降雨入渗法涌水量计算

降雨入渗法涌水量计算
降雨入渗法涌水量计算

二、涌水量的预测

拟采用大气降水渗入量法对隧道进行涌水量计算

1.大气降水渗入法(DK291+028-DK292+150段)

Q = 2.74*α*W*A

Q—采用大气降水渗入法计算的隧道涌水量(m3/d)

α—入渗系数

W—年降雨量(mm)

A—集水面积(km2)

参数的选用:

α—入渗系数选用0.16;

W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。

A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2

最大涌水量为:Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。

正常涌水量为:Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。

2. 大气降水渗入法(DK292+150-DK293+440段)

Q = 2.74*α*W*A

Q—采用大气降水渗入法计算的隧道涌水量(m3/d)

α—入渗系数

W—年降雨量(mm)

A—集水面积(km2)

参数的选用:

α—入渗系数选用0.18;

W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。

A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2

最大涌水量为:Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。

正常涌水量为:Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。

3.大气降水渗入法(DK293+440- DK293+870段)

Q = 2.74*α*W*A

Q—采用大气降水渗入法计算的隧道涌水量(m3/d)

α—入渗系数

W—年降雨量(mm)

A—集水面积(km2)

参数的选用:

α—入渗系数选用0.12;

W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。

A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.25km2

最大涌水量为:Q= 2.74*α*W*A = 2.74*0.12*1496.88*0.25 = 123.04(m3/d),平均每延米每天涌水量为:0.29(m3/m.d)。

正常涌水量为:Q= 2.74*α*W*A = 2.74*0.12*508.7*0.25= 41.82(m3/d),平均每延米每天涌水量为:0.1 (m3/m.d)。

4.大气降水渗入法(DK293+870- DK294+350段)

Q = 2.74*α*W*A

Q—采用大气降水渗入法计算的隧道涌水量(m3/d)

α—入渗系数

W—年降雨量(mm)

A—集水面积(km2)

参数的选用:

α—入渗系数选用0.24;

W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。

A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.29km2

最大涌水量为:Q= 2.74*α*W*A = 2.74*0.24*1496.88*0.29 = 285.46(m3/d),平均每延米每天涌水量为:0.59(m3/m.d)。

正常涌水量为:Q= 2.74*α*W*A = 2.74*0.24*508.7*0.29 = 97.01(m3/d,平均每延米每天涌水量为:0.2(m3/m.d)。

5.大气降水渗入法(DK294+350-DK296+350段)

Q = 2.74*α*W*A

Q—采用大气降水渗入法计算的隧道涌水量(m3/d)

α—入渗系数

W—年降雨量(mm)

A—集水面积(km2)

参数的选用:

α—入渗系数选用0.12;

W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。

A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为4.38km2

最大涌水量为:Q= 2.74*α*W*A = 2.74*0.12*1496.88*4.38= 2155.72(m3/d),平均每延米每天涌水量为:1.08(m3/m.d)。

正常涌水量为:Q= 2.74*α*W*A = 2.74*0.12*508.7*4.38 = 732.6(m3/d),平均每延米每天涌水量为:0.37(m3/m.d)。

6.大气降水渗入法(DK296+350-DK298+500段)

Q = 2.74*α*W*A

Q—采用大气降水渗入法计算的隧道涌水量(m3/d)

α—入渗系数

W—年降雨量(mm)

A—集水面积(km2)

参数的选用:

α—入渗系数选用0.20;

W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。

A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为6.28km2

最大涌水量为:Q= 2.74*α*W*A = 2.74*0.20*1496.88*6.28

= 5151.42(m3/d),平均每延米每天涌水量为:2.4(m3/m.d)。

正常涌水量为:Q= 2.74*α*W*A = 2.74*0.20*508.7*6.28 = 1750.66(m3/d),平均每延米每天涌水量为:0.81(m3/m.d)。

7.大气降水渗入法(DK298+500-DK299+800段)

Q = 2.74*α*W*A

Q—采用大气降水渗入法计算的隧道涌水量(m3/d)

α—入渗系数

W—年降雨量(mm)

A—集水面积(km2)

参数的选用:

α—入渗系数选用0.18;

W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。

A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.54km2

最大涌水量为:Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.54 = 398.66(m3/d),平均每延米每天涌水量为:0.31(m3/m.d)。

正常涌水量为:Q= 2.74*α*W*A = 2.74*0.18*508.7*0.54 = 135.48(m3/d),平均每延米每天涌水量为:0.1(m3/m.d)。

8.大气降水渗入法(DK299+800-DK301+050段)

Q = 2.74*α*W*A

Q—采用大气降水渗入法计算的隧道涌水量(m3/d)

α—入渗系数

W—年降雨量(mm)

A—集水面积(km2)

参数的选用:

α—入渗系数选用0.18;

W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。

A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.34km2

最大涌水量为:Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.34 = 251.01(m3/d),平均每延米每天涌水量为:0.2(m3/m.d)。

正常涌水量为:Q= 2.74*α*W*A = 2.74*0.18*508.7*0.34 = 85.3(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。

隧道全长最大涌水量:Q=9165.1(m3/d)

正常涌水量:Q=3114.66(m3/d)

基坑降水计算

6.3 基坑降水方案设计 6.3.1 降水井型 选6型喷射井点:外管直径为200mm ,采用环形布置方案。 6.3.2 井点埋深 埋置深度须保证使地下水降到基坑底面以下,本工程案例取降到基坑面以下 1.0m 处。埋置深度可由下式确定: ()01x L H h h l i r h =++?+?++ (6.2) 式中: L —— 井点管的埋置深度()m ; H —— 基坑开挖深度()m ;这里12H m = h —— 井点管露出地面高度()m ,这里可取一般值 0.2m ; h ?—— 降水后地下水位至基坑底面的安全距离()m ,本次可取1.0m ; x i —— 降水漏斗曲线水力坡度,本次为环状,取0.1; 1h —— 井点管至基坑边线距离()m ,本次取1.0m ; 0r —— 基坑中心至基坑边线的距离()m ,本次工程案例去最近值宽边的一半,即40m ; l —— 滤管长度()m ,本次取1.0m 。 故带入公式可得埋置深度L 为: ()01120.2 1.00.1(1.040) 1.018.3x L H h h l m r i h =++?+?++=+++?++= 6.3.3 环形井点引用半径 采用“大井法”,参考规范,将矩形(本案例长宽比为2.5,小于10)基坑折算成半径为x 0的理想大圆井,按“大井法”计算涌水量,故本次基坑的引用半径: 4 0b a x +? =η (6.3) 式中:

,a b —— 基坑的长度和宽度()m ,200,80a m b m == η —— 系数,可参照下表格选取: 表6.1 系数η表 800.40200 b a == ,则 1.16η= 故带入公式可得本次基坑的引用半径0x 为: 020080 1.1681.244 a b m x η++=? =?= 6.3.4 井点抽水影响半径 由下列公式可求得抽水影响半径: m kt R H x w 220 + = (6.4) 式中: t —— 时间,自抽水时间算起(2-5昼夜) ()d ,本案例取5d ; k —— 土的渗透系数 (/)m d ,这里取平均值 2.7/k m d =; w H —— 含水层厚度()m ,本次取承压含水层厚度含水 层厚度④,⑤土层厚度的总和,即为 5.2611.2w H m =+=, m —— 土的给水度,按表 3.2确定,本次取圆砾

矿山涌水量计算总结

露天采矿场总涌水量计算 露天采矿场总涌水量是由地下水涌水量和降雨迳流量两部分组成。 一、地下水涌水量的计算 露天采矿场地下涌水量与地下开采矿坑地下水涌水量计算方法基本相同。 二、降雨迳流量计算 露天采矿场降雨迳流量,应按正常降雨迳流量和设计频率暴雨迳流量分别计算。 (一)计算方法 1、正常降雨迳流量(Qz)计算公式 Qz=FH 式中 F——泵站担负的最大汇水面积,m2; H——正常降雨量,m; ——正常地表迳流系数,%。 2、设计频率暴雨迳流量(Qp)计算公式 Qp=FHp′ 式中 Hp——设计频率暴雨量,m; ′——暴雨地表迳流系数,%; 其它符号同前。 (二)计算参数的选取 1、汇水面积(F)的圈定

(

( ( (

注:1、本表内数值适用于暴雨径流量计算,对正常降雨量计算应将表中数值减去0.1~0.2。 2、表土指腐植土,表中未包括的岩土则按类似岩土性质采用。 3、当岩石有少量裂隙时,表中数值减去0.1~0.2,中等裂隙减去0.2,裂隙发育时减去0.3~0.4。 4、当表土、粘性土壤中含砂时,按其含量适当将表中地表迳流系数减去0.1~0.2。 3、正常降雨量的选择 一般矿区可按雨季平均降雨量作为正常降雨量,而对非雨季节经常出现较大降雨地区的露天矿,可选用控制雨量进行设计。 1)雨季平均降雨量的推求 收集历年(一般要有10~15年)雨季各月降雨量及降雨天数,用下式求得。 式中 H——历年雨季日平均降雨量,m; N——历年降雨系列资料中某一年的雨季天数,d; Hi——历年降雨系列资料中某一年的雨季总降雨量,m; n——降雨系列资料统计年数。 2)控制雨量的推求

降水方案

一、编制依据 1、本次基坑降水方案主要依据规范标准如下: 《建筑基坑支护技术规程》 JGJ120-2012 《建筑与市政工程降水技术工程技术规范》 JGJ\T111-98 《工程地质手册》第四版 《宁夏水利调度中心岩土工程勘察报告》 《宁夏水利调度中心施工图纸》 二、工程概况 1、拟建建筑物概况 本工程为宁夏青少年足球训练基地和体育科技监测中心项目—体育科技监测中心工程,建筑面积9860㎡,地上六层,框架结构,基础为独立柱基础。本工程基础面积为1919.2㎡,基础结构东西长64.8m,南北宽36.6m。本工程建筑±0.000绝对高程为1110.64m,现有室外地坪约为-1m,基槽开挖至-4.5米(按±0计算)。 2、场地地质条件概况 本工程所在地貌上属黄河冲积平原Ⅲ级阶地,无不良工程地质作用。场区地层自上而下为人工及第四系冲积相黏性土、粉土和砂土层。根据地勘报告,整个场区自上而下可分为:素填土、粉细砂层。本场地土层分布连续,持力层及主要受力层连续稳定,无不良工程地质作用和地质灾害等不稳定因素。 根据本工程基础和基坑深度,场区地下水可简单考虑为潜水类型,地下水储量较丰富。场区地下水的补给来源主要是引黄渠系渗漏、灌溉入渗补给、大气降水入渗补给、侧向径流补给及洪水散失补给。引黄渠系渗漏及灌溉入渗补给是地下水主要的补给源,其补给量约占地下水总补给量的80%。根据地质勘查报告,场区实测稳定水位埋深1.50-3.60米左右,地下水动态年幅变化在1.5m左右。勘察时期该地区水位为1106.60米。但该场区历史

最高水位为1107.50米,故潜水水位埋深按2.30m考虑。 3、场区周边环境情况 建筑场地位于银川市西夏区,北邻学院路,西靠金波北街,东接丽子园北街,南为贺兰山西路。拟建的场地地势平坦,周边相对开阔。整个场区周边无临近建筑物或地下埋藏物,周边条件优越。 三、降水目的 1、将基坑水位降低至基坑开挖底面以下,为基础工程施工提供条件; 2、疏干基坑侧壁地下水,提高边坡稳定性。 四、降水工程设计 根据场区自然条件和建筑物的实际情况,并结合当地施工经验,确定采用无砂混凝土大口径管井外围降水,同时结合坑内疏干降水方案,降水井布置在基坑开挖上口线外侧2-4m处。 1、已知条件 布井轮廓尺寸:长90m,宽60m; 自然水位深度: 4m考虑; 基坑降水深度:基础埋深2.3米,砂夹石换填2.2m,故基坑开挖深度为4.5m。根据有关规定,降水后水位应保持在基坑开挖底面下0.5-1.5m,本工程取1.5m,所以降水后水位深度需达到6m。 五、主要计算参数的确定 1、基础内水位总降深S' S’=4.5(基坑最大开挖深度)+1.5(降水后基坑中心水位需保持在基坑底面下的深度)-2(当前自然水位,自±0算起)+1(降水期间的水位变幅) =5m 2、渗透系数K 按照下表参考值,根据本场地含水层岩性以细砂土为主的实际情况,

暴雨强度公式计算方法

暴雨强度:指单位面积上某一历时降水的体积,以升/(秒?公顷)(L/(S?hm2))为单位。专指用于室外排水设计的短历时强降水(累积雨量的时间长度小于 120 分钟的降水) 暴雨强度公式:用于计算城市或某一区域暴雨强度的表达式 二、 其他省市参考公式: 三、暴雨强度公式修订 一般气候变化的周期为10~12年,考虑到近年来的气候变化异常,5~10年宜收集新的降水资料,对暴雨强度公式进行修订,以应对气候变化。 工作流程: 1.资料处理; 2.暴雨强度公式拟合(单一重现期、区间参数公式、总公式); 3.精度检验; 4.常用查算图表编制; 5.各强度暴雨时空变化分析 注意事项: 基础气象资料 采用当地国家气象站或自动气象站建站~至今的逐分钟自记雨量记录,降水历时按 5、10、15、20、30、45、60、90、120、150、180 分钟共11种,每年每个历时选取 8 场最大雨量记录; 年最大值法资料年限至少需要 20 年以上,最好有 30 年以上资料; 年多个样法资料年限至少需要 10 年以上,最好有 20 年以上资料。 统计样本的建立 年多个样法:每年每个历时选择8个最大值,然后不论年次,将每个历时有效资料样本按从大到小排序排列,并从大到小选取年数的 4 倍数据,作为统计样本。 年最大值法:选取各历时降水的逐年最大值,作为统计样本。 (具有十年以上自动雨量记录的地区,宜采用年多个样法,有条件的地区可采用年最大值法。若采用年最大值法,应进行重现期修正) 具体计算步骤: 一、公式拟合

1.单一重现期暴雨强度公式拟合 最小二乘法、数值逼近法 2.区间参数公式拟合 二分搜索法、最小二乘法 3.暴雨强度总公式拟合 最小二乘法、高斯牛顿法 二、精度检验 重现期~10 年 < /min < 5% 三、不同强度暴雨时空变化分析 城市暴雨的时间变化特征分析 (1)各历时暴雨年际变化特征——可通过绘制各历时暴雨出现日(次)数的年际变化图,分析各历时暴雨的逐年或年代变化特征。 (2)暴雨样本年际变化特征——可以各年降水数据入选各历时基础暴雨样本的比例外评价指标,分

降雨入渗法涌水量计算

二、涌水量的预测 拟采用大气降水渗入量法对隧道进行涌水量计算 1.大气降水渗入法(DK291+028-DK292+150段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.16; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。 2. 大气降水渗入法(DK292+150-DK293+440段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用:

α—入渗系数选用0.18; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。 3.大气降水渗入法(DK293+440- DK293+870段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.12; W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.25km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.12*1496.88*0.25 = 123.04(m3/d),平均每延米每天涌水量为:0.29(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A = 2.74*0.12*508.7*0.25= 41.82(m3/d),平均每延米每天涌水量为: 0.1 (m3/m.d)。

管井降水计算方案

一、场地岩土工程情况 第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。该层厚度在~之间,层底标高在~之间。 第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。该层厚度在~之间,层底标高在~之间。 第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。天然状态下呈稍湿~饱和,中密状态。该层厚度在~之间,渗透系数为K=×10-2cm/s。 层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状第③ 1 态下呈稍湿~饱和,中密状态。该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-3cm/s。 第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。天然状态下呈饱和,中密状态。该层厚度在~之间,层底标高~之间,渗透系数为K=×10-3cm/s。 第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为~%,无摇振反应,切口光滑,干强度中等,韧性中等。天然状态下呈可塑~软塑状态。该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-6cm/s。 地下水埋藏于自然地表下~,标高在~之间,属潜水。由于临近场地正在进行降水施工,水位受其影响,现场水位偏低,根据该区域的水文地质资料,该地下水年幅度变化在~米之间。 二、降水方案的选择 本工程地质条件主要为粉土、砂土。现场基坑深度为,根据该场地附近地区的已有降水经验,拟采用管井井点降水方案降低地下水位,即在基坑周围及坑内布设一定数量的管

涌水量计算案例

集水面积 集水面积是指流域分水线所包围的面积。集水面积大都先从地形图上定出分水线用求积仪或其它方法量算求得,计算单位为平方公里。如长江集水面积180万 分水线图 平方公里,黄河集水面积约75万平方公里。 地面分水线 地下分水线

计算:复核: 引文一: 4.3隧道涌水量预测 隧道区以根据地质调查结果分析,目前隧道涌水量暂按降水入渗法和地下径流模数法进行预测计算。等深孔水文地质试验参数出来后再按地下水动力法核算。 (1)大气降水入渗法 采用公式:Q=2.74 a W A(m'/d) 采用公式:Q=2.74 a W A(m3/d) a:降水入渗系数。全隧道地表为可溶岩,裂隙发育、岩溶化程度高。DK63+165至DK64+600段洞身大部处于石英砂页岩、炭质页岩夹煤系下,考虑到断层构造影响严 重,降水入渗系数a取值0.25 ;DK64+600至DK67+651隧道处岩溶强烈发育的可溶岩中,降水入渗系数a取值0.5。W:年平均降水量,本测区取1448mm

A:集水面积。 DK63+165 ?DK64+600 段:计算集水面积2.79km2; DK64+600?DK67+651 段;计算集水面积7.32 km2; 涌水量分别计算如下: Q=2.74 汉0.25江1448^.79 =2767(m'/d)?2800 (m3/d) Q=2.74 0.5 1448 7.32 =14521(m'/d)?14500 (m3/d) 两项合计Q 平常=2800+14500=17300(m7d) 考虑到岩溶区有暗河发育并构造发育,影响入渗系数的因素可能要大,DK64+600?DK67+651段雨季涌水量期倍增系数按3考虑,DK63+165?DK64+600段按系数2 考虑; 隧道雨季涌水量Q洪=2800X2+14500X3 =5600+4350009100 (m3/d) ( 2)地下径流模数法 Q=86.4X M X A M—地下径流模数(m/d ? Km) A—为隧道通过含水体的地下集水面积( Km2) 测区集水面积A=10.11 (Knn)(大致估算),地下水径流模数M枯=10.3( 升/秒?平方公里)(依据都匀幅《区域水文地质普查报告》)则: Q 枯= M 枯X A =86.4 X10.3X 10.11 =9000 ( m3/d ) 考虑到岩溶区有暗河发育并构造发育,其雨季涌水量期倍增系数按 3 考虑 隧道雨季涌水量Q洪=9000X3 3 =27000( m3/d)

关于降雨入渗补给系数的讨论

关于降水入渗系数的测定方法的讨论 陈晓成林高聪王楠052081班摘要:在水文水资源的评价中,降雨入渗补给系数是一个非常重要的参数,由入渗补给系数的定义可知,求得降雨入渗补给系数的关键为降雨总量和降雨入渗补给量。本文探讨了几种常见的流域平均降雨总量的测定方法和降雨入渗补给量的测定方法,分别采用了平均值法、等雨量线法、泰森多边形法测定流域的平均降雨量,采用动态分析法(年水位升幅累积法、前期影响降水量法)、区域水量均衡法和数值分析法测定降雨入渗补给量最终得到降雨入渗补给系数。 关键字:流域平均降雨总量降入入渗补给量降雨入渗补给系数 降雨入渗补给系数的变化范围在0~1之间。由于降雨入渗补给量取决于某一时段内总雨量、雨日、雨强、包气带的岩性及降水前该带的含水量、地下水埋深和下垫面及气候因素,因此降雨入渗补给系数是随时间和空间变化的。不同地区具有不同的降雨入渗补给系数,即使同一地区,不同时段降雨入渗补给系数也不尽相同。因此,根据不同的计算时段,确定相应的降雨总量和降雨入渗补给量。本文采取年降雨总量和年降雨入渗补给量确定年降雨入渗补给系数。 一次降雨首先要满足截留、地面产流及填洼等后才可能形成下渗,同时受包气带对下渗水量的在分配作用,只有下渗水量超过包气带最大持水能力时才能入渗补给地下水。降雨雨入渗补给到地下水的水量即为降雨入渗补给量,用P r(mm)表示,则 α=P r/P (1)α:年降雨入渗补给系数;P r年降雨入渗补给量;P年流域内降雨总量由公式可知测定降雨入渗补给系数的关键为测定流域内的降雨总量和降雨入渗总量。 一、流域内降雨总量的测定方法 从理论上说,降雨两的空间分布可表达为: P=f(x,y)(2)p流域平均降雨量(mm);A流域面积。P时段或降雨量;x,y地面一点的纵横坐标;

基坑降水计算

基坑降水计算 1.降水影响半径 确定影响半径的方法很多,在矿坑涌水量计算中常用库萨金和吉哈尔特经验公式作近似计算。当设计的矿山进行了大降深群孔抽水试验或坑道放水试验时,为了推求较为准确的影响半径,可利用观测孔网资料为基础的图解法进行推求。 1.1、经验公式法 计算影响半径的主要经验公式见表1。 表1 计算影响半径的经验公式 1.2、图解法 当设计矿山做了大降深群孔抽水或坑道放水试验时,为了推求较为准确的影响半径,可利用观测孔实测资料,用图解法确定影响半径。 (一)自然数直角座标图解法 在直角座标上,将抽水孔与分布在同一直线上的各观测孔的同一时刻所测得的水位连结起来,尚曲线趋势延长,与抽水前的静止水位线相交,该交点至抽水孔的距离即为影响半径(见图1)。观测孔较多时,用图解法确定的影响半径较为准确。 (二)半对数座标图解法

在横座标用对数表示观测孔至抽水孔的距离,纵座标用自然数表示抽水主孔及观测孔水位降深的直角座标系中,将抽水主孔的稳定水位降深及同时刻的观测孔水位降低标绘在相应位置,连结这两点并延长与横座标的交点即为影响半径(见图2)。当有两个或两个以上观测孔时,以观测孔稳定水位降深绘图更准些。 1.3、影响半径经验数值 根据岩层性质、颗粒粒径及单位涌水量与影响半径的关系来确定影响半径,见表2与表3。 表2 松散岩土影响半径(R)经验数值 表3 单位涌水量与影响半径关系

2 计算模型及公式 2.1.潜水完整井计算模型 ()??? ? ?+-=01log 2366.1r R S S H k Q ……………………… …………………公式1 式中:Q 基坑涌水量(m 3/d ); k :渗透系数(m/d ); H :潜水含水层厚度(m ): S :基坑水位降深(m ); R :降水影响半径(m ); r 0:基坑等效半径(m )。 2.2.承压水完整井计算模型 ? ??? ? ?+=01lg 73.2r R MS k Q 式中:Q :K R :r 0:基坑(m ); M :承压含水层厚度(m ) 2.3.承压水非完整井计算模型 ??? ? ? ?+-+???? ??+=002.01lg 1lg 73.2r M l l M r R MS k Q ……………………………公式式中:Q :基坑涌水量(m 3/d ); K :渗透系数(m/d ); R :降水影响半径(m ); r 0:基坑等效半径(m ); M :承压含水层厚度(m ); S :基坑水位降深(m );

降水计算公式

一、潜水计算公式 1、公式1 Q k H S S R r r =-+-1366200.()lg()lg() 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); R 为引用影响半径(m); r 0为基坑半径(m)。 2、公式2 Q k H S S b r =--1366220.()lg()lg() 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); b 为基坑中心距岸边的距离(m); r 0为基坑半径(m)。 3、公式3 Q k H S S b r b b b =--????????1366222012.()lg 'cos ()'ππ 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); b 1为基坑中心距A 河岸边的距离(m);

b 2为基坑中心距B 河岸边的距离(m); b ' =b 1+b 2; r 0为基坑半径(m)。 4、公式4 Q k H S S R r r b r =-+-+1366220200.()lg()lg ('') 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); R 为引用影响半径(m); r 0为基坑半径(m); b '' 为基坑中心至隔水边界的距离。 5、公式5 Q k h h R r r h l l h r =-++--+--136610222 000.lg lg(.) h H h -=+2 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); R 为引用影响半径(m); r 0为基坑半径(m); l 为过滤器有效工作长度(m); h 为基坑动水位至含水层底板深度(m); h - 为潜水层厚与动水位以下的含水层厚度的平均值(m)。

地下矿山涌水量计算实例

矿井水文地质类型: 矿井水文地质划分为简单的、中等的、复杂的和极复杂四种类型。1、简单:受采掘破坏或影响的孔隙、裂隙、熔岩含水层,补给条件差,补给水源少或极少。单位涌水量q≤0.1。无老空积水。 2、中等:受采掘破坏或影响的孔隙、裂隙、熔岩含水层,补给条件一般,有一定的补给水源。单位涌水量0.15。存在大量老空积水,位置、范围、积水量不清楚。 还有矿山水文地质类型: 固体矿山一般可划分为三大类型。①充水岩层以孔隙岩层为主的矿山。涌水量主要取决于岩层孔隙率的大小、岩层的厚度、分布范围以及自然地理条件。②充水岩层以裂隙岩层为主的矿山。涌水量主要取决于岩体结构、裂隙发育程度、裂隙力学性质、构造的复合情况、裂隙发育的宽度、深度及充填情况和自然地理条件。③充水岩层以溶洞岩层为主的矿山。涌水量主要取决于溶洞发育情况、充填情况、地质构造、古地理和自然地理条件。根据水文地质、工程地质条件又可进一步划分为简单的、中等的和复杂的三种类型。

4.3.2 井下涌水量 (一)矿床充水因素 矿区位于区域水文地质单元的补给区,矿床主要矿体位于965m 以上,高于矿区最低排泄基准面标高,地形有利于排水,矿区附近无地表水体分布,地下水的补给条件差,大气降水是地下水补给的唯一来源。因此,矿床为裂隙充水矿床。 地下水以风化裂隙潜水和局部构造裂隙水为主,地下水位埋深较大,含水层(带)一般富水性较差,水量较小。变质岩裂隙水因岩石坚硬而无含水层与隔水层。坚硬岩石裂隙充水就成含水层。厚层坚硬岩石裂隙不发育就构成相对隔水层。 (二)井下涌水量估算 (1)开采方式与中段划分 本矿为地下开采,1310m为回风水平,分7个开采阶段。在1210m 和1135m中段设置水仓。 (2)矿床充水影响因素 矿床开采充水因素有大气降水和基岩裂隙水,此外旧采区积水也是充水来源之一,不能忽视。具体阐述如下。 五采区附近无地表水体。当地最高洪水位标高为1200.05m。 矿区位于区内南山基岩山区,在区域水文地质单元中属基岩补给山区。 矿区内无常年性地表水体。存在黑山沟和云雾村沟谷,两沟谷均为季节性流水沟谷。两沟谷在夏季强降雨时,发生暂时性洪水,平时为干谷。 地下水类型主要为浅部风化裂隙潜水和深部构造裂隙水。风化裂

降雨强度与稳定入渗率关系的公式化分析

142 2010年第10期(总第46期) 降雨强度与稳定入渗率关系的公式化分析 福建省水利水电勘测设计研究院 刘正风 [摘要] 稳定入渗率在设计洪水的计算中起着将一次净雨过程分割为地表净雨过程与地下净雨过程的作用,以前稳定入渗率fc 的确定是由i~fc 经验关系曲线人工读出的,对工程计算带来诸多不便,该文拟合了某地区i~fc 经验关系曲线的一个表达式,并对此表达式与经验关系曲线的符合效果进行分析。 [关键词] 稳定入渗率 降雨强度 经验关系曲线 公式化 1 降雨强度i 与稳定入渗率fc 的经验关系 稳定入渗率fc 在设计洪水的计算中起着将一次净雨过程分割为地表净雨过程与地下净雨过程的作用,通常我们将各 站各次洪水以次净雨平均强度i 为纵坐标,以稳定入渗率fc 为横坐标,点绘相关图进行综合分析。相关点子数据见表1,相关点子图如图1所示(本文示例数据采为某地区的50次洪水的统计数据)。 表 1 实测降雨强度i 与稳定入渗率fc 的关系表 单位:mm/h 项目 i ~fc 关系数据 i (测) 0.0 4.0 4.0 4.4 4.4 4.6 4.8 5.0 5.0 5.5 fc (测) 0.00 2.00 3.98 3.20 5.00 2.20 2.10 3.40 4.80 4.80 i (测) 5.6 5.7 5.8 6.7 6.8 7.2 7.4 7.9 8.2 8.5 fc (测) 3.10 5.20 1.70 4.60 2.80 7.80 6.30 2.90 3.40 2.10 i (测) 8.8 9.0 9.1 9.2 9.3 9.5 9.8 9.9 10.2 10.5 fc (测) 4.10 4.70 3.80 5.20 2.70 6.90 2.40 8.30 4.90 3.90 i (测) 11.0 11.3 11.7 11.8 12.5 13.8 15.1 16.1 16.5 16.6 fc (测) 5.70 6.20 4.70 7.10 7.70 9.60 12.50 4.90 4.50 9.70 i (测) 17.4 18.2 18.6 19.0 28.2 31.0 35.0 40.0 50.0 60.0 fc (测) 8.10 9.30 8.70 12.00 7.90 8.80 9.60 10.40 11.80 12.90 图1 净雨平均强度i 与稳定入渗率fc 相关点子图 稳定下渗率fc 是由地下径流分析得来,往往稳定下渗率fc 大地下径流也大,在分割地表与地下径流时,退水段第二拐点位置的确定带来一定的任意性,所以i ~ fc 的相关点在小洪水时比较散乱。从设计安全考虑,通常人们会定出一条综合的i ~fc 相关曲线,如图2所示。 图2 净雨平均强度i 与稳定入渗率fc 关系曲线图 图2中所示i ~fc 曲线为随机经验型光滑曲线,当降雨强度i 较小时,稳定入渗率fc 迅速增大;之后随着降雨强度i 的增大,稳定入渗率fc 增速逐渐减小;当降雨强度i 增大

涌水量计算

第三节、隧道洞室涌水量预测 一、水文地质参数计算 为取得计算洞室涌水量的水文地质参数,进行钻孔提(抽)水试验,利用提水试验和抽水试验结果,采用地下水动力学方法及相关计算公式,大部分按潜水非完整井计算出提水的渗透系数K 抽水,另外根据提水后的恢复水位与时间的关系,即s~t 关系计算出恢复的渗透系数K 恢复 ,并参照当地岩性的渗透系数K , 将该三种方法求得的渗透系数K 值并结合钻探过程中冲洗液的消耗量,岩体的破碎性、岩性的矿物组成及充填胶结情况,给定一个建议的渗透系数K 值。求得水文地质参数, 其提水时K 值计算公式如下: K= 2 2) lg (lg 733.0h H r R Q --ω 其中:K ——渗透系数(m/d )。 Q ——出水量(m 3/d )。 R ——影响半径(此值根据《工程地质手册》第二版表9-3-12查得) r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 h ——抽水稳定时含水层的厚度(m )。 恢复水位计算渗透系数K 值公式如下: ()2 12 ln 25.3S S t r H r K ωω+= (完整井) 其中:K ——渗透系数(m/d )。 r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 S 1——抽水稳定时的水位降深(m )。 S 2——地下水恢复时间t 后水位距离静止水位的深度(m )。 t ——水位从S 1恢复到S 2的时间(d )。 具体计算过程及计算结果见附表5:钻孔提(抽)水试验渗透系数(恢复水位)计算成果表。 二、洞室涌水量的估算方法 (一)、洞室涌水量的补给来源 为了更准确预测隧道洞室涌水量,通过野外水文地质调绘,并分析洞室地下水的补给来源,含水岩性的空间分布、富水性,结合钻孔对地下深处地质情况的揭露,参考物探测井成果,我们认为隧道洞室涌水量的补给来源由以下几部分组成: a .洞室影响范围内汇集的大气降水渗漏补给量; b .洞室附近地下水的补给量(包含隧道上行线、下行线间含水层的静储量及洞室两侧地下水的侧向补给量); c .地表水流过洞室上方时的渗入补给量; d .地表水通过节理裂隙、断层破碎带给洞室的侧向补给量; e .断层破碎带导入洞室的地下水量。 (二)、洞室涌水量的估算方法 根据以上对洞室涌水量补给来源的分析,结合隧址区工程地质、水文地质条件及隧址区气候、大气降雨等特征,本次计算我们按隧道开挖正常涌水量及特大暴雨、地表水沿断层或溶洞导入洞室等极端特殊情况下极端涌水量两种情况考虑。 1、正常涌水量 正常涌水量的计算我们选择以下的计算方法: (1)大气降水入渗法:

轻型井点降水法工程量的计算及如何套定额

轻型井点降水法工程量的计算及如何套定额 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

轻型井点降水法工程量的计算及如何套定额 轻型井点降水法施工的计算步骤是什么降水法施工的适用条件与范围是什么 一、轻型井点降水法施工的计算步骤为:确定井点系统的布置方式(平面布置和高程布置);计算涌水量;计算井点数量和井距;校核水位降低数值;选择水泵规格等。二、井点降水是高地下水位地区基础工程施工的重要措施之一。它能克服流砂、稳定基坑边坡、降低承压水位防止坑底隆起和加速土的固结,使位于天然地下水位以下的基础工程能在较干燥的施工环境中进行施工。基本上在任何场地都可以抽水,除一些保水性很好的土壤。降水方法和设备可根据土层的渗透系数、要求降水的深度和工程特点,经过技术经济和节能比较后确定。 井点降水施工的条件是什麽,井点降水结算需结算哪些内容,这些内容怎样计算工程量,排水泵计算台班吗 井点降水施工的条件是什麽,井点降水结算需结算哪些内容,这些内容怎样计算工程量,排水泵计算台班吗 1、地下水位高于基底标高 2、井点安拆。运输,使用天数 3、使用天数内不计算,非使用天数内可计停班 一、井点降水施工的条件是什麽

回答:1:当需开挖的基坑设计基坑底标高位于地下位以下时。 2:定额规定“井点降水中的轻型井点、喷射井点、大口径井点的采用由施工组织设计确定。一般情况下,降水深度6m以内采用轻型井点,6m以上30m以内采用相应的喷射井点,特殊情况下可选用大口径井点。井点使用时间按施工组织设计确定。喷射井点子目包括两根观察孔制作,喷射井管包括了内管和外管。井点材料使用摊销量中已包括井点拆除时的材料损耗量”。 二、井点降水结算需结算哪些内容 回答:主要内容有井点安装、拆除、使用等项目。另外可能每个地区的定额子目设置不同,主要还是按当地定额设置的子目。使用公路工程预算定额(JTG/T B06-02-2007)套用定额1-2-8,定额中的费用已经包括(挖排水沟及管槽,井管装配及地面试管,铺总管,装水泵,水箱,冲孔沉管理,灌砂封口,连接试帛,拔井管,拆管,清洗,整理,堆放), 三、这些内容怎样计算工程量,排水泵计算台班吗 回答:轻型井点50根为一套。井点工程量按"套天"为单位计算,累计根数不足一套者按一套计算,一天按24小时计算。井管的安装、拆除工程量按根计算。

降水计算说明书

XX项目 基坑降水计算说明书 一、基本条件 XX基坑深度从建筑正负零到基坑底深度5.45m,基坑降水井轴线所围区域近似为梯形,长边最长约200m,短边最宽约160m,基坑周长约640m,降水面积约26600m2。 场地为Ⅰ级阶地,场地地层主要为场区内地基土自上而下依次为:(Q4ml)①杂填土、(Q4ai+pl)②含砂粉质黏土、③细砂、④圆砾、⑤卵石、⑥圆砾混黏性土、(γ52)⑦~⑨花岗岩。场地地层的典型剖面如图。 图:场地地层典型剖面 根据本工程《岩土工程勘察报告》,场地地下水属孔隙潜水类型,具有微承压性质,主要埋藏于③~④层中。地下水主要接受大气降水及侧向径流补给,并以蒸发及地下径流方式排泄。地下水位受季节影响,每年6~9月为丰水期,12月至翌年3月为枯水期,年变化幅度1.00m左右。勘察期间(1月初)为枯水期;地下水稳定水位埋深3.20~5.10m,平均稳定水位3.90m,高程184.49~185.57m,平均高程185.40m。 根据当地经验,粉质黏土的渗透系数经验值K=0.2-0.4m/d;细砂层的渗透系数为经验值K=1-3m/d;圆砾层的渗透系数为经验值K=60-80m/d;卵石层的渗透

系数为经验值k=80-100m/d ;粉质黏土混圆砾层的渗透系数为经验值k=5-10m/d ;花岗岩(全风化)层的渗透系数为经验值k=4-6m/d 。根据勘察单位的潜水完整井抽水试验,建议混合含水层渗透系数K=70m/d 。本工程降水含水层主要为砂层及圆砾,取混合含水层渗透系数k=70m/d 。 二、降水目的 基坑开挖深度内存在地下水,为保证地下室基础施工的质量及安全,需将地下水降至基础底板下1.0m 。 三、降水参数选取 ①渗透系数k 本工程降水含水层主要为砂层及圆砾,取混合含水层渗透系数k=70m/d 。 ②降水影响半径R 降水影响半径宜通过试验确定,本工程依据《吉林市万达广场(A1大商业)地块补充水文地质勘察报告》(中国市政工程东北设计研究总院,2014.10),降水影响半径R=340m 。 ③潜水含水层厚度H 根据《本工程岩土勘察报告》,含水层厚度12-14m 。本工程取H=12m 。 ④基坑等效半径r 0 基坑圆形概化的等效半径r 0,概化为圆形基坑,其等效半径按下列规定计算: 矩形基坑等效半径m A r 9214 .3266000=== π ⑤地下水设计降深s d 本工程场地勘察时地下水平均稳定水位标高185.40m ,基坑底标高184.10m ,则水位降深m m m m s d 30.20.110.18440.185=+-= 四、基坑涌水量计算 本地块井点降水按潜水非完整井计算基坑涌水量,计算公式如下:

基坑降水计算

6.3基坑降水方案设计 6.3.1降水井型 选6型喷射井点:外管直径为200mm,采用环形布置方案。 6.3.2井点埋深 埋置深度须保证使地下水降到基坑底面以下,本工程案例取降到基坑面以下 1.0m处。埋置深度可由下式确定: L = H h :h i x h i r 0 l (6.2) 式中: L ――井点管的埋置深度(m); H ―― 基坑开挖深度(m);这里H =12m h ——井点管露出地面高度(m),这里可取一般值 0.2m ; h ―― 降水后地下水位至基坑底面的安全距离(m), 本次可取1.0m ; i x ―― 降水漏斗曲线水力坡度,本次为环状,取0.1; h i ——井点管至基坑边线距离(m),本次取1.0m ; r0 -----基坑中心至基坑边线的距离(m),本次工程案 例去最近值宽边的一半,即40m; l ---- 滤管长度(m),本次取1.0m。 故带入公式可得埋置深度L为: L=H h h i x h「0 I =12 0.2 1.0 0.1 (1.0 40) 1.0=18.3m 6.3.3环形井点引用半径 采用“大井法”,参考规范,将矩形(本案例长宽比为 2.5,小于10)基坑折算成半径为X0的理想大圆井,按“大井法”计算涌水量,故本次基坑的引用半径: X0=专 (6.3) 式中: a,b ----- 基坑的长度和宽度(m),a=200m,b=80m

亠1.16型80 4 4 8 m. 2 (6.4) 式中: 例取5d ; -系数,可参照下表格选取: 表6.1 系数n 表 a = °2OO =040 ,贝U 「-1.16 故带入公式可得本次基坑的引用半径 X 。为: 6.3.4井点抽水影响半径 由下列公式可求得抽水影响半径: t 时间,自抽水时间算起(2-5昼夜)(d ),本案 k ―― 土的渗透 系数(m/d ),这里取平均值 k =2.7m/ d ; H w 含水层厚度(m ),本次取承压含水层厚度含水 层厚度④,⑤土层厚度的总和,即为 H w =5.2 ? 6 = 11.2m , m ―― 土的给水度,按表 3.2确定,本次取圆砾 m=0.2,另外由上述计算可得 X o= 73.7m 。

确定干旱_半干旱地区降水入渗补给量的新方法_氯离子示踪法

第15卷 第3期1996年 9月 地质科技情报 Geolo gical Science and Techno logy Info rmatio n Vol.15 No.3 Sep.1996 确定干旱—半干旱地区降水入渗补给量的 新方法——氯离子示踪法① 陈植华 徐恒力 (中国地质大学环境科学与工程学院,武汉,430074) 摘 要 在干旱—半干旱地区由于入渗水分大部分滞留在包气带中,强烈地蒸发、蒸腾作用导致包气带中土 壤水的氯离子浓度改变。氯离子示踪方法从质量守恒角度,通过比较土壤水分的氯离子浓度和降水输入的氯离 子浓度大小,可以定量确定降水入渗量和降水入渗补给的历史变化过程。本文介绍了目前国外应用较普遍的氯 离子均衡法和氯离子累积法,并讨论了方法应用时存在的一些问题。 关键词 氯离子 示踪 入渗补给 包气带 降水入渗是地下水资源的主要补给来源,有时甚至为唯一的补给来源。降水入渗补给量的确定是地下水资源评价及水资源科学管理的重要基础工作。然而,在许多情况下,入渗补给量的确定不是一件容易的工作,特别是在干旱、半干旱气候条件下。这是由于:①降水量偏小,有效补给份额偏低;②埋深大,入渗水量在到达地下水面之前存在明显的滞后和减量效应;③地面蒸发、植物蒸腾作用强烈,大量补给水分在包气带便以蒸发、蒸腾的形式直接返回大气圈。因此,一般用来确定入渗补给量的方法、手段因各种原因而不具有普适性。例如水均衡法,因补给份额少,相应的水文地质参数变化微小而难以测定,降水入渗前后变化非常缓慢,往往需要数年,甚至十几年时间方能获取一个估算的平均值。此外,因地形、包气带岩性及植被类型的空间变化,需要在不同地点测试参数以评价空间不同位置的补给能力〔1〕。 某些物理方法的应用也同样因入渗补给水量微弱而难以观测其变化,如渗透计的使用,不但成本较高,观测时间长,而且安装过程中不可避免地要扰动土壤,影响到估算结果。 利用环境同位素氚(3H)作为示踪剂来确定降水入渗补给量,在70~80年代应用非常普遍。虽然这是有效的手段之一,但即使不考虑测试分析成本较昂贵这一因素,由于氚自身的衰减(半衰期12.26a),目前环境中氚的含量已经很小而不易测定。若考虑应用人工同位素作为示踪剂,不但费力费钱,同时,示踪剂从施放到达预定点需要很长时间,而且污染环境。 上述的这些不利方面,却恰恰成为氯离子示踪方法用来确定入渗补给量的有利条件。环境中的氯离子因其具有的高溶解性和稳定性,成为一种理想的天然示踪剂,目前在国外已广泛地用来研究干旱、半干旱气候条件下降水入渗补给量的计算以及包气带中水分运移过程,如澳大利亚、美国、墨西哥、以色列及非洲的博茨瓦纳等地。在我国,关于氯离子示踪研究的报道甚为 ①中荷科技合作项目(1995—1996) 收稿日期:1966-03-15 编辑:曲梅兰

深井降水计算

一、前言 近几年,深井降水利用较多,但有些单位在计算过程中采用的公式不当,或者考虑的因素不周,最终会造成降水的失败,最后不得不加井,这样既费钱又费时间,下面就以本人在深井降水方面的经验来和大家探讨。 二、深井降水概念 深井(管井)井点,又称大口径井点,系由滤水井管、吸水管和抽水设备等组成。具有井距大,易于布置,排水量大,降水深(>15m),降水设备和操作工艺简单等特点。适用于渗透系数大(20-250m3/d),土质为砂类土,地下水丰富,降水深,面积大、时间长的降水工程应用。 三、深井设计 1、计算思路 第一步将基坑进行等效化为一口大井,第二步确定基坑总的涌水量,第三步确定单井出水量,第四步确定井的数量。 2、参数的确定与计算 1)、设计水位降深 水位降深在满足施工要求的时候,应尽量选择较小水位的降深,一般降到操作面下0.5m即可(有特殊要求的除外),这样可最大程度上避免降水对地层的影响,不至于造成地基承力的下降。 2)、井深及井径的选择 要想使水位降低至操作面下,可以有两种途径,一种是加大井的直径和井的深度,即增大单井的落差,从而达到使最高水位降至操作面下0.5m.另一种通过均匀布井,控制单井的落差,使水位均匀降至设计要求。前一种布井少,对地层扰动大,如建筑物对地基要求高时,此方法不可采用(除非施工后注浆),且此方法对原有建筑物也会带来较大的不利影响;后一种方法可能布井较多,但对地层扰动小,对原有建筑的危害也较小,因此条件允许时应优先选用后一种方法。另外井深还要考虑单井的出水量与自已现有的水泵配套。 井深主要是根据水位降深、所需要的单井出水能力、水泵的进水口的位置、含水层的厚度、及泥浆淤积深度等因素进行选择。 井径的选择要综合考虑以下几种因素:A、单井要求的出水量;B、水泵的直径;C、当地施工机械,及井管的规格,如选用市场常用的规格,价格可能会便宜对控制成本有益。 3)、渗透系数的选择 渗透系数是降水计算中重要的参数,此参数可以从地质报告中选取,但在大面积布井前,须重新验证,或者搜集附近的实际数据作为参考。 4)、含水层的厚度的取值 含水层的厚度也是一个重要的参数,但地质报告中一般不给出,如果没有地区经验,只能通过 综合考虑以往施工经验和降水井的深度及地层的规律来确定。也可事先假定一个数值,按完整井模型,采用使含水层厚度按每1米的间隔递增,计算总的涌水量,然后按非完整井的模型,以同的方法计算总涌水量,最终你会发现,它们会有一个重合点,这样你可以利这一重

相关文档
最新文档