、几何形状和油层的选用会对轴承摩擦力矩有显着的影响作用。对于一个非常大的油浴,不考虑油槽大小间的任何相互作用以及靠近轴承运行的其它机械部件带来的任何影响(如:外部润滑油搅动、齿轮或凸轮),作为油槽油层 的一个函数,轴承阻力损失可以从图2中标定的变量V M求得近似值,作为油层H和轴承平均直径d m=0.5(d+D)的一个函数,见 图2所示。在轴承速度不超过参考速度时,则图解2的情况适用。当速度更快、油层高时,其它的因素可能会对结果产生重要影响。 图解2中的变量V M在与球轴承中阻力损失的摩擦力矩相关时,表示为: M阻力=V M K球d m5n2

在与滚子轴承相关时,表示为: M阻力=10V M K钢板卷Bd m4n2。 = 阻力损失的摩擦力矩,Nmm M阻 力 V M= 根据图解2,作为油层的一个函数变量 K球= 与球轴承相关的常数,参看以下 K滚动 = 与滚子轴承相关的常数,参看以下 d m= 轴承的平均直径,mm B = 轴承内圈宽度,mm n = 转速,r/min 与球轴承相关的常数定义为 K球=(i rw K Z(D+d))/(D-d)10-12 与滚子轴承相关的常数定义为 K滚动=(K L K Z(D+d))/(D-d)10-12 K球= 与球轴承相关的常数 K滚动 = 与滚子轴承相关的常数 i rw= 球列的数量 K Z= 与轴承型号相关的几何形状常数 K L= 与滚子轴承型号相关的几何形状常数 d = 轴承孔径,mm D = 轴承外径,mm 阻力损失部分M阻力用摩擦计算程序计算。 注意: 计算喷油润滑的阻力损失时,可以用油浴润滑模型,油层为滚动体直径的一半,并把所得的M阻力数值乘以2。 计算立式转轴配置的阻力损失时,可以用完全浸没轴承的模型求出其近似值,再将求出的M阻力值乘上一个系数,这个系数等于浸没部分的宽度(高度)与总轴承宽度(高度)的比。 新的SKF摩擦力矩计算模型-低速度低粘度的混合润滑 在工作条件数值κ≤2的时候,轴承应用处于混合润滑状态;金属之间偶尔可能接触,使摩擦增大。有关转动速度及粘度函数的一个典型轴承摩擦力矩的概况,请参见

拧紧力矩的计算方法

拧紧力矩的计算方法 1. 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M — 拧紧扭矩,Nm K — 扭矩系数 P — 设计期望达到的紧固力,KN D — 螺栓公称螺纹直径,mm 3. 紧固力P 一般在设计上选取螺栓屈服强度σs 的60~80%,安全系数约为1.2以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约为0.13~0.18,而表面处理为发黑时,扭矩系数可达0.26~0.3。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: 0.2M PD = 6.VDI 2230中的拧紧力矩计算方法 22(0.160.58)2 : :::::Km A M G K M G Km K D M F P d F P d D μμμμ=?+??+式中: 装配预紧力螺距 外螺纹基本中径 螺栓螺纹摩擦系数螺栓头部下面的摩擦直径 螺栓头支承面摩擦系数 ()()0s 2s 23310 :/4 :=+/2 /6 :=0.50.7 :s s s s s s P A A A d d d d d d d H H σπσσσ=?=?=-?也可以由下表查出 螺纹部分危险剖面的计算直径螺纹牙的公称工作高度 ~螺栓材料的屈服极限

电机力矩计算

电机扭矩计算 电机力矩的定义:垂直方向的力*到旋转中心的距离 ?1、电动机有一个共同的公式: ??P=M*N/9550 P为功率, 2 3 频率。 步进电机是机电一体化产品中关键部件之一,通常被用作定位控制和定速控制。步进电机惯量低、定位精度高、无累积误差、控制简单等特点。广泛应用于机电一体化产品中,如:数控机床、包装机械、计算机外围设备、复印机、传真机等。?

选择步进电机时,首先要保证步进电机的输出功率大于负载所需的功率。而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保证其运行可靠。在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。一般地说最大静力矩Mjmax大的电机,负载力矩大。? 选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。在机械传动过 (1 i=(φ S?--- Δ---(mm/脉冲) (2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量Jt。 Jt=J1+(1/i2)[(J2+Js)+W/g(S/2π)2]?(1-2)?

S?---丝杆螺距(cm) (3)计算电机输出的总力矩M Ma=( 式中 n--- T--- Mf--- u--- η---传递效率? Mt=(Pt.s)/(2πηi)×10ˉ2?(1-6)? Mt---切削力折算至电机力矩(N.m)? Pt---最大切削力(N)

(4)负载起动频率估算。数控系统控制电机的启动频率与负载转矩和惯量有很大关系,其估算公式为 fq=fq0[(1-(Mf+Mt))/Ml)÷(1+Jt/Jm)]?1/2?(1-7) 式中fq---带载起动频率(Hz)? fq0--- Ml--- (5 高频率? (6 Mf与Mt 必须首绍折算扭矩(T折)的计算过程。 1、?重物提升 T折=?(m×g×D)?/(2×i)?[N.m] 2、丝杠螺母传动

滚动轴承摩擦力矩、发热量及油量计算

滚动轴承摩擦力矩、发热量及 油润滑所需油量的计算 1、轴承的摩擦损失在轴承内部几乎全部变为热量,因而致使轴承温度升高,轴承的发热量 可以用以下公式进行计算: Q? n M 05 1 . 10 ? =-4 式中 Q : 发热量,kW M : 摩擦力矩,N.mm n : 轴承转速,r/min 摩擦力矩的估算公式 M? P d . 5 ? =μ 式中 M : 摩擦力矩,N.mm μ: 轴承的摩擦系数 P : 当量动负荷,N 关键点:参见教材“机械设计”P 当量动载荷P的计算公式(13-8)。 320 教材P338例题13-1有关于当量动载荷的具体计算,但是Fa/Fr的值我个人觉得需要分析轴承的结构,那么就要对轴承选型。这里希望大家讨论下。 d :轴承公称内径,mm 附表:各类轴承的摩擦系数(参考) 2、摩擦力矩的精确计算公式: + = M+ + M s l M d r a g M s e a l M r r

式中 M : 总摩擦力矩, Nmm Mrr : 滚动摩擦力矩,Nmm Msl : 滑动摩擦力矩,Nmm Mseal : 密封件的摩擦力矩,Nmm Mdrag: 由于拖曳损失、涡流和飞溅等导致的摩擦力矩,Nmm 3、 4、循环油润滑及喷油润滑所需油量计算公式 T r c d n P G ?????=-601088.14μ 式中 G : 所需油量,L/min μ : 摩擦系数, d : 轴承公称内径,mm n : 轴承转速,r/min P : 轴承当量动负荷,N c : 油的比热,kJ/kg ℃ r : 油的密度,g/cm 3 △T : 油的温升,℃ 上式计算得到的是发热量全部通过油带走时所需的油量,未考虑其余散热因素。一般来说,实际油量约为以上计算油量的1/2-2/3。但散热量随着使用机械及使用条件而有所不同,因此宜先以计算油量的2/3进行运转,通过测量轴承温度和进、排油温度逐渐减小油量,直至确定最佳油量。

力矩计算

一转矩和转速的定义 转矩的定义 根据《GB/T 2900.61-2008 电工术语物理和化学》对转矩的定义:转矩是指合力为零的一组力的力矩的之和。转矩是各种工作机械传动轴的基本载荷形式,与动力机械的工作能力、能源消耗、效率、运转寿命及安全性能等因素紧密联系。 在电机学中力矩、转矩和扭矩是一样的。在功率固定的条件下扭矩与发动机转速成反比关系,转速越快扭矩越小,反之越大。在电机中都是指电机中转子绕组产生的可以用来带动机械负载的驱动“矩”。所谓“矩”是指作用力和支点与力作用方向相垂直的距离的乘积,国际单位是牛米Nm。 转速的定义 《GB/T 2900.36-2003 电工术语电力牵引》定义转速:电机旋转的速度。用符号"n"表示;其国际标准单位为rps (转/秒)或rpm (转/分),当单位为r/S时,数值上与频率相等,即n=f=1/T,T为作圆周运动的周期。圆周上某点对应的线速度为:v=2π*R*n,R为该点对应的旋转半径。 二电机转速和扭矩计算公式

电机转速公式:n=60f/P n=转速,f=电源频率,P=磁极对数 电机扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 具体的推导过程可以参考:扭矩和功率的计算公式推导及记忆方法 两个参数含义: 1kg=9.8N:1千克的物体受到地球的吸引力是9.8牛顿。 9.8N·m:推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 三如何通过电机功率和转矩计算公式来合理选择电动机 我们知道,无论是电动机选择过大或者过小,都会出现异常。电动机功率过小.就会出现“小马拉大车”现象,造成电动机长期过载,使其绝缘因发热而损坏,甚至电动机被烧毁。电动机功率过大,就会出现“大马拉小车”现象,其输出机械功率不能得到充分利用,功

扭矩计算公式和单位

扭矩计算公式和单位 09-02-18 01:24 发表于:《南京哈飞汽车之友论坛》 分类:未分类    扭矩:扭矩是使物体发生转动的力。发动机的扭矩就是指发动机从曲轴端输出的力矩。在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。  扭矩和功率一样,是汽车发动机的主要指数之一,它反映在汽车性能上,包括加速度、爬坡能力以及悬挂等。 它的准确定义是:活塞在汽缸里的往复运动,往复一次做有一定的功,它的单位是牛顿。在每个单位距离所做的功就是扭矩了。是这样的,扭矩是衡量一个汽车发动机好坏的重要标准,一辆车扭矩的大小与发动机的功率成正比。举个通俗的例子,比如,像人的身体在运动时一样,功率就像 是身体的耐久度,而扭矩是身体的爆发力。对于家用轿车而言,扭矩越大加速性越好;对于越野车,扭矩越大其爬坡度越大;对于货车而言,扭矩 越大车拉的重量越大。在排量相同的情况下,扭矩越大说明发动机越好。 在开车的时候就会感觉车子随心所欲,想加速就可加速,“贴背感”很好。 现在评价一款车有一个重要数据,就是该车在0-100公里/小时的加速 时间。而这个加速时间就取决于汽车发动机的扭矩。  一般来讲,扭矩的最高指数在汽车2000-4000/分的转速下能够达 到,就说明这款车的发动机工艺较好,力量也好。有些汽车在5000/分 的转速左右才达到该车扭矩的最高指数,这说明“力量”就不是此车所 长。    扭矩在物理学中就是力矩的大小,等于力和力臂的乘积,国际单位是牛米Nm,此外我们还可以看见kgm、lb-ft这样的扭矩单位,由于G=mg,当g=9.8的时候,1kg=9.8N,所以1kgm=9.8Nm,而磅尺lb-ft则是英 制的扭矩单位,1lb=0.4536kg;1ft=0.3048m,可以算出1lb-ft= 0.13826kgm。在人们日常表达里,扭矩常常被称为扭力(在物理学中这是2个不同的概念)。现在我们举个例子:8代Civic 1.8的扭矩为 173.5Nm@4300rpm,表示引擎在4300转/分时的输出扭矩为173.5Nm,那 173.5N的力量怎么能使1吨多的汽车跑起来呢?其实引擎发出的扭矩要 经过放大(代价就是同时将转速降低)这就要靠变速箱、终传和轮胎了。 引擎释放出的扭力先经过变速箱作“可调”的扭矩放大(或在超比挡时缩小)再传到终传(尾牙)里作进一步的放大(同时转速进一步降低),最后通过轮胎将驱动力释放出来。如某车的1挡齿比(齿轮的齿数比,本质就是齿轮的半径比)是3,尾牙为4,轮胎半径为0.3米,原扭矩是200Nm 的话,最后在轮轴的扭力就变成200×3×4=2400Nm(设传动效率为100%)在除以轮胎半径0.3米后,轮胎与地面摩擦的部分就有2400Nm/0.3m= 8000N的驱动力,这就足以驱动汽车了。 若论及机械效率,每经过一个齿轮传输,都会产生一次动力损耗,手动变速箱的机械效率约在95%左右,自排变速箱较惨,约剩88%左右,而 传动轴的万向节效率约为98%。整体而言,汽车的驱动力可由下列公式计

新的SKF摩擦力矩计算模型:切入发热减少系数

新的SKF摩擦力矩计算模型- 切入发热减少系数 即使SKF轴承里有足够的润滑剂,也不是全部都能通过轴承接触面;只有很少量的润滑剂用于建立油膜层厚度。由于这个影响,一些靠近接触面进油口的润滑油会被排出,并产生反向流动 此反向流动切断了润滑剂,同时产生热量,结果降低了 润滑油粘度,并减小油膜层厚度和滚动摩擦力矩。

进气口剪切的加热系数值φish可从中得到,作为合并参数(nd m )1,28ν0,64的一个函数。 并由摩擦计算程序计算。 本文由无锡旭日晟轴承有限公司工程服务部整理提供,可通过https://www.360docs.net/doc/896563992.html,。https://www.360docs.net/doc/896563992.html,查看更多。 新的SKF摩擦力矩计算模型- 贫油回填减少系数 在油气润滑、喷油润滑、低油位油浴润滑(例如油位低于最低滚动体的中心)和油脂润滑的情况下,随后滚道的过度滚动可能会排除多余的润滑剂。由于轴承转速或高粘度的原因,接触面边缘的润滑剂可能来不及为轴承滚道补油,这种影响称为“运动贫油”,会降低油膜厚度和滚动摩擦。 对于上述润滑情况,运动补油/缺油减缩系数的近似值可以从下式算出:

贫油回填减少系数φrs可用摩擦计算程序计算。 新的SKF摩擦力矩计算模型- 油浴润滑中的阻力损失 由于阻力损失是产生摩擦最重要的额外原因,因此额外的影响因素减少到只考虑阻力损失部分M 阻力。 在油浴润滑中,轴承是部分地,或在特殊的情况下,完全地被淹没。在这些条件下,油槽的大小、几何形状和油层的选用会对轴承摩擦力矩有显著的影响作用。对于一个非常大的油浴,不考虑油槽大小间的任何相互作用以及靠近轴承运行的其它机械部件带来的任何影响(如: 外部润滑油搅动、齿轮或凸轮),作为油槽油层的一个函数,轴承阻力损失可以从 中标定的变量V M求得近似值,作为油层H和轴承平均直径d m = 0.5(d + D) 的一个函 数,见 所示。在轴承速度不超过参考速度时,则图解2的情况适用。当速度更快、油层高时其它的因素可能会对结果产生重要影响。

弯管力矩计算公式

第二节管材弯曲 一、材弯曲变形及最小弯曲半径 二、管材截面形状畸变及其防止 三、弯曲力矩的计算 管材弯曲工艺是随着汽车、摩托车、自行车、石油化工等行业的兴起而发展起来的,管材弯曲常用的方法按弯曲方式可分为绕弯、推弯、压弯和滚弯;按弯曲加热与否可分为冷弯和热弯;按弯曲时有无填料(或芯棒)又可分为有芯弯管和无芯弯管。 图6—19、图6—20、图6—21和图6—22分别为绕弯、推弯、压弯及滚弯装置的模具示意图。

图6—19在弯管机上有芯弯管 1—压块2—芯棒3—夹持块4—弯曲模胎5—防皱块6—管坯

图6—20 型模式冷推弯管装置 图6—21 V 形管件压弯模 1—压柱 2—导向套 3—管坯 4—弯曲型模 1—凸模 2—管坯 3—摆动凹模

图6—22三辊弯管原理 1—轴2、4、6—辊轮3—主动轴5—钢管 一、材弯曲变形及最小弯曲半径 管材弯曲时,变形区的外侧材料受切向拉伸而伸长,内侧材料受到切向压缩而缩短,由于切向应

力θσ及应变θε沿着管材断面的分布是连续的,可设想为与板材弯曲相似,外侧的拉伸区过渡到内侧的压缩区,在其交界处存在着中性层,为简化分析和计算,通常认为中性层与管材断面的中心层重合,它在断面中的位置可用曲率半径ρ表示(图6—23)。 管材的弯曲变形程度,取决于相对弯曲半径D R 和相对厚度D t (R 为管材断面中心层曲率半径,D 为管材外径,t 为管材壁厚)的数值大小,D R 和D t 值越小,表示弯曲变形程度越大(即D R 和D t 过小),弯曲中性层的外侧管壁会产生过度变薄,甚至导致破裂;最内侧管壁将增厚,甚至失稳起皱。同时,随着变形程度的增加,断面畸变(扁化)也愈加严重。因此,为保证管材的成形质量,必须控制变形程度在许可的范围内。管材弯曲的允许变形程度,称为弯曲成形极限。管材的弯曲成形极限不仅取决于材料的力学性能及弯曲方法,而且还应考虑管件的使用要求。 对于一般用途的弯曲件,只要求管材弯曲变形区外侧断面上离中性层最远的位置所产生的最大伸长应变m ax ε不致超过材料塑性所允许的极限值作为定义成形极限的条件。即以管件弯曲变形区外侧的外表层保证不裂的情况下,能弯成零件的内侧的极限弯曲半径min r ,作为管件弯曲的成形极限。min r 与材料力学性能、管件结构尺寸、弯曲加工方法等因素有关。

SKF摩擦力矩计算公式

?/?产品?/?互动工程型录?/?滚动轴承?/?轴承的选择和应用原则?/?摩擦?/ 摩擦 新的SKF摩擦力矩计算模型-油浴润滑中的阻力损失 由于阻力损失是产生摩擦最重要的额外原因,因此额外的影响因素减少到只考虑阻力损失部分M阻力。 在油浴润滑中,轴承是部分地,或在特殊的情况下,完全地被淹没。在这些条件下,油槽的大小、几何形状和油层的选用会对轴承摩擦力矩有显着的影响作用。对于一个非常大的油浴,不考虑油槽大小间的任何相互作用以及靠近轴承运行的其它机械部件带来的任何影响(如:外部润滑油搅动、齿轮或凸轮),作为油槽油层的一 个函数,轴承阻力损失可以从?图2?中标定的变量V M求得近似值,作为油层H和轴承平均直径d m?=0.5(d+D)的一个函数,见 图2所示。在轴承速度不超过参考速度时,则图解2的情况适用。当速度更快、油层高时,其它的因素可能会对结果产生重要影响。 图解2中的变量V M?在与球轴承中阻力损失的摩擦力矩相关时,表示为:

M阻力=V M K球d m?5n2? 在与滚子轴承相关时,表示为: M阻力?=10V M K钢板卷Bd m?4n2。 M阻力= 阻力损失的摩擦力矩,Nmm V M= 根据图解2?,作为油层的一个函数变量K球= 与球轴承相关的常数,参看以下 K滚动= 与滚子轴承相关的常数,参看以下 d m= 轴承的平均直径,mm B = 轴承内圈宽度,mm n = 转速,r/min 与球轴承相关的常数定义为 K球?=(i rw?K Z?(D+d))/(D-d)10-12 与滚子轴承相关的常数定义为 K滚动?=(K L?K Z?(D+d))/(D-d)10-12 K球= 与球轴承相关的常数 K滚动= 与滚子轴承相关的常数 i rw= 球列的数量 K Z= 与轴承型号相关的几何形状常数 K L= 与滚子轴承型号相关的几何形状常数 d = 轴承孔径,mm D = 轴承外径,mm 阻力损失部分M阻力用摩擦计算程序计算。 注意: 计算喷油润滑的阻力损失时,可以用油浴润滑模型,油层为滚动体直径的一半,并把所得的M阻力数值乘以2。计算立式转轴配置的阻力损失时,可以用完全浸没轴承的模型求出其近似值,再将求出的M阻力值乘上一个系数,这个系数等于浸没部分的宽度(高度)与总轴承宽度(高度)的比。 新的SKF摩擦力矩计算模型-低速度低粘度的混合润滑 在工作条件数值κ≤2的时候,轴承应用处于混合润滑状态;金属之间偶尔可能接触,使摩擦增大。

拧紧力矩的计算方法

拧紧力矩的计算方法 Modified by JACK on the afternoon of December 26, 2020

拧紧力矩的计算方法 1. 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M — 拧紧扭矩,Nm K — 扭矩系数 P — 设计期望达到的紧固力,KN D — 螺栓公称螺纹直径,mm 3. 紧固力P 一般在设计上选取螺栓屈服强度σs 的60~80%,安全系数约为以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约为~,而表面处理为发黑时,扭矩系数可达~。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: 0.2M PD = 6.VDI 2230中的拧紧力矩计算方法 22(0.160.58)2 : :::::Km A M G K M G Km K D M F P d F P d D μμμμ=?+??+式中: 装配预紧力螺距 外螺纹基本中径 螺栓螺纹摩擦系数螺栓头部下面的摩擦直径 螺栓头支承面摩擦系数 ()()0s 2s 23310 :/4 :=+/2 /6 :=0.50.7 :s s s s s s P A A A d d d d d d d H H σπσσσ=?=?=-?也可以由下表查出 螺纹部分危险剖面的计算直径螺纹牙的公称工作高度 ~螺栓材料的屈服极限

电机转速和扭矩(转矩)计算公式

电机转速和扭矩(转矩)公式 1、电机有个共同的公式,P=MN/9550 P为额定功率,M为额定力矩,N为额定转速,所以请确认电机功率和额定转速就可以得出额定力矩大小。注意P的单位是KW,N的单位是R/MIN(RPM),M的单位是NM 2、扭矩和力矩完全是一个概念,是力和力臂长度的乘积,单位NM(牛顿米) 比如一个马达输出扭矩10NM,在离输出轴1M的地方(力臂长度1M),可以得到10N的力;如果在离输出轴10M的地方(力臂长度10M),只能得到1N的力 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 力矩、转矩和扭矩在电机中其实是一样的。一般在同一篇文章或同一本书,上述三个名词只采用一个,很少见到同时采用两个或以上的。虽然这三个词运用的场合有所区别,但在电机中都是指电机中转子绕组产生的可以用来带动机械负载的驱动“矩”。所谓“矩”是指作用力和支点与力作用方向相垂直的距离的乘积。 对于杠杆,作用力和支点与力作用方向相垂直的距离的乘积就称为力矩。对于转动的物体,若将转轴中心看成支点,在转动的物体圆周上的作用力和转轴中心与作用力方向垂直的距离的乘积就称为转矩。当圆柱形物体,受力而未转动,该物体受力后只存在因扭力而发生的弹性变形,此时的转矩就称为扭矩。因此,在运行的电机中严格说来只能称为“转矩”。采用“力矩”或“扭矩”都不太合适。不过习惯上这三种名称使用的历史都较长至少也有六七十年了,因此也没有人刻意去更正它。 至于力矩、转矩和扭矩的单位一般有两种,就是千克·米(kg·m)和牛顿·米(N·m) 两种,克·米(g·m)只是千克·米(kg·m)千分之一。如一楼的朋友所说,“1kg力=9.8N”。1千克·米(kg·m)=9.8牛顿·米(N·m)。 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能?有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋

力矩计算

如何计算出扭矩来选择电机?急! 根据sundaywork 提供的公式,计算如下: 已知:m=30kg,r=0.085m,n=20r/min(取最大值),启动时间t=0.1s。 则旋转惯量J=30x0.085x0.085/2=0.108375 角加速度a=2x3.14x20/60x0.1=20.944 T≥2J*a/n=2x0.108375x20.944/0.92=4.934N.m 即电机扭矩要大于等于4.934N.m, 由此计算电机功率N=T*n/9549=4.934*20/9549=10W。 感觉扭矩和功率咋个这么小呢? 大家帮我确认一下!有错没有?

在这里,主要克服的是,启动转动惯性力 惯性力矩=转动惯量x角加速度,(M=Jβ), J=J1+J2+J3,J=mr^2/2 ,这里你的轴,链轮,还有下面的重物分别计算,也许你的重物不是圆柱型,简化力学模型,就当他是圆的好了 β=△w/△t,物体是从0转速开始启动到4r/min的,w=2πn/60,△t是你的意愿,假设10秒,5秒的,这就好了M=9549XN/n,M是你上面算出来的,N是功率,n是转速 最后再乘以减速器还有轴承的系数就好了,

各位好,我把我的计算过程在这里写一下吧 J=mr^2/2=(5000x1^2)/2=2500kgm^2 β=△w/△t=(2πn/60)/t=(2x3.14x4/60)/1=0.42rad/s^2 M'=Jβ=2500X0.42=1050Nm 忘了一点,不好意思。只解决惯性力矩还不算,你还得要将静摩擦转变为滑动摩擦,所以还得要加上静摩擦力矩M"=mgfR=5000x10x0.15x0.025=190Nm (你的推力球轴承设计的不对,轴台肩在上不应该在下,因为你的轴是承受拉力的,所以轴承是承受压力,我姑且取滚道半径为25mm) M=k(M'+M")=1.2x(1050+190)=1490Nm (包含轴及链轮的转动惯性力) M=9549XN/n 则N=(1490x4)/9549=0.62KW P=N/η=0.62/(0.96x0.98x0.95)=0.7KW (前一个链传动,中间一个推力轴承效率,后一个减速器) 在这里,你选择一个1.5KW的电机就够了,不能选0.75的,这样电机容易烧坏,1.1kw的可以,但是安全系数有点低,选2倍安全系数的电机,就是1.5的 电机转速经过变速器变速的时候,减速增扭,功率几乎不变,损失的只有传动效率

电机转速和扭矩(转矩)计算公式

电机转速和扭矩(转矩)公式 含义:1kg=9.8N 1千克的物体受到地球的吸引力是9.8牛顿。 含义:9.8N·m 推力点垂直作用在离磨盘中心1米的位置上的力为9.8N。 转速公式:n=60f/P (n=转速,f=电源频率,P=磁极对数) 扭矩公式:T=9550P/n T是扭矩,单位N·m P是输出功率,单位KW n是电机转速,单位r/min 扭矩公式:T=973P/n T是扭矩,单位Kg·m P是输出功率,单位KW n是电机转速,单位r/min 形象的比喻: 功率与扭矩哪一项最能具体代表车辆性能?有人说:起步靠扭矩,加速靠功率,也有人说:功率大代表极速高,扭矩大代表加速好,其实这些都是片面的错误解释,其实车辆的前进一定是靠发动机所发挥的扭力,所谓的「扭力」在物理学上应称为「扭矩」,因为以讹传讹的结果,大家都说成「扭力」,也就从此流传下来,为导正视听,我们以下皆称为「扭矩」。 扭矩的观念从小学时候的「杠杆原理」就说明过了,定义是「垂直方向的力乘上与旋转中心的距离」,公制单位为牛顿-米(N-m),除以重力加速度9.8m/sec2之后,单位可换算成国人熟悉的公斤-米(kg-m)。英制单位则为磅-呎(lb-ft),在美国的车型录上较为常见,若要转换成公制,只要将lb-ft的数字除以7.22即可。汽车驱动力的计算方式:将扭矩除以车轮半径即可由发动机功率-扭矩输出曲线图可发现,在每一个转速下都有一个相对的扭矩数值,这些数值要如何转换成实际推动汽车的力量呢?答案很简单,就是「除以一个长度」,便可获得「力」的数据。举例而言,一部1.6升的发动机大约可发挥15.0kg-m的最大扭矩,此时若直接连上185/ 60R14尺寸的轮胎,半径约为41公分,则经由车轮所发挥的推进力量为15/0.41=36.6公斤的力量(事实上公斤并不是力量的单位,而是重量的单位,须乘以重力加速度9.8m/sec2才是力的标准单位「牛顿」)。 36公斤的力量怎么推动一公吨的车重呢?而且动辄数千转的发动机转速更不可能恰好成为轮胎转速,否则车子不就飞起来了?幸好聪明的人类发明了「齿轮」,利用不同大小的齿轮相连搭配,可以将旋转的速度降低,同时将扭矩放大。由于齿轮的圆周比就是半径比,因此从小齿轮传递动力至大齿轮时,转动的速度降低的比率以及扭矩放大的倍数,都恰好等于两齿轮的齿数比例,这个比例就是所谓的「齿轮比」。

相关文档
最新文档