单位用水量计算参考

单位用水量计算参考
单位用水量计算参考

单位用水量计算参考

摘要:论述了工业企业工程设计时,合理计算全厂平均小时用水量和最大小时用水量的重要性,并通过对工业用水过程中连续用水最大小时用水量同时发生的概率和各间断用水量同时发生的概率分析,提出全厂用水量的计算方法。

关键词:工业企业用水量

1水量计算的重要性

水量计量的单位为m3/h或m3/d。在工业企业中常用的水量为日用水量(以m3/d计),平均小时用水量和最大小时用水量(以m3/h计)。工业企业前期设计(可行性研究和初步设计)

阶段中,给排水专业一个重要任务是进行全厂用水量计算。全厂的平均小时用水量和最大小时用水量是工业企业用水量的重要参数,因为它决定着工业企业内部管网的管径和从市政管网引入给水管的管径以及初次水增容费的多少。同时,如果该企业远离城市或城市供水量不能满足企业自身的用水量需求时,企业一般需要自建水厂,需要的话,还要自建污水处理场。如一些大型的化工厂或石油化工企业等。此时,上述两个用水量又决定着自建水厂和污水处理场的规模。换句话说,平均时用水量和最大时用水量影响着待建企业的给排水部分的投资。因此,此阶段的给排水专业的水量计算是十分重要的。合理计算全厂中各种用水量,正确绘制水平衡图,对设计中确定工厂自建取水厂、污水处理场规模,合理缴纳水增容费及控制水资源、节约用水等有非常重要的意义和积极的指导作用。

2工业企业用水量分类

根据《工业用水分类及定义》(CJ19-87)中的有关规定,工业企业用水量是指工业企业完成全部生产过程所需要的各种水量的总和。它包括间接冷却水量、工艺用水量、锅炉用水量和生活用水量。除此以外,工厂中还有消防用水量。

3工业企业用水量计算重点

在上述各用水量中,间接冷却水一个较稳定的用水量,补充水量计入工厂生产用新鲜水量中,一般是个相对稳定的数值。消防用水量是根据相关规范确定的,水量固定。因此企业用水量的计算重点和难点在于工业企业全厂新鲜水用量的平均时用水量和最大时用水量。

4工业企业新鲜用水量的计算

为讨论问题方便,下述用水量均指企业用新鲜水量。

从水量的单位可以看出,决定工业企业全厂用水量的因素有两个:一个是用水立方米数,另一个是用掉这些水的用水时间。但,要正确计算小时用水量,除对这两个因素进行必要的分析外,还需对各用水设备或用水点的最大用水量是否在同一时间段发生进行概率分析。

对于生活用水量,一般根据《建筑给水排水设计规范》中的用水定额和工艺专业向给排水专业提供的最大班人数,经计算确定,此用水量记为Q S1。此外还有工业企业中淋浴用水量,记为Q S2。职工生活用水最大用水量和淋浴用水量,通常不同时发生。也就是说,这两个水量同时发生的概率很小。这可以通过对职工上班、下班的生活规律的分析,得出这个结论。因此,在计算工业企业总的生活用水最大小时流量(记为Q S3)时,宜取淋浴小时用水量

和职工生活用水平均时用水量之和。随着人们对生活环境要求的越来越高,工业企业的绿化用水量也不容忽视。它的计算可根据《建筑给水排水设计规范》中规定的绿化用水定额和企业中绿化面积进行计算。此部分一般归类为生活用水量范畴,记为Q S4。

工业企业生产用新鲜水中的间接冷却循环水的补充水量,是一个较衡定的用水量,它的值在确定了循环水系统的循环水量和循环水处理方式后也就确定下来,记为QX。除循环水补充水以外的生产用的其它新鲜水,随着生产工艺不同而有差异,用水时间也是长短不一。企业在安排产品生产时是根据市场需要而进行的。同一套生产设备,会因它在不同阶段使用不同的原材料生产不同的产品而使用水量发生变化。由此带来的水量计算,尤其是最大时用水量更难准确把握。以下,就某一化工厂的初步设计来探讨一下水量的计算。

表1 用水量条件

序号用水设备用途连续用水量/(m3.h-1) 间断用水量/(m3.h-1)

备注平均最大

每次用水

量/m3

每次最长

用水时间

/h

每天用水

次数

1

轴承冷却

冷却 2 3

2 液压站冷却 1 1.5

3 生产用水工艺水8 10.5 不排出

4 生产用水

装置冲洗

1 0.5 1

5 生产用水

厂房冲洗

2 0.5 1

6 洗涤水 6 9

7 泵密封水 1 1

8

地坪冲洗

3 1 3

9

反应等用

工艺水29 36 不排出10 循环上水冷却700 750

11

地坪冲洗

5 2.5 1

12 盐溶解槽溶盐 2.5 0.5 8 不排出

13 合成槽

洗涤、中

1.2 2 8

14 离心机洗涤 1.2 2 8

15

地坪冲洗

2 0.5 1

表1中摘录了某化工厂初步设计时,化工工艺等专业向给排水专业所提的用水量条件表内容中的一部分。

从表1中可以看出:生产用新鲜水主要分为两大类,一类为生产连续用水量,一类为间断用水量。连续用水量中又分为平均时用水量和最大时用水量。在计算连续用水的平均时用水量时,可以直接将表1的平均用水量数据相加即可。而计算连续用水的最大小时用水量时,在计算时却有两种方法:第一种是将表1的最大用水量数据直接相加,取其和;第二种是将表1的最大用水量数据相加,再乘以一个折减系数,将所得出的结果作为最大小时用水量。第一种方法所表达的意义是指所有产生最大时用水量的事件在同一时间发生。这种概率是存在的,但它发生的概率随着用水项序号的增加而减小。

表1中,间断用水中却有每次用水量、每次最长用水时间、每天用水次数三个因素控制。将表1的间断用水量单独取出来,制成表2。

表2 用水量表

序号用水设备用途间断用水量/(m3.h-1)

小时用水

量/

(m3.h-1)

日用水量

/(m3.h-1)

备注每次用水

量/m3

每次最长

用水时间

/h

每天用水

次数

4 生产用水装置冲洗 1.0 0.

5 1 2.0 1.0

5 生产用水厂房冲洗 2.0 0.5 1 4.0 2.0 8

地坪冲洗

3.0 1.0 3 3.0 9.0 11 地坪冲洗 5.0 2.0 1 2.0 5.0

12 盐溶解槽溶盐 2.5 0.5 8 5.0 20.0 不排水

洗涤、中

13 合成槽

1.2

2.0 8 0.6 9.6

14 离心机洗涤 1.2 2.0 8 0.6 9.6

地坪冲洗

2.0 0.5 1 4.0 2.0

15

由表2可以看出,一天中,就某一次间断用水量发生而言,其一次用水时间并不长,一次用水量也并不太大,但将其折合成小时用水量时却比较大。把表2中“小时用水量”直接相加得出用水量为21.20m3/h。如果将此水量作为间断用水量的小时用水量的话,显然偏大。因为这个水量代表的意义同样是所有间断用水量发生在同一时间段。这种概率,同样随着间断用水量个数的增加而减小。因此,计算间断用水的小时用水量,也同样不能将其折合成小时用水量后简单地叠加。

以表1中的数据为例,本文推荐一种工业企业小时用水量的计算方法,方法如下:4.1计算连续用水部分的平均小时用水量Q L1

将工艺等专业所提的连续用水量的平均时用水量相加,此用水量记为Q L1,即表1中序号为第3、6、7、9的平均用水量相加得出:Q L1=44.0m3/h;

4.2计算循环水的补充水量Q X;

4.3计算连续用水部分的最大小时用水量Q L3

将连续用水量的最大时用水量相加,此用水量记为Q L2,即表1中序号为第3、6、7、9的最大用水量,相加得出:Q L1=60 0m3/h。考虑到若干项连续用水量的最大小时用水量在同一小时内发生的概率,因此将Q L2乘以一个系数k(k≤1),即Q L3=kQ L2,把Q L3作为连续用水部分的最大小时用水量。k的取值,依据连续最大用水量个数可取0.6~1。当连续最大用水量个数多时,取小值;当连续最大用水量个数少时,取大值;当连续最大用水量个数只有一个时,取1。

5计算间断用水部分的小时用水量Q J

间断用水部分的小时用水量分为以下三部分:

5.1选取单项一天用水总时间超过8 h的用水项目,认定这些间断小时用水量为准连续用水量 即表1中的序号13、14,这部分小时用水量之和记为Q J1。本例中Q J1=1.2m3/h。

5.2取间断用水量中最大一个小时用水量 即表1中的序号12,这部分小时用水量记为Q J2。本例中Q J2=5.0 m3/h。

5.3除去上述准连续用水量和间断用水量后,将其它间断用水(即表1中的序号4、5、8、11、15)一天用水量之和(1+2+3×3+5+2=19.0 m3/h。)除以用这些水所需总用水时间

(0.5+0.5+3×1+2.5+0.5=7.0 h),得出一平均用水量,记为Q J3。本例中Q J3=2.7 m3/h。

那么,间断用水小时用水量Q J可取上述三部分用水量之和。本例中Q J=Q J1+Q J2+Q J3=8.9 m3/h。

综合上述分析,工业企业生产生活用新鲜水量可以用下式计算:(不包括消防用水量)平均小时用水量:

Q=K(Q L1+Q J+Q X+Q S1+Q S4) (1)

最大小时用水量:

Qmax=K(KQ L2+Q J+Q X+Q S3)

=K(Q L3+Q J+Q X+Q S3+Q S4)(2)

式中,K—为管网损失量系数,可以视管网大小,取1.1~1.2

上述关于连续用水量中最大小时用水量系数k的附加,大家可以从数学的概率论中得到解释。同样,间断用水量从上述三个方面计算得出的结果Q J,基本上可以代表不同的间断用水量在同一时间发生较有代表性概率时的用水量。

6结语

6.1工业企业新鲜水连续用水最大小时用水量的计算,宜分析各不同用水设备或用水点最大小时用水量在同一时间内发生的概率大小,从而选取“k”值;

6.2工业企业新鲜水间断用水小时用水量的计算,宜对各不同间断用水量的用水特点进行必要的分析,从中选取一个较合理的计算方法,以期使计算得出的用水量值既满足使用需要又是一个经济用水量值。

同样,如果计算工业企业中全厂最大小时排水量,也可以参照用水量的计算方法进行计算。

本文根据多年的设计实践经验,探讨了如何合理地计算工业企业中正常生产生活时所需的新鲜水量。以上用水量计算方法是否正确、合理,请广大给排水工作者给与评论和指导,并欢迎各位同行参与讨论。

作者简介:

孙雅平 (1965-),女,高级工程师。

管井设计涌水量计算

管井设计涌水量计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

乐享 管井设计涌水量计算 经营教育 乐享 2012-12-1 水文地质参数索引 a :含水层厚度,单位米(m); D g :过滤管外径(m); h :井中的水深,单位米(m); H :无压含水层厚度或承压含水层的水头高度或厚度,单位米(m); K :渗透系数,表示含水层的渗透性质,在达西公式中,水力坡度i=1时的渗透速度(表示地下水的运动状态、粘滞系数、含水层颗粒大 小、形状、排列);单位米/天(m/d); L :过滤管有效进水长度(m),宜按过滤管长度的85%计算; N :过滤管进水面层有效孔隙数,宜按过滤管面层孔隙率的50%计算;q n :单位出水量(m3/()); Q g :过滤管的进水能力(m3/s); Q :管井出水量,单位m3/d; Q1、Q2:抽水井稳定流出水量,单位m3/d; Q n :单井实测最大出水量,单位m3/d; 主要针对潜水及承压水稳定流完整井的理论及经验公式展开论述,并介绍了井群在不同地质条件下的布置及计算遵循的原则,最后介绍了洗井及单井出水量校核。最后利用4个Excel文件概括理论及经验公式,可代入抽水试验值分别计算管井单井出水量。

r1、r2:抽水井至观测孔距离,单位米(m); r :管井或抽水井的半径,单位米(m); R :影响半径,裘布衣公式中以抽水井为轴心的圆柱状含水层的半径(不以井的出水量、水位下降值的大小改变),表示井的补给能力;单位米(m); S1、S2:观测孔内水位降深,单位米(m); S1‘、S2’‘:观测孔内水位降深,单位米(m); S :水位降深,单位米(m); S n:相应Q n时的最大水位降深,单位米(m); T :导水系数,T=KM,单位m2/d; V g:允许过滤管进水流速,单位m/s,不得大于s; V j:允许井壁进水流速,单位m/s; 目录

用水量计算

全日供应热水的集中热水供应系统的设计小时耗热量 86400t -t C mq K Q r L r r h h ρ)(?= Qh-设计小时耗热量,W m-用水计算单位数,人数或床位数 qr-热水用水定额 C-水的比热=4.187mj/(kg ·℃) tr-热水温度,tr=60℃ tL-冷水计算温度 ρr-热水密度,kg/L Kh-热水小时变化系数 定时供应热水的集中热水供应系统的设计小时耗热量: 3600 bC N t t q Q 0r L r h h ρ)(-∑= qh-卫生器具热水的小时用水定额 N0-同类卫生器具数 b-卫生器具使用的百分数

设计小时热用水量计算 r L r h r t t Q Q ρ)(163.1-= 式中:Qr-设计小时热水量,L /h Qh-设计小时耗热量,W tr-设计热水温度, ℃ tL-设计冷水温度,℃ ρr-热水密度,kg/L 最高日用水量 Qd=Σmqd/1000 式中 Qd :最高日用水量,L/d ; m : 用水单位数,人或床位数; qd : 最高日生活用水定额,L/人.d , L/床.d ,或L/人.班 最大小时生活用水量 Qh=QdKh/T

式中Qh:最大小时用水量,L/h Qd:最高日用水量,L/d; T:24h; Kh:小时变化系数,按《规范》确定. (1)给水管道的沿程水头损失可按下式计算: 式中 i——管道单位长度水头损失(kPa/m); dj——管道计算内径(m); qj——给水设计流量(m3/s); Ch——海澄-威廉系数。 各种塑料管、内衬(涂)塑管Ch=140;铜管、不锈钢管Ch=130;衬水泥、树脂的铸铁管Ch=130;普通钢管、铸铁管Ch=100

矿井(坑)涌水量计算

附 录 A (资料性附录) 矿井(坑)涌水量计算 A.1 比拟法 比拟法是一种应用相当广泛的传统方法。它是当新矿井与生产矿井的水文地质条件相类 似时,用生产矿井的资料来预测新矿井(坑)涌水量的方法,虽属一种近似的预测方法,但 往往可以获得满意的效果,特别是对于那些水文地质条件简单或者中等的矿井。比拟法包括 富水系数法、矿井单位涌水量比拟法、相关关系分析法等。 A.1.1 富水系数法 P K Q p ?= .................................... (D.1) 式中: Q ——新矿井(坑)涌水量,单位为立方米每年(m 3/a ); p K ——富(含)水系数,单位为立方米每吨(m 3/t ); P ——新矿井设计年产量,单位为吨每年(t/a )。 1 1p Q K p = ...................................... (D.2) 式中: p K ——富(含)水系数,单位为立方米每吨(m 3/t ); 1Q ——生产矿井(坑)年涌水量,单位为立方米每年(m 3/a ); 1p ——生产矿井年产煤量,单位为吨每年(t/a ) A.1.2 矿井单位涌水量比拟法 当矿井(坑)涌水量增长幅度与开采面积、水位降低呈直线比例的情况下: 1 110S F Q q = ..................................... (D.3) 式中: 0q ——生产矿井(坑)单位涌水量,单位为立方米每吨平方米(m 3/tm 2); 1Q ——生产矿井(坑)总涌水量,单位为立方米每年(m 3/a ); 1F ——生产矿井开采面积,单位为平方米(m 2); 1S ——生产矿井水位降低,单位为米(m )。 S F q Q ??=0 .................................. (D.4) 式中: Q ——新矿井(坑)预计涌水量,单位为立方米每年(m 3/a ); 0q ——生产矿井(坑)单位涌水量,单位为立方米每吨平方米(m 3/tm 2);

管井设计涌水量计算

管井设计涌水量计算内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

乐享 管井设计涌水量计算 经营教育 乐享 2012-12-1 水文地质参数索引 a :含水层厚度,单位米(m); D g :过滤管外径(m); h :井中的水深,单位米(m); H :无压含水层厚度或承压含水层的水头高度或厚度,单位米(m); K :渗透系数,表示含水层的渗透性质,在达西公式中,水力坡度i=1时的渗透速度(表示地下水的运动状态、粘滞系数、含水层颗粒大小、形状、排列);单位米/天(m/d); L :过滤管有效进水长度(m),宜按过滤管长度的85%计算; N :过滤管进水面层有效孔隙数,宜按过滤管面层孔隙率的50%计算; q n :单位出水量(m3/(d.m)); Q g :过滤管的进水能力(m3/s); Q :管井出水量,单位m3/d; Q 1、Q 2 :抽水井稳定流出水量,单位m3/d; Q n :单井实测最大出水量,单位m3/d; 主要针对潜水及承压水稳定流完整井的理论及经验公式展开论述,并介绍了井群在不同地质条件下的布置及计算遵循的原则,最后介绍了洗井及单井出水量校核。最后利用4个Excel文件概括理论及经验公式,可代入抽水试验值分别计算管井单井出水量。

r 1、r 2 :抽水井至观测孔距离,单位米(m); r :管井或抽水井的半径,单位米(m); R :影响半径,裘布衣公式中以抽水井为轴心的圆柱状含水层的半径(不以井的出水量、水位下降值的大小改变),表示井的补给能力;单位米(m); S 1、S 2 :观测孔内水位降深,单位米(m); S 1‘、S 2 ’‘:观测孔内水位降深,单位米(m); S :水位降深,单位米(m); S n :相应Q n 时的最大水位降深,单位米(m); T :导水系数,T=KM,单位m2/d; V g :允许过滤管进水流速,单位m/s,不得大于0.03m/s; V j :允许井壁进水流速,单位m/s; 目录

案例5-1:内容:施工临时用水量及管径计算方法

不记得页码: 施工机械用水量 3600 83221?? ?=∑K N Q K q (5-7) 麻烦核实一下施工机械用水量公式5-7 q 缺少下角标2,正确应为q 2: 3600 832212?? ?=∑K N Q K q (5-7) 页码:154 原文字: 工地上采用这种布置方式。 7.工地临时供电系统的布置 建议修改文字: 插入案例5-1 工地上采用这种布置方式。 案例5-1 案例5-1 某工程,建筑面积为18133m 2,占地面积为4600m 2。地下一层,地上9层。筏形基础,现浇混凝土框架剪力墙结构,填充墙空心砌块隔墙;生活区与现场一墙之隔,建筑面积750m 2,常住工人330名。水源从现场南侧引入,要求保证施工生产,生活及消防用水。 问题: (1) 当施工用水系数K 1=,年混凝土浇筑量11743m 3,施工用水定额2400L/m 3 ,年持续有效工作日为150d ,两班作业,用水不均衡系数K 2=。要求计算现场施工用水? (2) 施工机械主要是混凝土搅拌机,共4台,包括混凝土输送泵的清洗用水、进出施工现场运输车辆冲洗等,用水定额平均N 2=300L/台。未预计用水系数K 1=,施工不均衡系数K 3=,求施工机械用水量? (3) 假定现场生活高峰人数P 1=350人,施工现场生活用水定额N 3=40L/班,施工现场生活用水不均衡系数K 4=,每天用水2个班,要求计算施工现场生活用水量?

(4) 假定生活区常住工人平均每人每天消耗水量为N 4=120L ,生活区用水不均衡系数K 5按计取;计算生活区生活用水量? (5) 请根据现场占地面积设定消防用水量? (6) 计算总用水量? (7) 计算临时用水管径? 案例解析 (1) 计算现场施工用水量: S L K b T N Q K q /626.53600 85.1215024001174315.136008211111=?????=???= (2) 计算施工机械用水量: s L K N Q K q /0958.03600 80.2300415.13600832 212=????=?=∑ (3) 计算施工现场生活用水量: s L b K N P q /365.03600 825.140350360084313=????=????= (4) 计算生活居住区生活用水量 s L K N p q /15.13600245.21203303600245424=???=???= (5) 设定消防用水量: 消防用水量 q 5的确定。按规程规定,施工现场在25ha(250000m 2)以内时,不大于15L/s ;(注:一公倾(ha )等于10000m 2)。 由于施工占地面积远远小于250000m 2,故按最小消防用水量选用,为q 5=10L/s 。 (6) 计算总用水量 54321/237.715.1365.00958.0626.5q s L q q q q <=+++=+++,故总用水量按消防用水量考虑,即总用水量s L q Q /105==。若考虑10%的漏水损失,则总用水量:s L Q /1110%)101(=?+=。 (7) 计算临时用水管径 供水管管径是在计算总用水量的基础上按公式计算的,如果已知用水量,按规定设定水流速度(假定为:s),就可以进行计算。计算公式如下: mm Q D 965 .114.3100011410004=???=??=νπ

井点降水涌水量计算

按照初定方案,本工程除埋深较深段使用拖拉管施工外,剩余大部分需使用井点降水大开挖施工。按照设计及规范初步设计沟槽底宽1.5m,沟槽深按照最大挖深设计取4m,开挖沟槽边坡按照1:1,基坑横剖面图如附图。经地质勘探,天然地面属耕植土,其下为粉质粘土(<=-4m),淤泥质粉质粘土(<=-7.14m)、淤泥质粉质粘土夹粉砂,底部为泥岩,基本都属于透水层。地下水位标高为-0.5m采用轻型井点降水施工。 1井点布设 根据工程地质及施工状况,轻型井点采用沟槽两侧单排布设,为是总管接近地下水位,井点管布设于已挖好的路床底。总管距沟槽开挖线边缘1m,总管长度 L=50×2=100(m) 水位降低值 S=4 (m) 采用一级轻型井点,井点管的埋设深度(总管平台面至井点管下口,不包括滤管) H2>=H1 +h+IL=4.0+0.5+0.1×5.75=5.1(m) 采用6m长的井点管,直径50mm,滤管长1m。井点管外露地面0.2m,埋入土中5.8m(不包括滤管)大于5.2m,符合埋深要求。按无压非完整井环形井点系统计算。 2).基坑涌水量计算 按无压非完整井环形点系统涌水量计算公式(式1—23)进行计算 Q= 先求出H、K、R、x0值。 H:有效带深度 H=1.85(S,+L) s’=6-0.2-1.0=4.8m求得H: H=1.85(s,+L)=1.85(4.8+1.0)=10.73(m) 由于H0

管井设计涌水量计算

11月整理 管井设计及出水量计算 稳定流完整井 / 吴成泽 2012-12-1 — 主要针对潜水及承压水稳定流完整井的理论及经验公式展开论述,并介绍了井群在不同地质条件下的布置及计算遵循的原则,最后介绍了洗井及单井出水量校核。最后利用4个Excel文件概括理论及经验公式,可代入抽水试验值分别计算管井单井出水量。

水文地质参数索引 a :含水层厚度,单位米(m); D g :过滤管外径(m); h :井中的水深,单位米(m); H :无压含水层厚度或承压含水层的水头高度或厚度,单位米(m);K :渗透系数,表示含水层的渗透性质,在达西公式中,水力坡度i=1时的渗透速度(表示地下水的运动状态、粘滞系数、含水 层颗粒大小、形状、排列);单位米/天(m/d); L :过滤管有效进水长度(m),宜按过滤管长度的85%计算; & N :过滤管进水面层有效孔隙数,宜按过滤管面层孔隙率的50%计算; q n :单位出水量(m3/()); Q g :过滤管的进水能力(m3/s); Q :管井出水量,单位m3/d; Q1、Q2:抽水井稳定流出水量,单位m3/d; Q n :单井实测最大出水量,单位m3/d; r1、r2:抽水井至观测孔距离,单位米(m); r :管井或抽水井的半径,单位米(m); ' R :影响半径,裘布衣公式中以抽水井为轴心的圆柱状含水层的半径(不以井的出水量、水位下降值的大小改变),表示井的补给能力;单位米(m); S1、S2:观测孔内水位降深,单位米(m); S1‘、S2’‘:观测孔内水位降深,单位米(m); S :水位降深,单位米(m); S n:相应Q n时的最大水位降深,单位米(m); T :导水系数,T=KM,单位m2/d; V g:允许过滤管进水流速,单位m/s,不得大于s; V j:允许井壁进水流速,单位m/s; %

矿井涌水量的计算与评述

矿井涌水量的计算与评述 钱学溥 (国土资源部,北京 100812) 摘要:文章讨论了矿井涌水量的勘查、计算、精度级别、允许误差和有效数字。文章推荐了反求影响半径、作图法求解矿井涌水量的方法。 关键词:矿井涌水量;勘查;计算;精度级别;允许误差;有效数字 根据1998年国务院“三定方案”的规定,地下水由水利部门统一管理。水利部2005年发布了技术文件SL/Z 322-2005《建设项目水资源论证导则(试行)》。该技术文件6.7款规定,地下水资源包括地下水、地热水、天然矿泉水和矿坑排水。6.1.2款规定,计算的地下水资源量要认定它的精度级别。我们认为,认定计算的矿井涌水量的级别和允许误差,不仅是水利部门要求编写《建设项目水资源论证》的需要,而且有利于设计部门的使用。在发生经济纠纷的情况下,也有利于报告提交单位和报告评审机构为自己进行客观的申辩。下面,围绕这一问题,对矿井涌水量的勘查、计算、精度级别、允许误差和有效数字等方面,作一些论 述和讨论。 1 矿井涌水量与水文地质勘查 矿井涌水量比较大,要求计算的矿井涌水量精度就比较高,也就需要投入比较多的水文地质勘查研究工作。表1,可以作为部署水文地质工作的参考。 表 1 矿井涌水量与水文地质勘查

的矿山,如即将闭坑或是即将破产的矿山,即是这种多年生产的矿山。2多孔抽水试验,是指带观测孔的一个抽水主孔的抽水试验,持续抽水几天。3群孔抽水试验是指带观测孔的多个抽水主孔的抽水试验,其抽水总量,一般要达到计算矿井涌水量的1/3~3/4,持续抽水几十天。4利用地下水动力学计算公式,计算矿井涌水量,就属于解析法的范畴。大井法、集水廊道法就是常用的解析法。5数理统计包括一元线性回归、多元线性回归、逐步回归、系统理论分析、频率计算等(参考钱学溥,娘子关泉水流量几种回归分析的比较,《工程勘察》1983第4期,中国建筑工业出版社)。可以把水位抽降、巷道开拓面积、矿产产量、降水量等作为自变量,把矿井涌水量作为因变量。6数值法也就是计算机模拟,是通过利用计算机模拟地下水流场的变化,计算矿井涌水量的一种方法。7常用的大井法、集水廊道法等解析法计算矿井涌水量,只考虑了含水层的导水性,没有考虑地下水的补给量。因此,只有进行了解析法和水均衡的计算,用地下水的补给量验证解析法计算的结果,计算的矿井涌水量的精度才能达到C级。 2 稳定流、非稳定流公式应用的主要条件 2.1一般报告采用的解析解大井法、集水廊道法,是基于稳定流理论推导的地下水动力学计算公式。它要求地下水有比较充分的补给条件,要求在该水平开采的几年到几十年内,矿井排水计算的地下水影响半径边界上的水头高度,永远稳定 在计算采用的高度上。 2.2基于非稳定流理论推导的地下水动力学计算公式,恰恰相反,它的使用条件 是地下水没有补给,含水层分布无限,地下水影响半径不断向外扩大。 2.3由于采用大井法、集水廊道法,一般都没有考虑地下水补给量的问题,因此, 计算的结果可能有较大的误差,它的精度一般只有D级。 3 影响半径的计算 3.1计算影响半径的经验公式有很多,它们计算的结果有相当大的误差。如常用的库萨金经验公式对于裂隙水来说,计算的值一般偏小2~5倍。吉哈尔经验公式对承压水含水层,可以作近似的计算,但计算的结果一般偏小(参考《供水水文地质手册》第二册,地质出版社1977,第268页)。 3.2影响半径,处在矿井涌水量计算公式分母的位置,因此,计算的影响半径偏小,就会导致计算的矿井涌水量偏大。这是一般地质报告计算矿井涌水量偏大的 主要原因。 3.3利用经验公式计算的承压水影响半径一般偏小,从而计算的矿井涌水量偏大。为此,最好是利用实测的影响半径,或是利用大井法、集水廊道法公式反求 的影响半径,预算矿井涌水量。 3.4据甘肃省安新煤田大柳井田勘探报告,该井田开采侏罗系煤层。经实测,相距4000m的新周煤矿建井,水位已影响到大柳煤矿的井筒。估计影响半径可能有 5000m。

用水量计算

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第3.6.3、3.6.4条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第3.6.5条和第3.6.6条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数每户 Ng 345678910 qokh 350102009600890082007600———400910087008100760071006650——4508200790075007100665062505900—50074007200690066006250590056005350 55067006700640062005900560053505100 60061006100600058005550530050504850 65056005700560054005250500048004650 70052005300520051004950480046004450

注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第3.1.9条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第3.1.10条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。 3.6.1原规范2003版设计流量计算存在下列问题: a. 3000人以上支状管道计算无依据; b. 3000人以下环状管道计算无依据; c. 在3000人前提下按设计秒流量式(3.6.4)计算和按最大小时平均流量计算得到两种结果; d. 居住小区给水支管按最大小时平均秒流量计算偏小,与住宅按概率法计算设计秒流量不能銜接;

涌水量计算案例

集水面积 集水面积是指流域分水线所包围的面积。集水面积大都先从地形图上定出分水线用求积仪或其它方法量算求得,计算单位为平方公里。如长江集水面积180万 分水线图 平方公里,黄河集水面积约75万平方公里。 地面分水线 地下分水线

计算:复核: 引文一: 4.3隧道涌水量预测 隧道区以根据地质调查结果分析,目前隧道涌水量暂按降水入渗法和地下径流模数法进行预测计算。等深孔水文地质试验参数出来后再按地下水动力法核算。 (1)大气降水入渗法 采用公式:Q=2.74 a W A(m'/d) 采用公式:Q=2.74 a W A(m3/d) a:降水入渗系数。全隧道地表为可溶岩,裂隙发育、岩溶化程度高。DK63+165至DK64+600段洞身大部处于石英砂页岩、炭质页岩夹煤系下,考虑到断层构造影响严 重,降水入渗系数a取值0.25 ;DK64+600至DK67+651隧道处岩溶强烈发育的可溶岩中,降水入渗系数a取值0.5。W:年平均降水量,本测区取1448mm

A:集水面积。 DK63+165 ?DK64+600 段:计算集水面积2.79km2; DK64+600?DK67+651 段;计算集水面积7.32 km2; 涌水量分别计算如下: Q=2.74 汉0.25江1448^.79 =2767(m'/d)?2800 (m3/d) Q=2.74 0.5 1448 7.32 =14521(m'/d)?14500 (m3/d) 两项合计Q 平常=2800+14500=17300(m7d) 考虑到岩溶区有暗河发育并构造发育,影响入渗系数的因素可能要大,DK64+600?DK67+651段雨季涌水量期倍增系数按3考虑,DK63+165?DK64+600段按系数2 考虑; 隧道雨季涌水量Q洪=2800X2+14500X3 =5600+4350009100 (m3/d) ( 2)地下径流模数法 Q=86.4X M X A M—地下径流模数(m/d ? Km) A—为隧道通过含水体的地下集水面积( Km2) 测区集水面积A=10.11 (Knn)(大致估算),地下水径流模数M枯=10.3( 升/秒?平方公里)(依据都匀幅《区域水文地质普查报告》)则: Q 枯= M 枯X A =86.4 X10.3X 10.11 =9000 ( m3/d ) 考虑到岩溶区有暗河发育并构造发育,其雨季涌水量期倍增系数按 3 考虑 隧道雨季涌水量Q洪=9000X3 3 =27000( m3/d)

竖井涌水量计算的经验公式法

竖井涌水量计算的经验公式法 [导读]本文详细介绍了竖井涌水量计算的经验公式法。 若在竖井位置及其附近有三个或三个以上降深的稳定流抽水试验资料,可用本方法计算竖井涌水量。 一、计算步骤 (一)根据抽水试验资料,作涌水量(Q)与降深(S)的关系吗线,即Q=f(s)曲线; (二)根据抽水试验资料,用图解法、差分法或曲度法判断涌水量曲线方程类型,并找出相应的涌水量方程式; (三)根据相应的方程式计算与设计竖井水位降深相同时的钻孔涌水量Qi; (四)根据钻孔涌水量Qi换算成为竖井涌水量。 二、计算方法 (一)绘制Q=f(s)曲线 根据钻孔抽水试验资料,绘制Q=f(s)曲线。 (二)涌水量曲线方程类型的判断 1、图解法 根据已绘出的Q= f(s)曲线如为非直线型应进行单位水位降深、双对数或单对数变换。根据Q= f(s)或经过变换后的直线图形形式即可判定涌水量曲线方程类型。 若Q= f(s),在Q,s直角座标中是直线关系,则涌水量曲线方程为直线型,见表1-2中图(1),即Q=qs; 若S0= f(Q)在S0,Q直角座标中是直线关系,则涌水量曲线方程为抛物线型,见表1-2中图(2)及图(3);即S=aQ+bQ2,亦即S0=a+bQ; 若lgQ=f(lgS)在lgQ,lgS直角座标中是直线关系,则涌水量曲线方程为指数型,见表1-2中图(4)及图(5),即Q= ,亦即;

若Q=f(lgS)在Q,lgS直角座标中是直线关系,则涌水量曲线方程为对数型,见表1-2中图(6)及图(7),即Q=a+blgS。 2、差分法 一般凡属直线方程或直线化的抛物线方程S0=a+bQ 、指数方程、对数方程Q=a+blgS的一阶差分虽为常数,但不相等。在这种情况下,可根据曲线拟台差的大小来判断接近那种涌水量方程。选取拟合误差最小的曲线相对应的涌水量方程式,作为竖井涌水量计算的方程式。 表1 Q=r(s)曲线方程式及其适用条件(一)

案例内容施工临时用水量及管径计算方法

案例内容施工临时用水量及管径计算方法 Hessen was revised in January 2021

不记得页码: 施工机械用水量 3600 83221?? ?=∑K N Q K q (5-7) 麻烦核实一下施工机械用水量公式5-7 q 缺少下角标2,正确应为q 2: 3600 832212?? ?=∑K N Q K q (5-7) 页码:154 原文字: 工地上采用这种布置方式。 7.工地临时供电系统的布置 建议修改文字: 插入案例5-1 工地上采用这种布置方式。 案例5-1 案例5-1 某工程,建筑面积为18133m 2,占地面积为4600m 2 。地下一层,地上9层。筏形基础,现浇混凝土框架剪力墙结构,填充墙空心砌块隔墙;生活区与现场一墙之隔,建筑面积750m 2,常住工人330名。水源从现场南侧引入,要求保证施工生产,生活及消防用水。 问题: (1) 当施工用水系数K 1=,年混凝土浇筑量11743m 3,施工用水定额2400L/m 3 ,年持续有效工作日为150d ,两班作业,用水不均衡系数K 2=。要求计算现场施工用水 (2) 施工机械主要是混凝土搅拌机,共4台,包括混凝土输送泵的清洗用水、进出施工现场运输车辆冲洗等,用水定额平均N 2=300L/台。未预计用水系数K 1=,施工不均衡系数K 3=,求施工机械用水量 (3) 假定现场生活高峰人数P 1=350人,施工现场生活用水定额N 3=40L/班,施工现场生活用水不均衡系数K 4=,每天用水2个班,要求计算施工现场生活用水量

(4) 假定生活区常住工人平均每人每天消耗水量为N 4=120L ,生活区用水不均衡系数K 5按计取;计算生活区生活用水量 (5) 请根据现场占地面积设定消防用水量 (6) 计算总用水量 (7) 计算临时用水管径 案例解析 (1) 计算现场施工用水量: S L K b T N Q K q /626.53600 85.1215024001174315.136008211111=?????=???= (2) 计算施工机械用水量: s L K N Q K q /0958.03600 80.2300415.13600832 212=????=?=∑ (3) 计算施工现场生活用水量: s L b K N P q /365.03600 825.140350360084313=????=????= (4) 计算生活居住区生活用水量 s L K N p q /15.13600 245.21203303600245424=???=???= (5) 设定消防用水量: 消防用水量 q 5的确定。按规程规定,施工现场在25ha(250000m 2)以内时,不大于15L/s ;(注:一 公倾(ha )等于10000m 2 )。 由于施工占地面积远远小于250000m 2 ,故按最小消防用水量选用,为q 5=10L/s 。 (6) 计算总用水量 54321/237.715.1365.00958.0626.5q s L q q q q <=+++=+++,故总用水量按消防用水量考虑,即总用水量s L q Q /105==。若考虑10%的漏水损失,则总用水量:s L Q /1110%)101(=?+=。 (7) 计算临时用水管径 供水管管径是在计算总用水量的基础上按公式计算的,如果已知用水量,按规定设定水流速度(假定为:s),就可以进行计算。计算公式如下:

涌水量计算

第三节、隧道洞室涌水量预测 一、水文地质参数计算 为取得计算洞室涌水量的水文地质参数,进行钻孔提(抽)水试验,利用提水试验和抽水试验结果,采用地下水动力学方法及相关计算公式,大部分按潜水非完整井计算出提水的渗透系数K 抽水,另外根据提水后的恢复水位与时间的关系,即s~t 关系计算出恢复的渗透系数K 恢复 ,并参照当地岩性的渗透系数K , 将该三种方法求得的渗透系数K 值并结合钻探过程中冲洗液的消耗量,岩体的破碎性、岩性的矿物组成及充填胶结情况,给定一个建议的渗透系数K 值。求得水文地质参数, 其提水时K 值计算公式如下: K= 2 2) lg (lg 733.0h H r R Q --ω 其中:K ——渗透系数(m/d )。 Q ——出水量(m 3/d )。 R ——影响半径(此值根据《工程地质手册》第二版表9-3-12查得) r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 h ——抽水稳定时含水层的厚度(m )。 恢复水位计算渗透系数K 值公式如下: ()2 12 ln 25.3S S t r H r K ωω+= (完整井) 其中:K ——渗透系数(m/d )。 r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 S 1——抽水稳定时的水位降深(m )。 S 2——地下水恢复时间t 后水位距离静止水位的深度(m )。 t ——水位从S 1恢复到S 2的时间(d )。 具体计算过程及计算结果见附表5:钻孔提(抽)水试验渗透系数(恢复水位)计算成果表。 二、洞室涌水量的估算方法 (一)、洞室涌水量的补给来源 为了更准确预测隧道洞室涌水量,通过野外水文地质调绘,并分析洞室地下水的补给来源,含水岩性的空间分布、富水性,结合钻孔对地下深处地质情况的揭露,参考物探测井成果,我们认为隧道洞室涌水量的补给来源由以下几部分组成: a .洞室影响范围内汇集的大气降水渗漏补给量; b .洞室附近地下水的补给量(包含隧道上行线、下行线间含水层的静储量及洞室两侧地下水的侧向补给量); c .地表水流过洞室上方时的渗入补给量; d .地表水通过节理裂隙、断层破碎带给洞室的侧向补给量; e .断层破碎带导入洞室的地下水量。 (二)、洞室涌水量的估算方法 根据以上对洞室涌水量补给来源的分析,结合隧址区工程地质、水文地质条件及隧址区气候、大气降雨等特征,本次计算我们按隧道开挖正常涌水量及特大暴雨、地表水沿断层或溶洞导入洞室等极端特殊情况下极端涌水量两种情况考虑。 1、正常涌水量 正常涌水量的计算我们选择以下的计算方法: (1)大气降水入渗法:

消防用水量的计算思路

消防用水量的计算思路,只需要三步 概述 一起火灾灭火所需消防用水的设计流量应由建筑的室外消火栓系统、室内消火栓系统、自动喷水灭火系统、泡沫灭火系统、水喷雾灭火系统、固定消防炮灭火系统、固定冷却水系统等需要同时作用的各种水灭火系统的设计流量组成,并应符合下列规定: 1 应按需要同时作用的各种水灭火系统最大设计流量之和确定; 2 两座及以上建筑合用消防给水系统时,应按其中一座设计流量最大者确定; 3 当消防给水与生活、生产给水合用时,合用系统的给水设计流量应为消防给水设计流量与生活、生产用水最大小时流量之和。计算生活用水最大小时流量时,淋浴用水量宜按15%计,浇洒及洗刷等火灾时能停用的用水量可不计。 第一步:确定同一时间火灾起数 工厂、仓库、堆场、储罐区或民用建筑的室外消防用水量,应按同一时间内的火灾起数和一起火灾灭火所需室外消防用水量确定。同一时间内的火灾起数应符合下列规定: 1、工厂、堆场和储罐区等,当占地面积小于等于100h㎡(1公顷),且附有居住区人数小于或等于万人时,同一时间内的火灾起数应按1起确定;当占地面积小于或等于100h㎡,且附有居住区人数大于万人时,同一时间内的火灾起数应按2起确定,居住区应计1起,工厂、堆场或储罐区应计1起; 2、工厂、堆场和储罐区等,当占地面积大于100h㎡,同一时间内的火灾起数应按2起确定,工厂、堆场和储罐区应按需水量最大的两座建筑(或堆场、储罐)各计1起; 3、仓库和民用建筑同一时间内的火灾起数应按1起确定。 第二步:确定火灾延续时间 《消规》3.6.2: 甲、乙、丙类厂房、仓库:3h。

丁、戊类厂房、仓库:2h。 住宅:2h。 各个建筑:高层建筑中的商业楼、展览楼、综合楼,建筑高度大于50m的财贸金融楼、图书馆、书库、重要的档案楼、科研楼和高级宾馆等为3h,其他公共建筑为2h。 地下建筑、地铁车站及汽车库:2h。 人防工程:建筑面积不小于3000㎡的人防工程为2h,小于3000㎡的人防工程为1h。 《消规》3.6.4: 建筑内用于防火分隔的防火分隔水幕和防护冷却水幕的火灾延续时间,不应小于防火分隔水幕或防护冷却火幕设置部位墙体的耐火极限。 《自动喷水灭火系统设计规范》 除本规范另有规定外,自动喷水灭火系统的持续喷水时间,应按火灾延续时间不小于1h确定。 第三步:计算一起火灾所需消防用水量 V=室外消火栓+室内消火栓+自动灭火系统(取一个最大值)+水幕或固定冷却分隔。 自动灭火系统包括自动喷水灭火、水喷雾灭火、自动消防水炮灭火等系统,一个防护对象或防护区的自动灭火系统的用水量按其中用水量最大的一个系统确定。 建筑内用于防火分隔的防火分隔水幕和防护冷却水幕的火灾延续时间,不应小于防火分隔水幕或防护冷却火幕设置部位墙体的耐火极限。 注意事项: 1.宿舍、公寓等非住宅类居住建筑: 室外消火栓设计流量:应按规范表3.3.2中的公共建筑确定; 室内消火栓设计流量:当为多层建筑时,应按规范表3.5.2

矿坑涌水量的常用预测方法汇总

吉林大学精品课>>专门水文地质学>>教材>>专门水文地质学 §10.4矿坑涌水量预测 一、矿坑涌水量预测的内容、方法、步骤与特点 (一)矿井涌水量预测的内容及要求 矿坑涌水量预测是一项重要而复杂的工作,是矿床水文地质勘探的重要组成部分。 矿坑涌水量是指矿山开拓与开采过程中,单位时间内涌入矿坑(包括井、巷和开采系统)的水量。通常以m3/h表示。它是确定矿床水文地质条件复杂程度的重要指标之一,关系到矿山的生产条件与成本,对矿床的经济技术评价有很大的影响。并且也是设计与开采部门选择开采方案、开采方法,制定防治水疏干措施,设计水仓、排水系统与设备的主要依据。因此,在矿床水文地质调查中,要求正确评价未来矿山开发各个阶段的涌水量。其内容与要求包括可概括为以下四个方面: (1)矿坑正常涌水量:指开采系统达到某一标高(水平或中段)时,正常状态下保持相对稳定的总涌水量,通常是指平水年的涌水量。 (2)矿坑最大涌水量:是指正常状态下开采系统在丰水年雨季时的最大涌水量。对某些受暴雨强度直接控制的裸露型、暗河型岩溶充水矿床来说,常常还应依据矿山的服务年限与当地气象变化周期,按当地气象站所记录的最大暴雨强度,预测数十年一遇特大暴雨强度产生时,可能出现暂短的特大矿坑涌水量,作为制订各种应变措施的依据。 (3)开拓井巷涌水量:指包括井筒(立井、斜井)和巷道(平、平巷、斜巷、石门)在开拓过程中的涌水量。 (4)疏干工程的排水量:是指在规定的疏于时间内,将一定范围内的水位降到某一规定标高时,所需的疏干排水强度。 对于地质勘探阶段来说,主要是进行评价性的计算,以预测正常状态下矿坑涌水量及最大涌水量为主。至于开拓井巷的涌水量预测和专门性疏干工程的排水量的计算,由于与矿山的生产条件密切相关,一般均由矿山基建部门或生产部门承担。 (二)矿坑涌水量预测的方法 根据当前矿床水文地质计算中常用的各种数学模型的地质背景特征极其对水文地质模型概化的要求,可作如下类型的划分:

用水量计算方法

1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。

3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算: (3.6.4-1) 1 根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数, 可按式(3.6.4-1)计算出最大用水时卫生器具给水当量平均出流概率: 式中: uo——生活给水管道的最大用水时卫生器具给水当量平均出流概率(%);qo——最高用水日的用水定额,按本规范表3.1.9取用;

矿井涌水量观测方法

矿井常用涌水量观测法 矿井涌水量观测方法很多,但由于一些客观原因,为了便于操作通常采用以下几种观测方法: 1 量桶容积法 当流量小于1 L/s时,常用此法。容器一般用量桶或水桶,为了减少测量误差,计量容器的充水时间不应小于20 s 流量计算公式: 式中V———容器的容积,L; t———充满容器的时间,s。 2巷道容积法 在矿井发生突水时,利用水流淹没倾斜巷道的过程中,经常不断地测量巷道与自由水面相交断面面积(F=ab),用单位时间内水位上涨高度(H)来计算水量,公式如下: 式中 H———t时间内水位上涨高度,m; t———水位上涨高度为片时的时间,h; a———巷道内自由水面的平均宽度,m; b———巷道内自由水面长度,m。 3水泵排量法 利用水泵实际排水量和水泵运转时间,来计算涌水量 Q=水泵铭牌排水量×实际效率×开动时间×台数

式中Q—涌水量,m3〃d-1。 4浮标测流法 采用水面浮标的流水沟道地段及实测断面应符合下列要求: (1)沟道顺直,沟床地段规则完整,长度为3-5倍的沟宽。 (2)水流均匀平稳,无旋涡及回流。 (3)沟道地段内无阻碍水流的杂草、杂物。 实测程序: (1)选定了实测地段后,按相等距离布设三个断面:上断面、基本断面(中断面)、下断面,测量每个断面的横断面积,单位 为m2。 (2)在上断面上游附近投放浮标,以便使浮标在接近上断面时,已具有同行水流的流速,测出浮标从上断面至下断面的时间t,求出流速。 (3)浮标从上断面至下断面的漂流历时一般应不短于20 s,如流速较大,可酌情缩短,但不能短于10 s。 (4)投放浮标的数量,视沟道宽度而定,一般不少于2个,每个至少重复投放两次,若两次漂历时间相差不超过10%,则取其平均历时计算,公式如下: 式中Q———断面流量,m3〃s-1; Kf———断面浮标系数,据经验数值一般介于0.6~0.8;

露天采矿场总涌水量计算

露天采矿场总涌水量计算 露天采矿场总涌水量是由地下水涌水量和降雨迳流量两部分组成。 一、地下水涌水量的计算 露天采矿场地下涌水量与地下开采矿坑地下水涌水量计算方法基本相同。 二、降雨迳流量计算 露天采矿场降雨迳流量,应按正常降雨迳流量和设计频率暴雨迳流量分别计算。 (一)计算方法 1、正常降雨迳流量(Qz)计算公式 Qz=FH 式中F——泵站担负的最大汇水面积,m2; H——正常降雨量,m; ——正常地表迳流系数,%。 2、设计频率暴雨迳流量(Qp)计算公式 Qp=FHp′ 式中Hp——设计频率暴雨量,m; ′——暴雨地表迳流系数,%; 其它符号同前。 (二)计算参数的选取 1、汇水面积(F)的圈定 根据排水方式确定的排水泵站担负的最大汇水面积进行圈定。应包括露天境界内和境界外的地形分水岭或地表截水沟范围以内的汇水面积。 2、地表迳流系数的确定 地表迳流系数的选取,可根据采矿场岩石性质、裂隙发育程度和降雨强度大小等因素确定。 对于扩建或改建矿山,在具备实测地表迳流系数的矿山,应尽可能采用实测值。对于不具备实测条件的新建矿山,当有类似生产矿山资料时,应选用类似生产矿山的实测值。对缺乏上述资料的矿山,可选用地表迳流系数经验值。 1)生产矿山实测地表径流系数 国内部分生产露天采矿场地表径流系数实测值,见表1、表2、表3、表4。 2)地表径流系数经验值 当无实测资料可按表5选取地表迳流系数经验值。 (

( 注:由于爆破人为地扩大了原岩的裂隙和破碎程度,岩石破碎、裂隙发育,整个采场约有90%地段属松散、松软和半坚硬的岩石。 ( 注:大冶铁矿采用井巷排水、地表迳流通过集水巷流入水仓。 注:1、本表内数值适用于暴雨径流量计算,对正常降雨量计算应将表中数值减去0.1~0.2。 2、表土指腐植土,表中未包括的岩土则按类似岩土性质采用。

单位用水量计算参考

单位用水量计算参考 摘要:论述了工业企业工程设计时,合理计算全厂平均小时用水量和最大小时用水量的重要性,并通过对工业用水过程中连续用水最大小时用水量同时发生的概率和各间断用水量同时发生的概率分析,提出全厂用水量的计算方法。 关键词:工业企业用水量 1水量计算的重要性 水量计量的单位为m3/h或m3/d。在工业企业中常用的水量为日用水量(以m3/d计),平均小时用水量和最大小时用水量(以m3/h计)。工业企业前期设计(可行性研究和初步设计) 阶段中,给排水专业一个重要任务是进行全厂用水量计算。全厂的平均小时用水量和最大小时用水量是工业企业用水量的重要参数,因为它决定着工业企业内部管网的管径和从市政管网引入给水管的管径以及初次水增容费的多少。同时,如果该企业远离城市或城市供水量不能满足企业自身的用水量需求时,企业一般需要自建水厂,需要的话,还要自建污水处理场。如一些大型的化工厂或石油化工企业等。此时,上述两个用水量又决定着自建水厂和污水处理场的规模。换句话说,平均时用水量和最大时用水量影响着待建企业的给排水部分的投资。因此,此阶段的给排水专业的水量计算是十分重要的。合理计算全厂中各种用水量,正确绘制水平衡图,对设计中确定工厂自建取水厂、污水处理场规模,合理缴纳水增容费及控制水资源、节约用水等有非常重要的意义和积极的指导作用。 2工业企业用水量分类 根据《工业用水分类及定义》(CJ19-87)中的有关规定,工业企业用水量是指工业企业完成全部生产过程所需要的各种水量的总和。它包括间接冷却水量、工艺用水量、锅炉用水量和生活用水量。除此以外,工厂中还有消防用水量。 3工业企业用水量计算重点 在上述各用水量中,间接冷却水一个较稳定的用水量,补充水量计入工厂生产用新鲜水量中,一般是个相对稳定的数值。消防用水量是根据相关规范确定的,水量固定。因此企业用水量的计算重点和难点在于工业企业全厂新鲜水用量的平均时用水量和最大时用水量。 4工业企业新鲜用水量的计算 为讨论问题方便,下述用水量均指企业用新鲜水量。 从水量的单位可以看出,决定工业企业全厂用水量的因素有两个:一个是用水立方米数,另一个是用掉这些水的用水时间。但,要正确计算小时用水量,除对这两个因素进行必要的分析外,还需对各用水设备或用水点的最大用水量是否在同一时间段发生进行概率分析。 对于生活用水量,一般根据《建筑给水排水设计规范》中的用水定额和工艺专业向给排水专业提供的最大班人数,经计算确定,此用水量记为Q S1。此外还有工业企业中淋浴用水量,记为Q S2。职工生活用水最大用水量和淋浴用水量,通常不同时发生。也就是说,这两个水量同时发生的概率很小。这可以通过对职工上班、下班的生活规律的分析,得出这个结论。因此,在计算工业企业总的生活用水最大小时流量(记为Q S3)时,宜取淋浴小时用水量

相关文档
最新文档