基于非负矩阵分解算法进行盲信号分离

基于非负矩阵分解算法进行盲信号分离
基于非负矩阵分解算法进行盲信号分离

维普资讯 https://www.360docs.net/doc/8a11337485.html,

NMF综述报告

人脸识别的非负矩阵分解(NMF)方法文献综述 摘要:人类对整体的感知是基于对部分的感知,NMF(非负矩阵分解,Non-negative matrix factorization)的思想正是源于此。通过对矩阵分解因子加入了非负性约束,使得对高维非负原始数据矩阵的分解结果不存在负值,且具有一定的稀疏性,因而得到了相对低维、纯加性、拥有一定稀疏特性的分解结果。与PCA(主成分分析,principal components analysis)等传统人脸识别方法相比,NMF的基图像就是人脸的各个局部特征,并且通过对经典算法的一系列优化,改进的NMF算法的识别率和鲁棒性较传统方法有着显著优势。此外,NMF在机器学习、语义理解等领域也有着重要应用。 关键词:非负矩阵分解(NMF)稀疏性改进的NMF 语义理解 一、引言 在实际中的许多数据都具有非负性,而现实中对数据的处理又要求数据的低秩性经典的数据处理方法一般不能够确保非负性的要求,如何找到一个非负的低秩矩阵来近似原数据矩阵成为一个关键问题。在这样的背景下,NMF方法应运而生。 NMF方法思想最早可以追溯到由Paatero和Tapper在1994年提出的正矩阵分解(Positive Matrix Factorization,PMF)[1];此后1999年,Lee和Seung提出了一个以广义KL散度为优化目标函数的基本NMF模型算法,并将其应用于人脸图像表示[2];2001年,Lee和Seung通过对基本NMF算法进行深入研究,又提出了两个经典的NMF算法,即基于欧氏距离测度的乘性迭代算法和基于广义KL散度的乘性迭代算法,并给出了收敛性证明[3],这两种算法称为NMF方法的基准算法,广泛应用于各个领域。 但是在实际应用中,由于经典的基准NMF算法存在收敛速度较慢,未利用统计特征,对光线、遮挡等敏感,以及无法进行增量学习等问题,各种改进的NMF算法被提出。其中包括Lin提出的基于投影梯度(Projected Gradient,PG)的NMF方法[3],该方法有着很高的分解精度;Berry提出的基于投影非负最小二乘(Projected Non-negative Least Square,PNLS)的NMF方法[5],通过这种方法得到的基矩阵的稀疏性、正交性叫基准NMF方法都更好;此外还有牛顿类方法[6]和基于有效集[7]的NMF方法等。 二、NMF的基准算法 1.NMF模型 给定一个非负矩阵(即),和一个正整数,求未知非负矩阵和,使得 用表示逼近误差矩阵。可以用下图表示该过程:

非负矩阵分解算法概述之Lee&Seung的世界

非负矩阵分解算法概述 (吴有光) NOTE:本文为科普文章,尽量做到通俗而不严格,比较适合理论小白补补NMF历史 第一部分Lee&Seung的世界 1 引言 现实生活中的数据,我们总是希望有个稀疏表达,这是从压缩或数据存储的角度希望达到的效果。从另一方面来讲,我们面对大量数据的时候,总是幻想能够发现其中的“规律”,那么在表示或处理的时候,直接操作这些提纲挈领的“规律”,会有效得多。这个事情,让很多的科学家都伤透脑筋,不过也因此有了饭碗。 1.1第一个例子 我们先来看一个简单的例子。在人文、管理或社会学里,实证研究方法是常用的方法。比如我们来考察大学生就业过程,对学生的选择工作类别的动机,我们常说“想吃劳保饭的同学铁了心要考公务员,喜欢轻松自由氛围的同学更趋向于外企,只想稳定的同学认为国企最好,富二代神马的最爱创业然后继承家产了”,这句话如果要严格来论证是不可能的,那么我们转而寻求“调查论证”,即通过设计问卷(问卷上设计了可能影响学生选择的因素,比如家庭情况、学业情况、性格取向、对大城市或家乡的热恋程度、以及人生观价值观等等各种我们可能会影响就业取向的因素)各种我们猜测会影响学生。 问卷上来后,我们通过统计得到如下的列表。 图1 第一个例子的统计表示例 表中的各个因素我们进行了量化,比如性格因素从完全内向到热情奔放分为5个等级(可以用一些问题来直接或间接获得这个等级)。那么剩下的问题就是回答开始的问题:

(1)是不是我们设计的每个因素都有效?(显然不是,之所以设计问卷就是要来解决这个问题的) (2)是什么因素影响了学生的最终选择?或者说,从统计上来看,每个因素占多大比重? 这时,用矩阵来表示可写为,其中就表示那个因素矩阵,表示最终取向,代 表我们要求的系数。我们把要求的用代替,写成矩阵形式为: (1) 更进一步,如果我们不仅调查学生的去向,还想同时调查很多事情,那么就会有 ,这样上面的式子改写为: (2) 此时问题转化为: Q1:已知,如何求解,使之满足上面的等式,其中具有初始值(就是我们设计的 一堆东西)。 如果我们让固定,这就是一个方程求解的过程。然而,当我们认为也可以缩减,即认为很少样本就足够表示我们真实取得的样本,那么问题进一步转化为:Q2:如何同时求解和,使之满足。 或者我们也可以只对因素矩阵进行分解,即直接对其进行消减: (3) 其中,为消减后因素矩阵,为在基底下的表示系数,这里要求列数要大大低于的列数,否则就没有实际意义。 上面这个过程,就类似Paatero&T apper于1994年提出的实矩阵分解(Positive Matrix Factorization, PMF)模型,此模型后来被Lee&Seung提出的非负矩阵分解(Nonnegative Matrix Factorization, NMF/NNMF)模型所取代。 1.2 第二个例子 第一个例子为了给非数学、非信号处理的同学一个印象,写的罗里吧嗦,那第二个例子我们就简单写。 给定一组信号,如何找到对其进行稀疏表示?即如何找到满足的和,因为,这里要求且。 这个问题对信号处理的同学来说,太熟悉了。因为我们毕生的精力都在干这件事情。 如果去掉的非负限制,是有很多现成且高效的方法的,比如主成分分析(Principle Component Analysis,PCA)、独立成分分析(Independent Component Analysis,ICA)、因子分析(Factor Analysis,FA)等。然而,施加了非负限制后,这些方法就不适用了。而为什么要施加非负限制,回想第一个例子就明白了,我们最终找的是“影响因子”,因子会有负的么? 于是,非负矩阵分解就出世了, 1.3 非负矩阵分解 非负矩阵分解(Non-negative Matrix Factorization,NMF)从1999年正式提出【1】至今,

基于约束非负矩阵分解的图像表示

对于图像的约束非负矩阵分解 摘要:非负矩阵分解(NMF)对于寻找非负数据的块基础和线性表示是一个常用的方法。它已经广泛的应用于各种应用,比如模式识别,信息检索,计算机视觉。但是,NMF本质上是一个非监督方法,不能利用标签信息。在本文中,我们提出一种新的半监督矩阵分解方法,叫约束非负矩阵分解(CNMF),将标签作为附加约束合并进来。特别地,本文显示出结合标签信息能非常简洁地提高矩阵分解的识别能力。我们利用两个函数公式和提供的相应优化问题的更新解决方法来研究所提出的CNMF方法。通过实际数据的评估,我们所提出的方法和最先进的方法相比更有效。 索引词:非负矩阵分解,半监督学习,降维,聚类

1.简介 许多数据分析中一个基础的问题就是寻找一个合适的表示数据[1],[2],[3],[4],[5],[6],[7],[8]。可以应用一个非常有效的方法表示数据之间的潜在结构。矩阵分解技术作为这类数据表示的基础工具已经得到越来越多的注意。运用不同的标准已经得到了大量不同的方法。最流行的技术包括主成分分析(PCA)[9],奇异值分解(SVD)[10],和向量量化[11]。矩阵分解的中心是找到两个或者更多的因子产生原始数据的一个好的逼近。在实际应用中,分解之后的矩阵维数通常远远小于原始数据的维数。这就引起了数据的压缩表示,促进了其他研究比如聚类和分类。 在矩阵分解方法中,非负矩阵分解(NMF)有一个限制即所有的矩阵因子都必须是非负的,即所有的因子必须大于等于零。这个非负性约束使NMF从感觉上只能对原始数据进行加操作不能减。因此,对于图像处理,人脸识别[2][12],文件聚类[13][14]是一个理想的降维方法,它们就是由部分组成整体的。 NMF是一个非监督学习方法。NMF不能应用于许多实际的问题当专家认为是可行的有限知识中。但是许多机器语言的研究发现未标签的数据当与一些少量的标签数据相结合时在研究精确度上会产生相当大的提高[15][16][17]。全标签训练集的处理过程可能会很昂贵,然而少量的标签数据的获得相对便宜。在这种情况下,半监督学习方法就有很大的实用价值。因此,用半监督学习方法研究NMF 很有意义。 最近,蔡登等人提出了一种图表正则化NMF(GNMF)方法来编码数据空间的几何信息。GNMF构建一个最近邻图表模拟多种结构。当标签信息可行时,它自然地应用到图表结构中。特别地,如果两个数据点使用同一个标签,大的权重会被分配到边缘连接它们。如果两个数据点使用不同的标签,相应的权重都是0。这就引起了半监督GNMF。这个方法的最大缺点是相同类别的数据点将会一起映射到一个新的表示空间,而且怎样有原则的选取权重并不清晰,这一观点没有理论保证。 本文中,我们提出一种新的矩阵分解方法,叫约束非负矩阵分解(CNMF),将标签信息作为附加的约束。我们算法的中心是相同类别的数据可以在一个新的表示空间中合并。这样,已经获得的部分表示就有和原始数据一致的标签,因此就有多的识别能力。我们方法的另一个优点是参数自由,避免了参数调试来获得更好的结果。这就使我们的算法更容易方便的应用于真实世界应用中。我们还讨论了怎样高效的解决相应的最优化问题。给出最优化收敛性证明。本文贡献如下:1.标准NMF是一个非监督学习算法不需要结合标签信息。本文中,我们将它扩展为半监督学习算法。此外,我们将标签信息作为约束;这样一来,有相同标签

基于矩阵分解的卡尔曼滤波技术分析及应用

基于矩阵分解的卡尔曼滤波技术分析及应用 【摘要】本文简要介绍了卡尔曼滤波研究的发展历程,重点对卡尔曼滤波及其在改善数值稳定性,提高计算效率等数值方面的研究与发展进行了综述,对Q-R 分解,U-D 分解,奇异值分解(SVD )等在卡尔曼滤波的应用进行了介绍。最后给出了一种基于Q-R 矩阵分解的自适应滤波方法,仿真验证了其有效性。 1 引言 1960年,美籍科学家卡尔曼(R. E. Kalman)在系统状态空间模型的基础上提出了著名的线性卡尔曼滤波器,它在线性的前提假设下是一个线性无偏、最小方差估计器,从而可以为线性滤波问题提供精确解析解。自该技术被提出以来,它已成为控制、信号处理与通信等领域最基本最重要的计算方法和工具之一,并已成功地应用到航空、航天、电力系统及社会经济等不同领域。随着微型计算机的普及应用,对卡尔曼滤波的数值稳定性、计算效率、实用性和有效性的要求越来越高.为此,人们在如何改善卡尔曼滤波的计算复杂性和数值稳定性方面作了大量的探索工作,各种基于平方根滤波与平滑,U-D 分解滤波与平滑,奇异值分解滤波与平滑,状态与偏差分离滤波以及并行与分散滤波等方法得到不断发展.本文给出了矩阵分解的一些基础知识,并着重从卡尔曼滤波数值计算方法入手,对现有的常规卡尔曼滤波、基于矩阵的因式分解滤波的数值计算方法进行了较系统的介绍和分析,并在第四章给出了一种基于Q-R 矩阵分解的自适应滤波算法。 2 常规卡尔曼滤波 2.1 协方差卡尔曼滤波 考虑如下线性离散系统 k k k k k w x A x Γ+=+1 (2.1.1) k k k k v x C z += (2.1.2) 式中n k R x ∈是状态向量,m k R z ∈是量测向量,p k R w ∈是系统噪声向量,m k R v ∈是量测噪声向量.假设系统噪声和量测噪声是互不相关的零均值高斯白噪声,方差阵分别为k Q ,k R ,则协方差卡尔曼滤波方程为: 111|??---=k k k k x A x (2.1.3) T k k k k T k k k k Q A P A P 1111111|-------ΓΓ+= (2.1.4)

孙烽原 基于MATLAB的线性盲信号分离算法的研究

毕业论文(设计)材料 题目:基于 MATLAB 的线性盲信号分离算 法的研究 学生姓名:孙烽原 学生学号:0908030229 系别:电气信息工程学院 专业:电子信息工程 届别:2013 指导教师:张大雷

填写说明 1、本材料包括淮南师范学院本科毕业论文(设计)任务书、开题报告以及毕业论文(设计)评审表三部分内容。 2、本材料填写顺序依次为: (1)指导教师下达毕业论文(设计)任务书; (2)学生根据毕业论文(设计)任务书的要求,在文献查阅的基础上撰写开题报告,送交指导教师审阅并签字认可; (3)毕业论文(设计)工作后期,学生填写毕业论文(设计)主要内容,连同毕业论文(设计)全文一并送交指导教师审阅,指导教师根据学生实际完成的论文(设计)质量进行评价; (4)指导教师将此表连同学生毕业论文(设计)全文一并送交评阅教师评阅。 3、指导教师、评阅教师对学生毕业论文(设计)的成绩评定均采用百分制。 4、毕业论文(设计)答辩记录不包括在此表中。

一、毕业论文(设计)任务书 要求完成的主要任务及达到的目标 顾名思义,盲信号是指未知的、有杂乱无章特征的信号,人们难以得知源信号以及源信号的结合形式。对于盲信号的处理是通信时代比较前沿的技术之一,从接收信号中尽力还原源信号的技术称为盲源分离、盲信号提取。这已经称为通信信号学术领域的研究焦点。盲信号处理如今广泛被语音识别、语音增强、图像处理、通信系统、地震探测、遥感、数据挖掘、计量经济学、医学成像等领域所应用。根据传输介质的不同混合方式,盲信号处理有线性瞬时混合信号盲处理、线性卷积混合信号盲处理、非线性混合信号盲处理三种。本研究主要讨论有线性瞬时混合信号忙处理的计算方法。 ?对盲信号处理学各类算法的了解和掌握; ?对有线瞬时混合信号忙处理方法的熟悉和精通; ?对于MATLAB软件的熟练操作; ?实现用MATLAB软件实现对线性盲信号分离算法。 在此基础上巩固、加深和扩大MATLAB应用的知识面,进一步了解用此款软件对数字信号处理、数字图像处理、工程设计等的应用。加深对盲信号处理知识的掌握深度,加强对线性盲信号分离算法的理解,提高综合及灵活运用所学知识研究各类数学算法的能力。学会查阅书籍,并且要能够熟练的运用数学软件、编写程序、仿真、处理信号问题的方法、内容及步骤。学会对课题设计方案的分析、选择、比较。 工作进度要求

语音信号的盲分离

课程设计任务书 学生:专业班级:通信1103 指导教师:许建霞工作单位:信息学院 题目: 语音信号的盲分离 初始条件:Matlab软件、PC机 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)设计任务 根据盲信号分离原理,用matlab采集两路以上的语音信号,选择合适的混合矩阵生成若干混合信号。选取合适的盲信号分离算法(如独立成分分析ICA等)进行训练学习,求出分离矩阵和分离后的语音信号。 设计要求 (1) 用matlab做出采样之后语音信号的时域和频域波形图 (2) 选择合适的混合矩阵,得到混合信号,并做出其时域波形和频谱图 (3) 采用混合声音信号进行训练学习,求出分离矩阵,编写出相应的确matlab代码。 (4) 用求出的分离矩阵从混合信号中分离出原语音信号,并画出各分离信号的时域波形和频谱图。 (5) 对结果进行对比分析。 时间安排:

指导教师签名:2014年 6 月10 日 系主任(或责任教师)签名:2014 年 6 月10 日 摘要 盲信号处理(Blind Signal Processing,BSP)是指从观测到的混合信号中,在没有任何先验条件的情况下,恢复出未知的源信号过程。盲信号分离已成为信号处理学界和通信工程学界共同感兴趣的一个极富挑战性的研究热点问题,并获得了迅速的发展。 盲分离根据信号源的不同可以分为确定信号盲分离、语音信号盲分离和图像盲分离等,本设计主要讨论语音信号的盲分离。 语音信号的盲分离主要是利用盲源分离(Blind Signal Separation,BSS)技术对麦克风检测到的一段语音信号进行处理,本文重点研究了以语音信号为背景的盲处理方法,在语音和听觉信号处理领域中,如何从混有噪声的的混叠语音信号中分离出各个语音源信号,来模仿人类的语音分离能力,成为一个重要的研究问题。根据盲信号分离原理,本设计用matlab采集3路语音信号,选择合适的混合矩阵生成若干混合信号。 具体实现主要结合独立分量分析ICA技术,选取混合矩阵对3个语音信号进行混合,并从混合信号中分离出原语音信号,最后画出各分离信号的时域波形和频谱图和原来的信号进行比较。此外还运用PCA算法进行了混合语音信号的分离实现,最终对两种算法进行比较。 关键字:盲信号处理;语音信号;盲源分离BSS;独立分量分析ICA技术

非负矩阵分解算法概述之Lee

非负矩阵分解算法概述 (吴有光 NOTE :本文为科普文章,尽量做到通俗而不严格,比较适合理论小白补补 NMF 历史第一部分 Lee&Seung的世界 1 引言 现实生活中的数据,我们总是希望有个稀疏表达,这是从压缩或数据存储的角度希望达到的效果。从另一方面来讲, 我们面对大量数据的时候, 总是幻想能够发现其中的“规律” , 那么在表示或处理的时候,直接操作这些提纲挈领的“规律” ,会有效得多。这个事情,让很多的科学家都伤透脑筋,不过也因此有了饭碗。 1.1第一个例子 我们先来看一个简单的例子。在人文、管理或社会学里,实证研究方法是常用的方法。比如我们来考察大学生就业过程, 对学生的选择工作类别的动机, 我们常说“ 想吃劳保饭的同学铁了心要考公务员, 喜欢轻松自由氛围的同学更趋向于外企, 只想稳定的同学认为国企最好,富二代神马的最爱创业然后继承家产了” ,这句话如果要严格来论证是不可能的,那么我们转而寻求“调查论证” ,即通过设计问卷(问卷上设计了可能影响学生选择的因素, 比如家庭情况、学业情况、性格取向、对大城市或家乡的热恋程度、以及人生观价值观等等各种我们可能会影响就业取向的因素各种我们猜测会影响学生。 问卷上来后,我们通过统计得到如下的列表。 图 1 第一个例子的统计表示例 表中的各个因素我们进行了量化,比如性格因素从完全内向到热情奔放分为 5 个等级 (可以用一些问题来直接或间接获得这个等级。那么剩下的问题就是回答开始的问题:

(1是不是我们设计的每个因素都有效?(显然不是,之所以设计问卷就是要来解决这个问题的 (2是什么因素影响了学生的最终选择?或者说,从统计上来看,每个因素占多大比重? 这时, 用矩阵来表示可写为 , 其中就表示那个因素矩阵, 表示最终取向, 代表我们要求的系数。我们把要求的用代替,写成矩阵形式为: (1 更进一步,如果我们不仅调查学生的去向,还想同时调查很多事情,那么就会有 ,这样上面的式子改写为: (2 此时问题转化为: Q1:已知 ,如何求解

基于MATLAB的线性盲信号分离算法的研究

毕业论文(设计) 论文题目:基于MATLAB的线性盲信号分离算法的研究 学生姓名:孙烽原 学号:0908030229 所在院系:电气信息工程学院 专业名称:电子信息工程 届次:2013届 指导教师:张大雷

淮南师范学院本科毕业论文(设计) 诚信承诺书 1.本人郑重承诺:所呈交的毕业论文(设计),题目《 》是本人在指导教师指导下独立完成的,没有弄虚作假,没有抄袭、剽窃别人的内容; 2.毕业论文(设计)所使用的相关资料、数据、观点等均真实可靠,文中所有引用的他人观点、材料、数据、图表均已注释说明来源; 3. 毕业论文(设计)中无抄袭、剽窃或不正当引用他人学术观点、思想和学术成果,伪造、篡改数据的情况; 4.本人已被告知并清楚:学院对毕业论文(设计)中的抄袭、剽窃、弄虚作假等违反学术规范的行为将严肃处理,并可能导致毕业论文(设计)成绩不合格,无法正常毕业、取消学士学位资格或注销并追回已发放的毕业证书、学士学位证书等严重后果; 5.若在省教育厅、学院组织的毕业论文(设计)检查、评比中,被发现有抄袭、剽窃、弄虚作假等违反学术规范的行为,本人愿意接受学院按有关规定给予的处理,并承担相应责任。 学生(签名): 日期:年月日

目录 前言 (2) 1 概述 (2) 1.1盲信号处理的概念与分类 (3) 1.2盲处理概念 (4) 1.3盲信号处理的分类 (4) 1.4盲信号处理的应用 (4) 2 盲信号分离的基础 (4) 2.1盲信号的预处理 (5) 2.2信号的去均值处理 (5) 2.3盲信号分离原理 (5) 2.4盲信号分离的方法 (6) 3 盲分离的算法和仿真结果 (6) 3.1最大信噪比的盲信号分离算法 (6) 3.2基于最大信噪比盲信号分离的算法流程 (7) 3.3基于峭度的盲信号分离的算法 (7) 3.4基于峭度的盲信号分离的算法流程 (8) 3.5基于两种算法的仿真 (8) 3.6仿真结果分析 (12) 4 结论 (13) 4.1总结 (13) 4.2未来工作 (13) 参考文献 (14)

超分辨率算法综述

图像超分辨率算法综述 摘要:介绍了图像超分辨率算法的概念和来源,通过回顾插值、重建和学习这3个层面的超分辨率算法,对图像超分辨率的方法进行了分类对比,着重讨论了各算法在还原质量、通用能力等方面所存在的问题,并对未来超分辨率技术的发展作了一些展望。 关键词:图像超分辨率;插值;重建;学习; Abstract:This paper introduced the conception and origin of image super resolu- tion technology. By reviewing these three kinds of methods(interpolation,reconstruct, study), it contrasted and classified the methods of image super-resolution,and at last, some perspectives of super-resolution are given. Key words: image super-resolution;interpolation;reconstruct;study;

1 引言 1.1 超分辨率的概念 图像超分辨率率(super resolution,SR)是指由一幅低分辨率图像(low resolution,LR)或图像序列恢复出高分辨率图像(high resolution, HR)。HR意味着图像具有高像素密度,可以提供更多的细节,这些细节往往在应用中起到关键作用。要获得高分辨率图像,最直接的办法是采用高分辨率图像传感器,但由于传感器和光学器件制造工艺和成本的限制[1],在很多场合和大规模部署中很难实现。因此,利用现有的设备,通过超分辨率技术获取HR图像(参见图1)具有重要的现实意义。 图1 图像超分辨率示意图 图像超分辨率技术分为超分辨率复原和超分辨率重建,许多文献中没有严格地区分这两个概念,甚至有许多文献中把超分辨率图像重建和超分辨率图像复原的概念等同起来,严格意义上讲二者是有本质区别的,超分辨率图像重建和超分辨率图像复原有一个共同点,就是把在获取图像时丢失或降低的高频信息恢复出来。然而它们丢失高频信息的原因不同,超分辨率复原在光学中是恢复出超过衍射级截止频率以外的信息,而超分辨率重建方法是在工程应用中试图恢复由混叠产生的高频成分。几何处理、图像增强、图像复原都是从图像到图像的处理,即输入的原始数据是图像,处理后输出的也是图像,而重建处理则是从数据到图像的处理。也就是说输入的是某种数据,而处理结果得到的是图像。但两者的目的是一致的,都是由低分辨率图像经过处理得到高分辨率图像。另外有些文献中对超分辨率的概念下定义的范围比较窄,只是指基于同一场景的图像序列和视频序列的超分辨处理,实际上,多幅图像的超分辨率大多数都是以单幅图像的超分辨率为基础的。在图像获取过程中有很多因素会导致图像质量下降,如传感器的形

线性规划问题的算法综述

线性规划问题的算法综述 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 线性规划概念是在1947年的军事行动计划有关实践中产生的,而相关问题1823年Forier和口1911年PQusi就已经提出过,发展至今已有将近100年的历史了。现在已成为生产制造、市场营销、银行贷款、股票行情、出租车费、统筹运输、电话资费、电脑上网等等热点现实问题决策的依据。线性规划就是在满足线性约束下,求线性函数的极值。 毋庸置疑,数学规划领域的重大突破总是始于线形规划。提到线性规划算法,人们最先想到的是单纯形法和内点法。单纯形法是实际应用中使用最普遍的一种线性规划算法,而研究者们已证明在最坏的情况下单纯形法的计算复杂度是指数级的,内点算法的计算复杂度是多项式时间的。把两种算法相提并论,要么是这两种算法都已经非常完备,要么都有需改进之处。显然不属于前者,即两者都有需要改进之处。几十年来,研究者通过不断努力,在两种算法的计算上都取得相当的进展。 1数学模型

线性规划问题通常表示成如下两种形式:标准型、规范型。 设jj(2…,n)是待确定的非负的决策变量;认2…,n)是与决策变量相对应的价格系数;K2…mj=l2…n)是技术系数;b(i12…,m)是右端项系数; 线性规划是运筹学最基本、运用最广泛的分支,是其他运筹学问题研究的基础。在20世纪50年代到60年代期间,运筹学领域出现许多新的分支:非线性规划(nonlinearprogranming、商业应用(crnxmereialpplieation、大尺度方法(laresealemeh-Qd)随机规划(stochasticPKgiamniig)、整数规划(ntegerprogramming)、互补转轴理论(amplmentaiyPivotheor)多项式时间算法(polynomialtjneagatm)等。20世纪70年代末,上述分支领域都得到了极大发展,但是却都不完善。而且数学规划领域中存在许多Nfkhard问题,如TP问题,整数规划问题等。这些问题的基本模型都可以写成线性规划形式,因此通过对线性规划算法的进一步研究,可以进一步启发及推动数学规划领域内其他分支的发展。 2边界点算法 由于单纯形法与基线算法都是在可行集的边界上

盲源分离算法初步研究

盲源分离算法初步研究 一、盲源分离基本问题 1.概念 BSS 信号盲分离,是指从若干观测到的混合信号中恢复出未知的源信号的方法。典型的观测到的混合信号是一系列传感器的输出,而每一个传感器输出的是一系列源信号经过不同程度的混合之后的信号。其中,“盲”有两方面的含义:(1)源信号是未知的;(2)混合方式也是未知的。 根据不同的分类标准,信号盲分离问题可以分成以下几类: (1)从混合通道的个数上分,信号的盲分离可以分为多通道信号分离和单通道信号分离。单通道信号分离是指多路源信号混合后只得到一路混合信号,设法从这一路混合信号中分离出多个源信号的问题就是单通道信号分离。多通道信号分离是M 个源信号混合后得到N 路混合信号(通常N ≥M )。从N 路混合信号中恢复出M 个源信号的问题即为多通道信号分离。一般情况下,单通道信号分离的难度要超过多通道信号分离。 (2)从源信号的混合方式上分,可将信号盲分离问题分为瞬时混合和卷积混合、线性混合和非线性混合等不同种类。在目前信号盲分离的研究文章中,所建模型大部分为瞬时混合。但是,作为更接近实际情况的卷积混合方式正受到越来越多的关注。 (3)根据源信号的种类,也可将信号盲分离分为多类。在通常的处理方法上,根据不同种类信号的特点,也有一些独特的处理技术。 2.盲分离问题的描述 BSS 是指仅从观测的混合信号(通常是多个传感器的输出)中恢复独立的源信号,在科学研究和工程应用中,很多观测信号都可以假设成是不可见的源信号的混合。所谓的“鸡尾酒会”问题就是一个典型的例子。在某个场所,多个人正在高声交谈。我们用多个麦克风来接受这些人说话的声音信号。每个人说话的声音是源信号,麦克风阵列的输出是观测信号。由于每个麦克风距离各个说话者的相对方位不同,它们接受到的也是这些人的声音信号以不同方式的混合。盲信号分离此时的任务是从麦克风阵列的输出信号中估计出每个人各自说话的声音信号,即源信号。如果混合系统是已知的,则以上问题就退化成简单的求混合矩阵的逆矩阵。但是在更多的情况下,人们无法获取有关混合系统的先验知识,这就要求人们从观测信号来推断这个混合矩阵,实现盲源分离。 3.混合模型 信号的混合模型包含两个方面的内容:(1)源信号的统计特征;(2)源信号的混合方式。 3.1源信号的统计特征 已有的研究表明如果加上源信号间相互独立的限制条件,就可以有效地补偿对以上先验知识的缺乏。如果用q i 表示第i 个分量的概率密度函数,则这种统计独立性可以表示为: 11221()()...()()n n n i i i q s q s q s q s ==???=∏q(s) 其中q(s)是s 的联合概率密度函数。 3.2源信号的混合方式 最简单的混合模型假定各个分量是线性叠加混合在一起而形成观测信号的。基于这样的假设,我们可以把观测信号和源信号用矩阵的方式表示为: ()()t t =x Hs 式中H 是n ×n 阶的混合矩阵。基于该模型,盲信号分离()()t t =x Hs 的目标可以表

文献综述部分参考写法

非负矩阵分解文献综述 一、国内外研究现状 近年来,技术传感器技术和计算机硬件的发展导致数据量的增加,许多经典数据分析工具被迅速压倒.因为信息采集设备只有有限的带宽,收集到的数据并不经常准确.其次,在很多情况下,从复杂现象观察到的数据,其往往代表几个相互关联的变量共同作用的综合结果.当这些变量更少的精确定义时,在原始数据中包含的实际信息往往是重叠的、模糊的.为了处理这些海量数据,科学家产生了新的关注. 1999年,在刊物Nature上,Daniel Lee 和Sebastian Seung开始的一系列新的NMF的研究,数以百计的论文引用Lee 和Seung的论文,但一些较不为人知的事实是,在Lee 和Seung 的论文发表之前,Pentti Paatero开始了相关的工作. 虽然Lee和Seung引用Paatero的论文,Lee和Seung将Paatero的工作称为正矩阵分解,然而,Paatero的工作很少被后来的作者所引用.这是因为Paatero 将其工作称为正矩阵分解,这是误导Paatero创建NMF算法。实际上Paatero年前发表了他最初的分解算法[1]. 2005年,Lin为了加速Lee和Seung的NMF迭代算法的收敛速度,最近提出使用投影梯度有约束的优化方法[2],该方法与标准的(乘法更新规则)的方法相比,计算似乎有更好的收敛性.使用某些辅助约束,可以降低分解有约束的优化假设,降低投影梯度方法的局限性. 2007年,V.Blondel等对标准NMF算法进行了加权改进,提出了加权NMF方法[3]。通过加权,更好的表述了数据中的重要区域.其加权方法是:首先,定义数据中的重要区域,然后,在优化过程中,如果在该重要区域中重建错误,就给他分配更多的权重. 国内对NMF的研究相对开始的较晚.2001 年,原微软中国研究院的李子青博士、张宏江博士等人发现Lee和Seung提出的经典NMF算法在人脸图像未得到配准的情况下,不能学习得到人脸的部件.并提出了局部非负矩阵分解来解决这个问题[4].Chen 等人将LNMF算法应用于人脸检测并取得了较好的效果.现为中科院自动化所生物识别与安全技术研究中心主任的李子青带领他的团队,于2009 年,提出了基于吉布斯随机场的 NMF 算法[4],该算法的收敛速度较快,并且得到的分解结果具有较好的稀疏性和可解释性.清华大学信息科学与技术国家实验室的章毓晋教授、李乐博士对非负矩阵分解的研究做了大量的工作,对 NMF 算法的研究现状进行了综述,对已有的NMF算法进行了很好的分类,指出各个NMF算法的缺点,并提出了改进的算.针对NMF的先天缺陷,即数据描述能不强、推广性差,提出了非负矩阵集分解的概念和相应的算法[4]. 浙江大学计算机学院的蔡登教授等人针对流形数据提出了图正则非负矩阵分

语音信号的盲分离分析

目录 摘要.................................................................... I ABSTRACT ............................................................... II 第一章前言.. (2) 1.1语音特性分析 (2) 1.2语音信号的基本特征 (2) 1.3语音信号处理的理论基础 (2) 第二章盲分离的基本概念 (2) 2.1盲分离的数学模型 (2) 2.2盲源分离的基本方法 (2) 2.3盲分离的目标准则 (2) 2.4盲分离的研究领域 (2) 2.5盲分离的研究内容 (2) 第三章独立分量分析的基本算法 (2) 3.1ICA的线性模型 (2) 3.2ICA研究中的主要问题及限制条件 (2) 3.3ICA的基本算法 (2) 3.4F AST ICA算法原理 (2) 第四章语音信号盲分离仿真及分析 (2) 4.1ICA算法实现 (2) 4.2频谱分析 (2) 第五章总结 (2) 参考文献 (2)

摘要 盲源分离(BSS)是一种多维信号处理方法,它指在未知源信号以及混合模型也未知的情况下,仅从观测信号中恢复出源信号各个独立分量的过程。盲源分离已近成为现代信号处理领域研究的热点问题,在通信、语音处理、图像处理等领域具有非常重要的理论意义和广泛的应用价值。本文主要内容如下: 首先,介绍了语音信号的产生机理,特性,基本特征及语音信号处理的理论基础,为后文语音信号盲分离奠定了基础。 其次,从盲源分离的理论出发,研究了盲分离的数学模型以及基本方法,并对盲分离的目标准则、研究领域以及研究内容进行了探讨。 然后,引出了独立分量分析(ICA),并对其的概念以及相关的知识进行了研究,探讨了ICA研究中的主要问题,列出了ICA的3种基本算法:信息极大化、负熵最大化和最大似然估计法。 最后,用FastICA对三路语音信号进行了盲分离的仿真并求出了混合矩阵和分解矩阵,再接着进行了频谱,幅度,相位的分析,找出了FastICA的特点。 关键词:盲源分离;独立分量分析;频谱分析 III

语音信号的盲分离(毛丽娟)

课程设计任务书 学生姓名:毛丽娟专业班级:通信0906 指导教师:黄铮工作单位:信息工程学院 题目: 语音信号的盲分离 初始条件 ①matlab软件 ②盲信号处理知识 要求完成的主要任务: 根据盲信号分离原理,用matlab采集两路以上的语音信号,选择合适的混合矩阵生成若干混合信号。选取合适的盲信号分离算法(如独立成分分析ICA等)进行训练学习,求出分离矩阵和分离后的语音信号。 设计要求 (1)用matlab做出采样之后语音信号的时域和频域波形图 (2)选择合适的混合矩阵,得到混合信号,并做出其时域波形和频谱图 (3)采用混合声音信号进行训练学习,求出分离矩阵,编写出相应的确matlab 代码。 (4)用求出的分离矩阵从混合信号中分离出原语音信号,并画出各分离信号的时域波形和频谱图。 (5)对结果进行对比分析。 时间安排 第17周,仿真设计 第18周,完成(答辩,提交报告,演示) 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) Abstract (4) 1 语音信号 (5) 1.1 语音特性分析 (5) 1.2 语音信号的基本特征 (6) 2 盲信号处理 (8) 2.1 盲信号处理的概述 (8) 2.1.1 盲信号处理的基本概念 (8) 2.1.2 盲信号处理的方法和分类 (9) 2.1.3 盲信号处理技术的研究应用 (9) 2.2 盲源分离法 (10) 2.2.1 盲源分离技术 (10) 2.2.2 盲分离算法实现 (10) 2.3 独立成分分析 (11) 2.3.1 独立成分分析的定义 (11) 2.3.2 ICA的基本原理 (13) 3 语音信号盲分离的实现 (15) 3.1 盲信号分离的三种算法 (15) 3.1.1 二阶盲辨识(SOBI) (15) 3.1.2 FastICA算法 (15) 3.1.3 CICA算法 (16) 3.2 不同算法的分离性能比较 (17) 3.3 FastlCA的算法仿真及结果分析 (17) 4 结论 (22) 5 参考文献 (23) 附录 (24)

盲信号分离的理论与发展现状

前沿技术 尺寸的减小,场区参数R1和R2相应收缩。这是一个很有意义的结果。 5 结束语 基于以上的分析和验算,可以说明ISO/IEC18047标准规定的测试参数:观察距离3λ和10λ,天线尺寸 0.1m和 是可行的。 ★【作者简介】 刘礼白:研究员级高工,中国电子科技集团公司第七研究所科技委主任、专家委员会副主任,信息产业部宽带无线移动通信技术专家组成员。中华人民共和国电子工业部有突出贡献专家,享受国务院颁发的 政府特殊津贴。 1 引言 盲分离是信号处理领域一个极富挑战性的研究课题。由于盲分离在语音识别、信号去噪、无线通讯、声纳问题、生物医学信号处理、光纤通信等众多应用领域有着广泛的应用前景,从而成为信号处理领域和神经网络领域的研究热点。 盲分离(B S S,B l i n d S o u r c e S e p a r a t i o n)的研究起源于鸡尾酒问题。在多个说话人同时讲话的语音环境中,通常每个麦克风接收到是多个说话者的混合声音,如何仅仅从话筒接收到的语音信号中分离出所需要的说话者的声音?这便是盲分离问题。 盲分离问题的主要特征就是在未知混叠参数的情 盲信号分离的理论与发展现状* 李荣华 赵 敏 华南理工大学电子与信息学院 王 进 国家移动通信工程中心 【摘要】文章首先介绍了盲信号分离问题的起源、特征、含义,然后介绍了盲信号分离的原理 和算法,最后介绍了盲分离研究的现状,探讨了盲分离研究仍存在的一些问题。 【关键词】盲信号分离 混叠模型 瞬时线性 非线性 卷积 收稿日期:2008年3月14日 *本文得到国家自然科学基金重点项目(U0635001),国家 自然科学基金(60774094)的资助。

语音信号的盲分离(知识分析)

课程设计任务书 学生姓名:专业班级:通信1103 指导教师:许建霞工作单位:信息学院 题目: 语音信号的盲分离 初始条件:Matlab软件、PC机 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)设计任务 根据盲信号分离原理,用matlab采集两路以上的语音信号,选择合适的混合矩阵生成若干混合信号。选取合适的盲信号分离算法(如独立成分分析ICA等)进行训练学习,求出分离矩阵和分离后的语音信号。 设计要求 (1) 用matlab做出采样之后语音信号的时域和频域波形图 (2)选择合适的混合矩阵,得到混合信号,并做出其时域波形和频谱图 (3) 采用混合声音信号进行训练学习,求出分离矩阵,编写出相应的确matlab代码。 (4) 用求出的分离矩阵从混合信号中分离出原语音信号,并画出各分离信号的时域波形和频谱图。 (5) 对结果进行对比分析。 时间安排: 序号设计内容 所用 时间 1 根据课题的技术指标,确定整体方案,并进行参数设计计算2天 2 根据实验条件进行全部或部分程序的编写与调试,并完成基本功能7天 3 总结编写课程设计报告1天 合计2周指导教师签名: 2014年 6 月 10 日系主任(或责任教师)签名:2014 年 6 月 10 日

摘要 盲信号处理(Blind Signal Processing,BSP)是指从观测到的混合信号中,在没有任何先验条件的情况下,恢复出未知的源信号过程。盲信号分离已成为信号处理学界和通信工程学界共同感兴趣的一个极富挑战性的研究热点问题,并获得了迅速的发展。 盲分离根据信号源的不同可以分为确定信号盲分离、语音信号盲分离和图像盲分离等,本设计主要讨论语音信号的盲分离。 语音信号的盲分离主要是利用盲源分离(Blind Signal Separation,BSS)技术对麦克风检测到的一段语音信号进行处理,本文重点研究了以语音信号为背景的盲处理方法,在语音和听觉信号处理领域中,如何从混有噪声的的混叠语音信号中分离出各个语音源信号,来模仿人类的语音分离能力,成为一个重要的研究问题。根据盲信号分离原理,本设计用matlab采集3路语音信号,选择合适的混合矩阵生成若干混合信号。 具体实现主要结合独立分量分析ICA技术,选取混合矩阵对3个语音信号进行混合,并从混合信号中分离出原语音信号,最后画出各分离信号的时域波形和频谱图和原来的信号进行比较。此外还运用PCA算法进行了混合语音信号的分离实现,最终对两种算法进行比较。 关键字:盲信号处理;语音信号;盲源分离BSS;独立分量分析ICA技术

一种受限非负矩阵分解方法_黄钢石

第34卷第2期2004年3月  东南大学学报(自然科学版) JOURNA L OF S OUTHE AST UNIVERSITY (Natural Science Edition )   V ol 134N o 12Mar.2004 一种受限非负矩阵分解方法 黄钢石1 张亚非1 陆建江1,2,3 徐宝文2,3 (1解放军理工大学通信工程学院,南京210007) (2东南大学计算机科学与工程系,南京210096) (3江苏省软件质量研究所,南京210096) 摘要:提出一种获取潜在语义的受限非负矩阵分解方法.通过在非负矩阵分解方法的目标函数上增加3个约束条件来定义受限非负矩阵分解方法的目标函数,给出求解受限非负矩阵分解方法目标函数的迭代规则,并证明迭代规则的收敛性.与非负矩阵分解方法相比,受限非负矩阵分解方法能获取尽可能正交的潜在语义.实验表明,受限非负矩阵分解方法在信息检索上的精度优于非负矩阵分解方法. 关键词:非负矩阵分解;受限非负矩阵分解;潜在语义;信息检索中图分类号:TP18 文献标识码:A 文章编号:1001-0505(2004)022******* Constrained factorization method for non 2negative m atrix Huang G angshi 1 Zhang Y afei 1 Lu Jianjiang 1,2,3 Xu Baowen 2,3 (1Institute of C ommunication Engineering ,P LA University of Science and T echnology ,Nanjing 210007,China ) (2Department of C om puter Science and Engineering ,S outheast University ,Nanjing 210096,China ) (3Jiangsu Institute of S oftware Quality ,Nanjing 210096,China ) Abstract :A novel method ,constrained non 2negative matrix factorization ,is presented to capture the latent semantic relations.The objective function of constrained non 2negative matrix factorization is defined by im posing three additional constraints ,in addition to the non 2negativity constraint in the standard non 2negative matrix factorization.The update rules to s olve the objective function with these constraints are presented ,and its convergence is proved.In contrast to the standard non 2negative matrix factorization ,the constrained non 2negative matrix factorization can capture the semantic relations as orthog onal as possible.The experiments indicate that the constrained non 2negative matrix factorization has better precision than the standard non 2negative matrix factorization in in formation retrieval. K ey w ords :non 2negative matrix factorization ;constrained non 2negative matrix factorization ;latent semantic relations ;information retrieval 收稿日期:2003206213. 基金项目:国家自然科学基金青年科学基金资助项目(60303024)、国家973规划资助项目(G 1999032701)、国家自然科学基金资助项目 (60073012). 作者简介:黄钢石(1969— ),男,博士生,工程师,huang -gangshi @https://www.360docs.net/doc/8a11337485.html,;张亚非(联系人),男,博士,教授,博士生导师,y f zhang888@https://www.360docs.net/doc/8a11337485.html,.非负矩阵分解(non 2negative matrix factorization ,NMF )是一种新的矩阵分解方法,它将一个元素非负的矩阵分解为左右2个非负矩阵乘积[1,2].由于分解后的矩阵中仅包含非负元素,因此原矩阵中列向量可解释为对左矩阵中所有列向量(称为基向量)的加权和,而权重系数为右矩阵中对应列向量中的元素.这种基于基向量组合的表示形式具有直观的语义解释,反映了人们思维中“局部构成整体”的概念.NMF 已成功应用于多个领域[3,4],作者也已尝试将NMF 应用于从用户会话中发现典型用户文件[5,6]. NMF 算法也可以用于获取文本集中的潜在语义.由于NMF 算法得到的解是局部最优解,获取的潜在 语义之间往往存在冗余[2],为使潜在语义尽可能正交,提出一种受限的非负矩阵分解方法C NMF

相关文档
最新文档