降雨入渗补给量的确定

降雨入渗补给量的确定
降雨入渗补给量的确定

水文地质考试题

一名词解释(10-12个,2分/1个) 1.水文地质学:水文地质学是研究地下水的科学,它研究岩石圈,水圈,大气圈,生物圈,以及人类活动相互作用下地下水的形成与演化,即地下水的水量(水位)水温和水质等要素的时空变化及影响因素。 2空隙类型包括孔隙,裂隙,溶穴。Xue 3孔隙度:单位体积岩土中孔隙所占的比例。n=Vn/V*100%;Vn为岩土中孔隙体积,V 为包括孔隙在内的岩土体积。 4孔隙:颗粒与颗粒集合推之间的空隙叫做孔隙。 5空隙中水的存在形式:重力水,毛细水和结合水。 6给水度:地下水位下降单位体积时,释出水的体积和疏干体积的比值。记为μ,用小数表示。 7有效应力原理:有效应力等于总压力减去孔隙压力。 8含水层:是饱水并能传输与给出相当数量水的岩层。 9隔水层:不能传输与给出相当数量水的岩层。 10潜水:饱水带中第一个具有自由表面且有一定规模的含水层中的重力水。 11潜水等水位图:潜水位相等的各点连线。 12承压水:充满与两个隔水层之间的含水层中的水。 13地下水:地面以下岩石空隙中的水。 14地下水面(位):地面下岩石中的孔隙被重力水充满形成自由水面,自由水面所处的高程为地下水位。 15包气带:地表到地下水面这一部分。 16饱水带:地下水面以下。 17流网:在渗透场中某一典型剖面或切面上,由一系列等水头线与流线组成的网格。18流线:渗流场中某一瞬时的一条线,线上各水质点在此瞬时的流向均与此线相切。19迹线:渗流场中某一时间段内某一水质点的运动轨迹。 20地下水含有气体,离子,胶体,有机质,微生物。

21地下水中的离子成分:Cl-,SO42-,HCO3-重碳酸根离子,Na+,K+,Ca2+,Mg2+ 22总溶解固体:溶解在水中的无机盐和有机物的总称。 23溶滤作用:与岩土相互作用,使岩土中一部分物质转入地下水中。 24地下水的补给:饱水带获得水量的过程,水量增加的同时,盐量,能量也随之增加。25地下水的排泄:饱水带减少水量的过程,减少水量的同时,盐量和能量也随之减少。26降水入渗补给系数:大气降水补给地下水的份额。 27泉:地下水的自然露头。 28越流:相邻含水层通过弱透水层在水力梯度的作用下发生水源交换。 29地下水动态:地下水各种要素(水位,水量,化学组成,气体成分,温度,微生物等)随时间的变化,称为地下水动态。 30地下水均衡:某一时间段,某一范围内地下水分水量(盐量,热量等)的收支状况,称为地下水均衡。 31均衡期:进行均衡计算的时间断。 32均衡区:进行均衡计算所选定的地区。 33水力梯度:沿水流方向单位长度渗透途径上的水头损失。 34渗流场:发生渗流的区域。 35渗流:地下水在岩土孔隙中的运动。 36层流:水质点做有秩序的,互不混杂的流动。 37紊wen流:水质点做无秩序,互相混杂的流动。 38正均衡:某一均衡区,在一定均衡期内,地下水水量(或盐量,热量)的收入大于支出,表现为地下水储存量(或盐储存量,热储存量)增加。 39负均衡:某一均衡区,在一定均衡期内,地下水水量(或盐量,热量)的支出大于收入,表现为地下水储存量(或盐储存量,热储存量)减少。 二简答题(共20分4分或5分/1个) 1水循环的意义。 答:(1)自净,净化即通过不断转换,水质得以持续净化。(2)水量更新及补充,

降水入渗补给过程的实验研究

降水入渗补给过程的实验研究 李雪峰李亚峰樊福来 (保定水文水资源勘测局,河北保定 071000) 来稿日期:2003-12-09 摘要:本文根据冉庄实验站实测资料,描述了地下水深埋区降水入渗补给过程。通过1991年8 m蒸渗仪实测资料,说明降水入渗过程中入渗锋面演变情况。地下水大埋深区包气带土壤含水量及降水入渗过程有以下3个特点:1包气带土壤含水量在垂向上具有分带的特点:从地表至1 m为I带,从地下水面至地下水面以上2 m为Ⅲ带,介于I带和Ⅲ带之间为Ⅱ带.2包气带土壤含水量具有季节性变化特征:包气带土壤含水量5月份最小,6~9月份较大。3降水入渗补给具有明显的滞后特征:从发生降水到该次降水对地下水入渗补给过程的结束,需要经历一个时程。包气带愈厚,时程愈长。 关键词:降水入渗补给;包气带;土壤含水量 Experimental Research on the Process of Rainfall Infiltration Feeding Li xuefeng ,Li yafeng ,Fan fulai (Baoding Hydrology and Water Resource Survey Bureau, Baoding,071000,China) Abstract: Based on the experimental data from Ranzhuang Experimental Station for Water Resource, the article showed the process of rainfall infiltration feeding in the area of the groundwater with deep water table. There are three characteristics:1.soil moisture in the zone of aeration has zonal characteristic ,the zone from surface to 1m is called zone I and from groundwater table 2m is called zone III ,the zone between them is called zone II;2.soil moisture in zone of aeration has temporal characteristic ;3.rainfall infiltration feeding has later characteristic obviously. Key words :rain fall Infiltration feeding ,zone of aeration ,soil moisture 1 冉庄水资源实验站基本情况 冉庄水资源实验站,位于华北平原中部,河北省清苑县冉庄镇,距保定市40 km。地处太行山前,属于温带半湿润性大陆性季风气候区。实验站由实验流域和中心实验场组成,中心实验场内有三个大型地中蒸渗仪,包气带实验区、节水灌溉实验场和项目齐全的气象场。三个地中蒸渗仪面积均为10m2,潜水埋深分别为1 m、2 m和8 m。包气带实验区的面积为50 m2。蒸渗仪和包气带实验区内设有中子仪测管和负压计,观测土壤含水量和土水势。自1987年建成以来,每年都在种植小麦、玉米的情况下进行试验,连续运行15 a,资料基本完整。 地中蒸渗仪为回填亚砂土,包气带实验区为原状亚砂土。实验期间实验区地下水埋深5―21 m、多年平均年降雨量500 mm。 收稿日期:2003-12-19 作者简介:李雪峰(1967-),男,工程师,从事水文水资源实验研究工作。

地下水补给量和排泄量的确定

地下水补给量和排泄量的确定 李恒太 河北工程大学水电学院河北邯郸056021 摘要:在地下水资源评价过程中,不管采用什么方法,其补给量和排泄量的确定是必需要完成的工作,本文就地下水的补给量和排泄量的确定进行了详尽地阐述。 关键词:地下水;补给量;排泄量;基流;越流 地下水是人们赖以生存和使用的主要资源之一,但是存在于地下的水究竟有多少?又有多少能供我们利用?人们为了探究此问题,水行政管理部门专门组织专业技术人员进行定量评价与计算,在评价计算过程中,不管采用什么方法,不管其方法多先进,都得确定地下水补给量和排泄量,可见地下水补给量和排泄量的确定在地下水评价中的重要意义,因此,下面将详述地下水补给量和排泄量的确定。 1 地下水补给量 地下水的补给来源主要有大气降水、地表水、凝结水、其他含水层(或含水系统)的水、侧给补给、人工补给、融雪水和融冻水等。 1.1大气降水入渗补给地下水 降水入渗补给量是指降水(包括坡面漫流和填洼水)渗入到土壤中并在重力作用下渗透补给地下水的水量。降水入渗补给量一般采用下列方法确定。 1.1.1 地中渗透仪法 地中渗透仪是测量降水 入渗量、潜水蒸发量和凝结 水量的一种地下装置,该装 置通过导水管与给水设备相 连接的承受补给和蒸发的各 种土柱圆筒和测量水量的马 利奥特瓶组成,也称为地中 蒸渗仪、地中渗透计。该仪 器在各地的地下水均衡试验 场中被广泛应用。由于该法 测得的潜水蒸发量和降水入渗补给量虽然是实测值,但仍很难如实模拟天然的入渗补给

条件。其中,潜水面的埋深对潜水补给量有很大影响,同样,对潜水蒸发量也有一定影响。潜水面在雨季因降水入渗补给而升高,旱季因蒸发排泄而降低,处于连续不断的变动中,而地中渗透仪的每一圆筒中的潜水面都是固定的,因而其实测结果的可靠性还有待进一步证实,且此法只适用于松散岩层,使其应用受到限制。 其结构装置如图1.1所示,工作原理如下:首先调整水位管14,使其内水面与渗透仪中的设计地下水面(6,相当于潜水埋深)保持在同一高度上。当渗透仪中的地柱接受降水入渗或凝结水的补给时,其补给量将会通过导水管2流入接渗瓶15内,可直接读出补给水量;当土柱内的水面产生蒸发时,便可由水位调整管14供给水量,再从马利奥特瓶13读出供水水量(即潜水蒸发消耗量)。 1.1.2 有限差分法 该方法是利用同一剖面上三个观测孔水位资料,按有限差分方程式计算降水入渗量Q 雨渗。 B 图1.2 同一剖面上观测孔的水位变化图 如图1.2所示,其有限差分方程为: ()()()()??????-+--++?- ?=----21111121222l H H h h l H H h h l l t K H Q C B C B B A B A B μ雨渗 (1) 式中:Q 雨渗为降雨入渗量;K 为渗透系数;μ为给水度;Δt 为两次时间间隔;其它意 义如图中所示。 1.1.3 泰森多边形法 在典型地段布置观测孔组,并有一个水文年以上的水位观测资料时,可用差分方法

水利水文术语表中英对照

水圈hydrosphere 水体water body 水科学water science 水文学hydrology 陆地水文学land hydrology 应用水文学applied hydrology 工程水文学engineering hydrology 水汽water vapour 水文要素hydrologic elements 积雪snow cover 终雪latest snow 融雪snowmelt 冰雹hail 截留interception 填洼depression detention 地面滞留surface detention 陆面蒸发evaporation of land 水面蒸发evaporation of water surface 土壤蒸发evaporation from soil 散发(植物蒸腾)transpiration 蒸发能力evaporation capability 下渗(入渗)infiltration 稳渗steady infiltration 下渗能力infiltration capability 河川径流river runoff 降雨径流rainfall runoff 暴雨径流storm runoff 融雪径流snowmelt runoff 枯季径流dry season runoff 基流base flow 阴塞高压blocking high 低空急流low-level jet 低涡vortex 反气旋(高压)anticyclone 气旋(低压)cyclone 热带气旋tropic cyclone 热带低压tropic depression 热带风暴tropic storm 强热带风暴severe tropic storm 气团air mass 锋(锋面)front 气象meteorology 气候区划climatic regionalization 气候带climatic zone 小气候microclimate 副热带(亚热带)subtropic zone 比湿specific humidity 蒲福风级Beaufort wind scale 霜点frost point 霜冻frostbite

补给量的计算

9.2 补给量的确定时间:2006-11-02 来源:作者: 9.2.1 地下水的补给量应计算由下列途径进入含水层(带)的水量: 1 地下水径流的流入。 2 降水渗入。 3 地表水渗入。 4 越层补给。 5 其他途径渗入。 9.2.2 计算补给量时,应按自然状态和开采条件下两种情况进行。 进入含水层的地下水径流量,可按下式计算:9.2.3 9.2.3 )(M IQ =K··B· 3M);/d——地下水径流量式中Q ();M/dK——渗透系数(——自然状态或开采条件下 的地下水水力坡度;I(M);——计算断面的宽度B M——承压含水层的厚度(M)。降水入渗的补给量,可按下列公式计算:9.2.4 1 按降水入渗系数计算时: Q=F·α·X/365 (9.2.4-1) 3/d);(M式中Q——日平均降水入渗补给量 2);(M F——降水入渗的面积α——年平均降水入渗系数; X——年降水量(M)。 2 在地下水径流条件较差,以垂直补给为主的潜水分布区,计算降水入渗补给量时: Q=μ·F·ΣΔh/365 (9.2.4-2) 式中ΣΔh——一年内每次降水后,地下水水位升幅之和(M); μ——潜水含水层的给水度。 3 地下水径流条件良好的潜水分布区,可用数值法计算降水入渗补给量。 9.2.5 农田灌溉水和人工漫灌水的入渗补给量,可根据灌入量、排放量减去蒸发量及其他消耗量进行计算。 9.2.6 河、渠的入渗补给量,可根据勘察区上下游断面的流量差或河渠渗入的有关公式计算和确定。. 9.2.7 利用各单项补给量之和确定总补给量时,应对各单项补给项目进行具体分析,确定对本区起主导作用的项目,并避免重复。 9.2.8 利用开采区内的地下水排泄量和含水层中地下水储存量之差计算补给量时,可按下式计算:Q=E+Q+Q+Q+ΔW/365 (9.2.8)KYBj3/d);mQ——日平均地下水补给量(式中 3/d);——日平均地下水蒸发量(mE3/d);(m——日平均地下水溢出量Q Y3/d);m Q——流 向开采区外的日平均地下水径流量(3/d);——日平均地下水开采量(mQ KΔ——连续两年内相同一天的地下水储存量之差(年储存量小于上年者取负值)W3/d)。(m9.2.9 地下水总补给量,可根据水源地上游地下水最小径流量与水源地影响范围内潜水最3)之和确定。/dm(低、最高水位之间的储存量

关于降雨入渗补给系数的讨论

关于降水入渗系数的测定方法的讨论 陈晓成林高聪王楠052081班摘要:在水文水资源的评价中,降雨入渗补给系数是一个非常重要的参数,由入渗补给系数的定义可知,求得降雨入渗补给系数的关键为降雨总量和降雨入渗补给量。本文探讨了几种常见的流域平均降雨总量的测定方法和降雨入渗补给量的测定方法,分别采用了平均值法、等雨量线法、泰森多边形法测定流域的平均降雨量,采用动态分析法(年水位升幅累积法、前期影响降水量法)、区域水量均衡法和数值分析法测定降雨入渗补给量最终得到降雨入渗补给系数。 关键字:流域平均降雨总量降入入渗补给量降雨入渗补给系数 降雨入渗补给系数的变化范围在0~1之间。由于降雨入渗补给量取决于某一时段内总雨量、雨日、雨强、包气带的岩性及降水前该带的含水量、地下水埋深和下垫面及气候因素,因此降雨入渗补给系数是随时间和空间变化的。不同地区具有不同的降雨入渗补给系数,即使同一地区,不同时段降雨入渗补给系数也不尽相同。因此,根据不同的计算时段,确定相应的降雨总量和降雨入渗补给量。本文采取年降雨总量和年降雨入渗补给量确定年降雨入渗补给系数。 一次降雨首先要满足截留、地面产流及填洼等后才可能形成下渗,同时受包气带对下渗水量的在分配作用,只有下渗水量超过包气带最大持水能力时才能入渗补给地下水。降雨雨入渗补给到地下水的水量即为降雨入渗补给量,用P r(mm)表示,则 α=P r/P (1)α:年降雨入渗补给系数;P r年降雨入渗补给量;P年流域内降雨总量由公式可知测定降雨入渗补给系数的关键为测定流域内的降雨总量和降雨入渗总量。 一、流域内降雨总量的测定方法 从理论上说,降雨两的空间分布可表达为: P=f(x,y)(2)p流域平均降雨量(mm);A流域面积。P时段或降雨量;x,y地面一点的纵横坐标;

降雨强度与稳定入渗率关系的公式化分析

142 2010年第10期(总第46期) 降雨强度与稳定入渗率关系的公式化分析 福建省水利水电勘测设计研究院 刘正风 [摘要] 稳定入渗率在设计洪水的计算中起着将一次净雨过程分割为地表净雨过程与地下净雨过程的作用,以前稳定入渗率fc 的确定是由i~fc 经验关系曲线人工读出的,对工程计算带来诸多不便,该文拟合了某地区i~fc 经验关系曲线的一个表达式,并对此表达式与经验关系曲线的符合效果进行分析。 [关键词] 稳定入渗率 降雨强度 经验关系曲线 公式化 1 降雨强度i 与稳定入渗率fc 的经验关系 稳定入渗率fc 在设计洪水的计算中起着将一次净雨过程分割为地表净雨过程与地下净雨过程的作用,通常我们将各 站各次洪水以次净雨平均强度i 为纵坐标,以稳定入渗率fc 为横坐标,点绘相关图进行综合分析。相关点子数据见表1,相关点子图如图1所示(本文示例数据采为某地区的50次洪水的统计数据)。 表 1 实测降雨强度i 与稳定入渗率fc 的关系表 单位:mm/h 项目 i ~fc 关系数据 i (测) 0.0 4.0 4.0 4.4 4.4 4.6 4.8 5.0 5.0 5.5 fc (测) 0.00 2.00 3.98 3.20 5.00 2.20 2.10 3.40 4.80 4.80 i (测) 5.6 5.7 5.8 6.7 6.8 7.2 7.4 7.9 8.2 8.5 fc (测) 3.10 5.20 1.70 4.60 2.80 7.80 6.30 2.90 3.40 2.10 i (测) 8.8 9.0 9.1 9.2 9.3 9.5 9.8 9.9 10.2 10.5 fc (测) 4.10 4.70 3.80 5.20 2.70 6.90 2.40 8.30 4.90 3.90 i (测) 11.0 11.3 11.7 11.8 12.5 13.8 15.1 16.1 16.5 16.6 fc (测) 5.70 6.20 4.70 7.10 7.70 9.60 12.50 4.90 4.50 9.70 i (测) 17.4 18.2 18.6 19.0 28.2 31.0 35.0 40.0 50.0 60.0 fc (测) 8.10 9.30 8.70 12.00 7.90 8.80 9.60 10.40 11.80 12.90 图1 净雨平均强度i 与稳定入渗率fc 相关点子图 稳定下渗率fc 是由地下径流分析得来,往往稳定下渗率fc 大地下径流也大,在分割地表与地下径流时,退水段第二拐点位置的确定带来一定的任意性,所以i ~ fc 的相关点在小洪水时比较散乱。从设计安全考虑,通常人们会定出一条综合的i ~fc 相关曲线,如图2所示。 图2 净雨平均强度i 与稳定入渗率fc 关系曲线图 图2中所示i ~fc 曲线为随机经验型光滑曲线,当降雨强度i 较小时,稳定入渗率fc 迅速增大;之后随着降雨强度i 的增大,稳定入渗率fc 增速逐渐减小;当降雨强度i 增大

补给量的计算

9.2 补给量的确定 时间:2006-11-02 来源:作者: 9.2.1 地下水的补给量应计算由下列途径进入含水层(带)的水量: 1 地下水径流的流入。 2 降水渗入。 3 地表水渗入。 4 越层补给。 5 其他途径渗入。 9.2.2 计算补给量时,应按自然状态和开采条件下两种情况进行。 9.2.3 进入含水层的地下水径流量,可按下式计算: Q=K·I·B·M (9.2.3)式中Q——地下水径流量(M3/d); K——渗透系数(M/d); I——自然状态或开采条件下的地下水水力坡度; B——计算断面的宽度(M); M——承压含水层的厚度(M)。 9.2.4 降水入渗的补给量,可按下列公式计算: 1 按降水入渗系数计算时:

Q=F·α·X/365 (9.2.4-1) 式中Q——日平均降水入渗补给量(M3/d); F——降水入渗的面积(M2); α——年平均降水入渗系数; X——年降水量(M)。 2 在地下水径流条件较差,以垂直补给为主的潜水分布区,计算降水入渗补给量时: Q=μ·F·ΣΔh/365 (9.2.4-2) 式中ΣΔh——一年内每次降水后,地下水水位升幅之和(M); μ——潜水含水层的给水度。 3 地下水径流条件良好的潜水分布区,可用数值法计算降水入渗补给量。 9.2.5 农田灌溉水和人工漫灌水的入渗补给量,可根据灌入量、排放量减去蒸发量及其他消耗量进行计算。 9.2.6 河、渠的入渗补给量,可根据勘察区上下游断面的流量差或河渠渗入的有关公式计算和确定。 9.2.7 利用各单项补给量之和确定总补给量时,应对各单项补给项目进行具体分析,确定对本区起主导作用的项目,并避免重复。 9.2.8 利用开采区内的地下水排泄量和含水层中地下水储存量之差计算补给量时,可按下式计算: Q B=E+Q Y+Q j+Q K+ΔW/365 (9.2.8)

其它水文地质参数

>>教材>>专门水文地质学 §6.4其它水文地质参数 一、贮水率和贮水系数 贮水率和贮水系数是含水层中的重要水文地质参数,它们表明含水层中弹性贮存水量的变化和承压水头(潜水含水层中为潜水水头)相应变化之间的关系。 贮水率表示当含水层水头变化一个单位时,从单位体积含水层中,应水体积膨胀(或压缩)以及介质骨架的压缩(或伸长)而释放(或贮存)的弹性水量,用s μ表示,它是描述地下水三维非稳定流或剖面二维流中的水文地质参数。 贮水系数表示当含水层水头变化一个单位时,从底面积为一个单位、高等于含水层厚度的柱体中所释放(或贮存)的水量,用S 表示。潜水层水层的贮水系数等于贮水率与含水层的厚度之积再加上给水度,潜水贮水系数所释放(贮存)的水量包括两部分,一部分是含水层由于压力变化所释放(贮存)的弹性水量,二是水头变化一个单位时所疏干(贮存)含水层的重力水量,这一部分水量正好等于含水层的给水度,由于潜水含水层的弹性变形很小,近似可用给水度代替贮水系数。承压含水层的贮水系数等于其贮水率与含水层厚度之积,它所释放(或贮存)的水量完全是弹性水量,承压含水层的贮水系数也称为弹性贮水系数。 贮水系数是没有量纲的参数,其确定方法是通过野外非稳定流抽水试验,用配线法、直线图解法及水位恢复等方法进行推求,具体步骤详见地下水动力学相关书籍。 二、越流系数和越流因素 表示越流特性的水文地质参数是越流系数和越流因素。越流补给量的大小与弱透水层的渗透系数K '及厚度b '有关,即K '愈大b '愈小,则越流补给的能力就愈大。当地下水的主要开采含水层底顶板均为弱透水层时,开采层和相邻的其他含水层有水力联系时,越流是开采层地下水的重要补给来源。 越流系数σ表示当抽水含水层和供给越流的非抽水含水层之间的水头差为一个单位时,单位时间内通过两含水层之间弱透水层的单位面积的水量。显然,当其它条件相同时,越流系数越大,通过的水量就愈多。 越流因素B 或称阻越系数,其值为主含水层的导水系数和弱透水层的越流系数的倒数的乘积的平方根。可用下式表示 K b T B ' ' = (6-36) 式中 T ——抽水含水层的导水系数(m 2/d ); b '——弱透水层的厚度(m ) ; K '——弱透水层的渗透系数(m/d ) B ——越流因素(m ) 。

确定干旱_半干旱地区降水入渗补给量的新方法_氯离子示踪法

第15卷 第3期1996年 9月 地质科技情报 Geolo gical Science and Techno logy Info rmatio n Vol.15 No.3 Sep.1996 确定干旱—半干旱地区降水入渗补给量的 新方法——氯离子示踪法① 陈植华 徐恒力 (中国地质大学环境科学与工程学院,武汉,430074) 摘 要 在干旱—半干旱地区由于入渗水分大部分滞留在包气带中,强烈地蒸发、蒸腾作用导致包气带中土 壤水的氯离子浓度改变。氯离子示踪方法从质量守恒角度,通过比较土壤水分的氯离子浓度和降水输入的氯离 子浓度大小,可以定量确定降水入渗量和降水入渗补给的历史变化过程。本文介绍了目前国外应用较普遍的氯 离子均衡法和氯离子累积法,并讨论了方法应用时存在的一些问题。 关键词 氯离子 示踪 入渗补给 包气带 降水入渗是地下水资源的主要补给来源,有时甚至为唯一的补给来源。降水入渗补给量的确定是地下水资源评价及水资源科学管理的重要基础工作。然而,在许多情况下,入渗补给量的确定不是一件容易的工作,特别是在干旱、半干旱气候条件下。这是由于:①降水量偏小,有效补给份额偏低;②埋深大,入渗水量在到达地下水面之前存在明显的滞后和减量效应;③地面蒸发、植物蒸腾作用强烈,大量补给水分在包气带便以蒸发、蒸腾的形式直接返回大气圈。因此,一般用来确定入渗补给量的方法、手段因各种原因而不具有普适性。例如水均衡法,因补给份额少,相应的水文地质参数变化微小而难以测定,降水入渗前后变化非常缓慢,往往需要数年,甚至十几年时间方能获取一个估算的平均值。此外,因地形、包气带岩性及植被类型的空间变化,需要在不同地点测试参数以评价空间不同位置的补给能力〔1〕。 某些物理方法的应用也同样因入渗补给水量微弱而难以观测其变化,如渗透计的使用,不但成本较高,观测时间长,而且安装过程中不可避免地要扰动土壤,影响到估算结果。 利用环境同位素氚(3H)作为示踪剂来确定降水入渗补给量,在70~80年代应用非常普遍。虽然这是有效的手段之一,但即使不考虑测试分析成本较昂贵这一因素,由于氚自身的衰减(半衰期12.26a),目前环境中氚的含量已经很小而不易测定。若考虑应用人工同位素作为示踪剂,不但费力费钱,同时,示踪剂从施放到达预定点需要很长时间,而且污染环境。 上述的这些不利方面,却恰恰成为氯离子示踪方法用来确定入渗补给量的有利条件。环境中的氯离子因其具有的高溶解性和稳定性,成为一种理想的天然示踪剂,目前在国外已广泛地用来研究干旱、半干旱气候条件下降水入渗补给量的计算以及包气带中水分运移过程,如澳大利亚、美国、墨西哥、以色列及非洲的博茨瓦纳等地。在我国,关于氯离子示踪研究的报道甚为 ①中荷科技合作项目(1995—1996) 收稿日期:1966-03-15 编辑:曲梅兰

水文辨析题

二、辩析题讨论 1.地层介质的固体颗粒越粗大,孔隙度就越大; 2.当某种岩石由两种大小不等的颗粒组成,且粗大颗粒之间的孔隙完全为细小颗粒所充填 时,则此岩石的孔隙度小于由粗颗粒和细颗粒单独组成的岩石的孔隙度。 3.分布有裂隙的岩石中,一般不发育孔隙; 4.毛细水不受重力作用,只受表面张力作用; 5.松散岩层的给水度虽然经验上被认为是固定的参数,但实际上也随时间变化,并且总是 小于孔隙度; 6.一个地区水资源的丰富程度主要取决于降水量的多寡。 7.一个地区水资源的丰富程度主要取决于地表径流量的多寡。 8.沙漠地区降雨量很少,但是也能发现大量的地下水或者泉水 9.承压含水层接受补给时,不同于潜水含水层的反应主要表现在测压水位升高。 10.承压含水层接受补给时,不同于潜水含水层的反应主要表现在孔隙度增加、水密度变大。 11.潜水含水层的给水度和承压含水层的给水度存在很大的区别 12.当潜水的水位下降时,水面下岩石的固体骨架有效应力将增加 13.越流渗透主要发生在隔水层中。 14.越流渗透主要发生在弱透水层中。 15.在排泄区,地下水不接受大气降水的补给; 16.只有测压水位高于地面的地下水才叫承压水; 17.地面的污染物可以通过包气带扩散到潜水中,但不会影响承压水; 18.包气带中有结合水,而饱水带没有结合水。 19.潜水面如果不是流线,则流线可能向下穿越潜水面,也可能向上穿越潜水面; 20.地下水总是从高处往低处流; 21.含水层孔隙度越大,则渗透系数越大; 22.均质包气带中岩石的渗透系数随着岩石含水量的增加而增大,所以渗透系数是含水量的 函数; 23.地下水的实际流速通常小于地下水的渗透流速。 24.地下水的实际流速通常大于地下水的渗透流速。 25.当有入渗补给或蒸发排泄时,潜水面可以看作一个流面; 26.在河谷地带打井,井中水位随井深加大而升高。 27.在河谷地带打井,井中水位随井深加大而降低。 28.在分水岭地带打井,井中水位随井深加大而升高 29.潜水储存量的变化是以给水度与水位变幅的乘积表示。 30.承压水储存量的变化是以给水度与水位变幅的乘积表示。 31.地下水中的氧气和二氧化碳主要来源于补给地下水的降雨;

相关文档
最新文档