流化床干燥实验指导书

流化床干燥实验指导书
流化床干燥实验指导书

流化床干燥实验装置

指导书

流化床干燥实验

一、实验目的

1. 了解流化床干燥装置的基本结构、工艺流程和操作方法

2. 学习测定物料在恒定干燥条件下干燥特性的实验方法

3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平 衡含水量的实验分析方法

4. 实验研究干燥条件对于干燥过程特性的影响

二、基本原理

在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定而取得。

按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度以及气流与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。

1. 干燥速率的定义

干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即:

C G dX dW U A d A d τ

τ

=

=-

kg/(m

2

s) (11-1)

式中,U -干燥速率,又称干燥通量,kg/(m 2s );

A -干燥表面积,m 2

W -汽化的湿分量,kg ;

τ -干燥时间,s ;

G c -绝干物料的质量,kg ;

X -物料湿含量,kg 湿分/kg 干物料,负号表示X 随干燥时间的增加而减少。

2. 干燥速率的测定方法 方法一:

(1)将电子天平开启,待用。

(2)将快速水分测定仪开启,待用。 (3)准备0.5~1kg 的湿物料,待用。

(4)开启风机,调节风量至40~60m3/h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量iC G 。则物料中瞬间含水率i X 为

iC

iC

i i G G G X -= (11-2)

方法二(数字化实验设备可用此法): 利用床层的压降来测定干燥过程的失水量。 (1)准备0.5~1kg 的湿物料,待用。

(2)开启风机,调节风量至40~60m 3/h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,此时床层的压差将随时间减小,实验至床层压差(e p ?)恒定为止。则物料中瞬间含水率i X 为

e e

i p p p X ??-?= (11-3)

式中,p ?—时刻τ时床层的压差。

计算出每一时刻的瞬间含水率i X ,然后将i X 对干燥时间

i τ作图,如图11-1,即为干燥曲线。

图11-1恒定干燥条件下的干燥曲线

上述干燥曲线还可以变换得到干燥速率曲线。由已测得的干燥曲线求出不同i X 下的斜率

i

i

d dX

τ,

再由式11-1计算得到干燥速率U ,将U 对X 作图,就是干燥速率曲线,如图11-2所示。

图11-2恒定干燥条件下的干燥速率曲线

将床层的温度对时间作图,可得床层的温度与干燥时间的关系曲线。 3. 干燥过程分析

预热段 见图11-1、11-2中的AB 段或AB′ 段。物料在预热段中,含水率略有下降,温度则升至湿球温度t W ,干燥速率可能呈上升趋势变化,也可能呈下降趋势变化。预热段经历的时间很短,通常在干燥计算中忽略不计,有些干燥过程甚至没有预热段。

恒速干燥阶段 见图11-1、11-2中的BC 段。该段物料水分不断汽化,含水率不断下降。但由于这一阶段去除的是物料表面附着的非结合水分,水分去除的机理与纯水的相同,故在恒定干燥条件下,物料表面始终保持为湿球温度t W ,传质推动力保持不变,因而干燥速率也不变。于是,在图11-2中,BC 段为水平线。

只要物料表面保持足够湿润,物料的干燥过程中总处于恒速阶段。而该段的干燥速率大小取决于物料表面水分的汽化速率,亦即决定于物料外部的空气干燥条件,故该阶段又称为表面汽化控制阶段。

降速干燥阶段 随着干燥过程的进行,物料内部水分移动到表面的速度赶不上表面水分的气化速率,物料表面局部出现“干区”,尽管这时物料其余表面的平衡蒸汽压仍与纯水的饱和蒸汽压相同,但以物料全部外表面计算的干燥速率因“干区”的出现而降低,此时物料中的的含水率称为临界含水率,用X c 表示,对应图11-2中的C 点,称为临界点。过C 点以后,干燥速率逐渐降低至D 点,C 至D 阶段称为降速第一阶段。

干燥到点D 时,物料全部表面都成为干区,汽化面逐渐向物料内部移动,汽化所需的热量必须通过已被干燥的固体层才能传递到汽化面;从物料中汽化的水分也必须通过这一干燥层才能传递到空气主流中。干燥速率因热、质传递的途径加长而下降。此外,在点D 以后,物料中的非结合水分已被除尽。接下去所汽化的是各种形式的结合水,因而,平衡蒸汽压将逐渐下降,传质推动力减小,干燥速

率也随之较快降低,直至到达点E时,速率降为零。这一阶段称为降速第二阶段。

降速阶段干燥速率曲线的形状随物料内部的结构而异,不一定都呈现前面所述的曲线CDE形状。对于某些多孔性物料,可能降速两个阶段的界限不是很明显,曲线好像只有CD段;对于某些无孔性吸水物料,汽化只在表面进行,干燥速率取决于固体内部水分的扩散速率,故降速阶段只有类似DE 段的曲线。

与恒速阶段相比,降速阶段从物料中除去的水分量相对少许多,但所需的干燥时间却长得多。总之,降速阶段的干燥速率取决与物料本身结构、形状和尺寸,而与干燥介质状况关系不大,故降速阶段又称物料内部迁移控制阶段。

三、实验装置

1.装置流程

本装置流程如图11—3所示。

1-加料斗;2-床层(可视部分);3-床层测温点;4-进口测温点;5-风加热器;

6-转子流量计;7-风机;8-U形压差计;9-取样口;10-排灰口;11-旋风分离器

图11—3 流化床干燥实验装置流程图

2.主要设备及仪器

(1)鼓风机:BYF7122,370W;

(2)电加热器:额定功率2.0KW;

(3)干燥室:Φ100mm×750mm;

(4)干燥物料:耐水硅胶;

(5)床层压差:Sp0014型压差传感器,或U形压差计。

四、实验步骤与注意事项

1.实验步骤

(1)开启风机。

(2)打开仪表控制柜电源开关,加热器通电加热,床层进口温度要求恒定在70~80℃左右。

(3)将准备好的耐水硅胶/绿豆加入流化床进行实验。

(4)每隔4min取样5~10克左右分析或由压差传感器记录床层压差,同时记录床层温度。

(5)待干燥物料恒重或床层压差一定时,即为实验终了,关闭仪表电源。

(6)关闭加热电源。

(7)关闭风机,切断总电源,清理实验设备。

2. 注意事项

必须先开风机,后开加热器,否则加热管可能会被烧坏,破坏实验装置。

五、实验报告

1. 绘制干燥曲线(失水量~时间关系曲线);

2. 根据干燥曲线作干燥速率曲线;

3. 读取物料的临界湿含量;

4. 绘制床层温度随时间变化的关系曲线;

5. 对实验结果进行分析讨论。

六、思考题

1. 什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行?

2. 控制恒速干燥阶段速率的因素是什么?控制降速干燥阶段干燥速率的因素又是什么?

3. 为什么要先启动风机,再启动加热器?实验过程中床层温度是如何变化?为什么?如何判断实验

已经结束?

4. 若加大热空气流量,干燥速率曲线有何变化?恒速干燥速率、临界湿含量又如何变化?为什么?

测试技术实验指导书及实验报告2006级用汇总

矿压测试技术实验指导书 学号: 班级: 姓名: 安徽理工大学 能源与安全学院采矿工程实验室

实验一常用矿山压力仪器原理及使用方法 第一部分观测岩层移动的部分仪器 ☆深基点钻孔多点位移计 一、结构简介 深基点钻孔多点位移计是监测巷道在掘进和受采动影响的整个服务期间,围岩内部变形随时间变化情况的一种仪器。 深基点钻孔多点位移包括孔内固定装置、孔中连接钢丝绳、孔口测读装置组成。每套位移计内有5~6个测点。其结构及其安装如图1所示。 二、安装方法 1.在巷道两帮及顶板各钻出φ32的钻孔。 2.将带有连接钢丝绳的孔内固定装置,由远及近分别用安装圆管将其推至所要求的深度。(每个钻孔布置5~6个测点,分别为;6m、5m、4m、3m、2m、lm或12m、10m、8m、6m、4m、2m)。 3.将孔口测读装置,用水泥药圈或木条固定在孔口。 4。拉紧每个测点的钢丝绳,将孔口测读装置上的测尺推至l00mm左右的位置后,由螺丝将钢丝绳与测尺固定在一起。 三、测试方法 安装后先读出每个测点的初读数,以后每次读得的数值与初读数之差,即为测点的位移值。当读数将到零刻度时,松开螺丝,使测尺再回到l00mm左右的位置,重新读出初读数。 ☆顶板离层指示仪 一、结构简介: 顶板离层指示仪是监测顶板锚杆范围内及锚固范围外离层值大小的一种监测仪器,在顶板钻孔中布置两个测点,一个在围岩深部稳定处,一个在锚杆端部围岩中。离层值就是围岩中两测点之间以及锚杆端部围岩与巷道顶板表面间的相对位移值。顶板离层指示仪由孔内固定装置、测量钢丝绳及孔口显示装置组成如图1所示。

二、安装方法: 1.在巷道顶板钻出φ32的钻孔,孔深由要求而定。 2.将带有长钢丝绳的孔内固定装置用安装杆推到所要求的位置;抽出安装杆后再将带有短钢丝绳的孔内固定装置推到所要求的位置。 3.将孔口显示装置用木条固定在孔口(在显示装置与钻孔间要留有钢丝绳运动的间隙)。 4.将钢丝绳拉紧后,用螺丝将其分别与孔口显示装置中的圆管相连接,且使其显示读数超过零刻度线。 三、测读方法: 孔口测读装置上所显示的颜色,反映出顶板离层的范围及所处状态,显示数值表示顶板的离层量。☆DY—82型顶板动态仪 一、用途 DY-82型顶板动态仪是一种机械式高灵敏位移计。用于监测顶底板移近量、移近速度,进行采场“初次来压”和“周期来压”的预报,探测超前支撑压力高 峰位置,监测顶板活动及其它相对位移的测量。 二、技术特征 (1)灵敏度(mm) 0.01 (2)精度(%) 粗读±1,微读±2.5 (3)量程(mm) 0~200 (4)使用高度(mm) 1000~3000 三、原理、结构 其结构和安装见图。仪器的核心部件是齿条6、指针8 以及与指针相连的齿轮、微读数刻线盘9、齿条下端带有读 数横刻线的游标和粗读数刻度管11。 当动态仪安装在顶底板之间时,依靠压力弹簧7产生的 弹力而站立。安好后记下读数(初读数)并由手表读出时间。 粗读数由游标10的横刻线在刻度管11上的位置读出,每小 格2毫米,每大格(标有“1”、“22'’等)为10毫米,微读数 由指针8在刻线盘9的位置读出,每小格为0.01毫米(共200 小格,对应2毫米)。粗读数加微读数即为此时刻的读数。当 顶底板移近时,通过压杆3压缩压力弹簧7,推动齿条6下 移,带动齿轮,齿轮带动指针8顺时针方向旋转,顶底板每 移近0.01毫米,指针转过1小格;同时齿条下端游标随齿条 下移,读数增大。后次读数减去前次读数,即为这段时间内的顶底板移近量。除以经过的时间,即得

流化床实验报告

流化床干燥实验装置 一、实验目的 1. 了解流化床干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求干燥速率曲线、恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。由于实际生产中被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定而取得。 1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: C G dX dW U Ad Ad ττ = =- kg/(m2s) (11-1) 式中,U -干燥速率,又称干燥通量,kg/(m2s );A -干燥表面积,m2;W -汽化的湿 分量,kg ; τ -干燥时间,s ;Gc -绝干物料的质量,kg ;X -物料湿含量,kg 湿分/kg 干物料 2. 干燥速率的测定方法 (1)将电子天平开启,待用。将快速水分测定仪开启,待用。 (2)将0.5~1kg 的湿物料(如取0.5~1kg 的黄豆放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (3)开启风机,调节风量至40~60m3/h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量 iC G 。则物料中瞬间含水率 iC iC i i G G G X -= 。

混凝土结构实验指导书及实验报告(学生用)

土木工程学院 《混凝土结构设计基本原理》实验指导书 及实验报告 适用专业:土木工程周淼 编 班级::学 号: 理工大学 2018 年9 月

实验一钢筋混凝土梁受弯性能试验 一、实验目的 1.了解适筋梁的受力过程和破坏特征; 2.验证钢筋混凝土受弯构件正截面强度理论和计算公式; 3.掌握钢筋混凝土受弯构件的实验方法及荷载、应变、挠度、裂缝宽度等数据的测试技术 和有关仪器的使用方法; 4.培养学生对钢筋混凝土基本构件的初步实验分析能力。 二、基本原理当梁中纵向受力钢筋的配筋率适中时,梁正截面受弯破坏过程表现为典型的三个阶段:第一阶段——弹性阶段(I阶段):当荷载较小时,混凝土梁如同两种弹性材料组成的组合梁,梁截面的应力呈线性分布,卸载后几乎无残余变形。当梁受拉区混凝土的最大拉应力达到混凝土的抗拉强度,且最大的混凝土拉应变超过混凝土的极限受拉应变时,在纯弯段某一薄弱截面出现首条垂直裂缝。梁开裂标志着第一阶段的结束。此时,梁纯弯段截面承担的弯矩M cr称为开裂弯矩。第二阶段——带裂缝工作阶段(II阶段):梁开裂后,裂缝处混凝土退出工作,钢筋应力急增,且通过粘结力向未开裂的混凝土传递拉应力,使得梁中继续出现拉裂缝。压区混凝土中压应力也由线性分布转化为非线性分布。当受拉钢筋屈服时标志着第二阶段的结束。此时梁纯弯段截面承担的弯矩M y称为屈服弯矩。第三阶段——破坏阶段(III阶段):钢筋屈服后,在很小的荷载增量下,梁会产生很大的变形。裂缝的高度和宽度进一步发展,中和轴不断上移,压区混凝土应力分布曲线渐趋丰满。当受压区混凝土的最大压应变达到混凝土的极限压应变时,压区混凝土压碎,梁正截面受弯破坏。此时,梁承担的弯矩M u 称为极限弯矩。适筋梁的破坏始于纵筋屈服,终于混凝土压碎。整个过程要经历相当大的变形,破坏前有明显的预兆。这种破坏称为适筋破坏,属于延性破坏。 三、试验装置

化工原理干燥实验报告.doc

化工原理干燥实验报告 一、摘要 本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。 干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。 二、实验目的 1、了解流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度时间变化的关系曲线。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数KX。 三、实验原理 1、流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得

到流化床床层压降与气速的关系曲线(如图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处的流速即被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处的流速被称为起始流化速度(umf)。 在生产操作过程中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被那干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(见下图)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速

土工实验指导书及实验报告

土工实验指导书及实验报告编写毕守一 安徽水利水电职业技术学院 二OO九年五月

目录 实验一试样制备 实验二含水率试验 实验三密度试验 实验四液限和塑限试验 实验五颗粒分析试验 实验六固结试验 实验七直接剪切试验 实验八击实试验 土工试验复习题

实验一试样制备 一、概述 试样的制备是获得正确的试验成果的前提,为保证试验成果的可靠性以及试验数据的可比性,应具备一个统一的试样制备方法和程序。 试样的制备可分为原状土的试样制备和扰动土的试样制备。对于原状土的试样制备主要包括土样的开启、描述、切取等程序;而扰动土的制备程序则主要包括风干、碾散、过筛、分样和贮存等预备程序以及击实等制备程序,这些程序步骤的正确与否,都会直接影响到试验成果的可靠性,因此,试样的制备是土工试验工作的首要质量要素。 二、仪器设备 试样制备所需的主要仪器设备,包括: (1)孔径0.5mm、2mm和5mm的细筛; (2)孔径0.075mm的洗筛; (3)称量10kg、最小分度值5g的台秤; (4)称量5000g、最小分度值1g和称量200g、最小分度值0.01g的天平;

(5)不锈钢环刀(内径61.8mm、高20mm;内径79.8mm、高20mm或内径61.8mm、高40mm); (6)击样器:包括活塞、导筒和环刀; (7)其他:切土刀、钢丝锯、碎土工具、烘箱、保湿器、喷水设备、凡士林等。 三、试样制备 (一)原状土试样的制备步骤 1、将土样筒按标明的上下方向放置,剥去蜡封和胶带,开启土样筒取土样。 2、检查土样结构,若土样已扰动,则不应作为制备力学性质试验的试样。 3、根据试验要求确定环刀尺寸,并在环刀内壁涂一薄层凡士林,然后刃口向下放在土样上,将环刀垂直下压,同时用切土刀沿环刀外侧切削土样,边压边削直至土样高出环刀,制样时不得扰动土样。 4、采用钢丝锯或切土刀平整环刀两端土样,然后擦净环刀外壁,称环刀和土的总质量。 5、切削试样时,应对土样的层次、气味、颜色、夹杂物、裂缝和均匀性进行描述。 6、从切削的余土中取代表性试样,供测定含水率以及颗粒分析、界限含水率等试验之用。

流化床干燥实验——流化床和洞道干燥----实验报告

流化床和洞道干燥综合实验 一、实验目的 1. 了解流化床、洞道干燥装置的基本结构、工艺流程和操作方法。 2. 学习测定物料在恒定干燥条件下干燥特性的实验方法。 3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平 衡含水量的实验分析方法。 4. 实验研究干燥条件对于干燥过程特性的影响。 二、基本原理 在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数,通常地,其干燥特性数据需要通过实验测定而取得。 按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度以及气流与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。 2.1. 干燥速率的定义 干燥速率定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量,即: -c G dX dw U A d A d τ τ = =kg/(m 2/s) 式中,U -干燥速率,又称干燥通量,kg/(m 2 s ); A -干燥表面积,m 2 ; W -汽化的湿分量,kg ; τ -干燥时间,s ; Gc -绝干物料的质量,kg ; X -物料湿含量,kg 湿分/kg 干物料,负号表示X 随干燥时间的增加而减少。 2.2. 干燥速率的测定方法

(1)将电子天平开启,待用。 (2)将快速水分测定仪开启,待用。 (3)将0.5~1kg 的红豆(如取0.5~1kg 的绿豆/花生放入60~70℃的热水中泡30min ,取出,并用干毛巾吸干表面水分,待用。 (4)开启风机,调节风量至40~60m 3 /h ,打开加热器加热。待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出四颗红豆的物料,同时读取床层温度。将取出的湿物料在快速水分测定仪中测定,得初始质量G i 和终了质量G ic ,则物料中瞬间含水率为: i ic i ic G -G X = G 计算出每一时刻的瞬间含水量X i ,然后将X i 对干燥时间i τ作图,如图1,即为干燥曲线。 图1恒定干燥条件下的干燥曲线 上述干燥曲线还可以变换得到干燥速率曲线。由已测得的干燥曲线求出不同i dX 下的斜率 i i dX d τ,再由式11-1计算得到干燥速率U ,将U 对X 作图,就是干燥速率曲线,如图2 所示。

北京化工大学-干燥实验报告

e北京化工大学 实验报告 课程名称:化工原理实验实验日期:2012.5.9 班级:化工0903班姓名:徐晗 同组人:高秋,高雯璐,梁海涛装置型号:FFRS-Ⅱ型 流化干燥实验 一、摘要 本实验通过空气加热装置测定了空气的干、湿球温度,通过孔板流量计测定了空气的流量,并采用湿小麦为研究对象,对其进行干燥,分别记录了物料温度、床层压降、孔板压降等参数,测定了小麦的干燥曲线、干燥速率曲线,以及流化床干燥器中小麦的流化曲线。实验中通过Excel作图并进行了实验结果分析。 关键词:流化床干燥含水量床层压降速率曲线 二、实验目的 1. 了解流化床干燥器的基本流程及操作方法。 2.掌握流化床流化曲线的测定方法、测定流化床床层压降与气速的关系曲线。 3.测定物料含水量及床层温度随时间变化的关系曲线。 4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数K x。 三、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。如图1所示。 图1 流化曲线 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加

(进入BC阶段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处得流速被称为带出速度(u0)。 在流化状态下降低气速,压降与气速的关系将沿图中的DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而使沿CA’变化。C点处的流速被称为起始流化速度(u mf)。 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2.干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(如图2所示)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线(如图3所示)。干燥过程可分为以下三个阶段。 图2 物料含水量、物料温度与时间的关系 图3 干燥速率曲线 (1)物料预热阶段(AB段) 在开始干燥前,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时

CAD上机实验指导书及实验报告

北京邮电大学世纪学院 实验、实习、课程设计报告撰写格式与要求 (试行) 一、实验报告格式要求 1、有实验教学手册,按手册要求填写,若无则采用统一实验报告封面。 2、报告一律用钢笔书写或打印,打印要求用A4纸;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 3、统一采用国家标准所规定的单位与符号,要求文字书写工整,不得潦草;作图规范,不得随手勾画。 4、实验报告中的实验原始记录,须经实验指导教师签字或登记。 二、实习报告、课程设计报告格式要求 1、采用统一的封面。 2、根据教学大纲的要求手写或打印,手写一律用钢笔书写,统一采用国家标准所规定的单位与符号,要求文字书写工整,不得潦草;作图规范,不得随手勾画。打印要求用A4纸;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。 三、报告内容要求 1、实验报告内容包括:实验目的、实验原理、实验仪器设备、实验操作过程、原始数据、实验结果分析、实验心得等方面内容。 2、实习报告内容包括:实习题目、实习任务与要求、实习具体实施情况(附上图表、原始数据等)、实习个人总结等内容。 3、课程设计报告或说明书内容包括:课程设计任务与要求、总体方案、方案设计与分析、所需仪器设备与元器件、设计实现与调试、收获体会、参考资料等方面内容。 北京邮电大学世纪学院 教务处 2009-8

实验报告 课程名称计算机绘图(CAD) 实验项目AutoCAD二维绘图实验 专业班级 姓名学号 指导教师实验成绩 2016年11月日

流化床干燥实验

北京化工大学化工原理 实验报告 实验名称:流化床干燥实验 班级:环工0903 学号:200912102 姓名:滕飞

一、实验目的及人物 1.了解流化床干燥器的基本流程及操作方式。 2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3.测定物料含水量及床层温度随时间变化的关系曲线。 4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数KH及降速阶段的比例系数KX。 二、实验原理 1、流化曲线 在实验中可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(下图)。 当气速较小时,操作过程处于固定床阶段(AB段),床层基本不动,压降与流速成正比,斜率约为1。当气速逐渐增加(进入BC段),床层开始膨胀,压降与气速关系不再成比例。当气速逐渐增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随气速增加床层高度逐渐增加,但床层压降基本保持不变。当气速增大到某一值(D点),床层压降减小,颗粒逐渐被气体带走,此时便进 u。在流化状态下降低气速,压降与入气流输送阶段。D点处流速即为带出速度 气速关系将沿图中DC线返回至C点。若气速继续降低,曲线沿CA’变化。C点 u。 处流速被称为起始流化速度 mf 2、干燥特性曲线 将湿物料置于一定干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可见物料含水量(X)与时间(t)的关系曲线及物料温度(θ)与时间(t)的关系曲线(如下图左)。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,及干燥速率曲线(如下图右)。

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验指导书袁守利编 汽车工程学院 2005年9月

前言 1.实验总体目标、任务与要求 1)学生在学习了《流体力学》基本理论的基础上,通过伯努利方程实验、动量方程实 验,实现对基本理论的验证。 2)通过实验,使学生对水柱(水银柱)、U型压差计、毕托管、孔板流量计、文丘里流量计等流体力学常用的测压、测流量装置的结构、原理和使用有基本认识。 2.适用专业 热能与动力工程 3.先修课程 《流体力学》相关章节。 4.实验项目与学时分配 5. 实验改革与特色 根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。

实验一伯努利方程实验 1.观察流体流经实验管段时的能量转化关系,了解特定截面上的总水头、测压管水头、压强水头、速度水头和位置水头间的关系,从而加深对伯努利方程的理解和认识。 2.掌握各种水头的测试方法和压强的测试方法。 3.掌握流量、流速的测量方法,了解毕托管测速的原理。 二、实验条件 伯努利方程实验仪 三、实验原理 1.实验装置: 图一伯努利方程实验台 1.水箱及潜水泵 2.上水管 3.电源 4.溢流管 5.整流栅 6.溢流板 7.定压水箱 8.实验 细管9. 实验粗管10.测压管11.调节阀12.接水箱13.量杯14回水管15.实验桌 2.工作原理 定压水箱7靠溢流来维持其恒定的水位,在水箱下部装接水平放置的实验细管8,水经实验细管以恒定流流出,并通过调节阀11调节其出水流量。通过布置在实验管四个截面上的四组测压孔及测压管,可以测量到相应截面上的各种水头的大小,从而可以分析管路中恒定流动的各种能量形式、大小及相互转化关系。各个测量截面上的一组测压管都相当于一组毕托管,所以也可以用来测管中某点的流速。 电测流量装置由回水箱、计量水箱和电测流量装置(由浮子、光栅计量尺和光电子

流化床干燥实验

北京化工大学 实验报告 课程名称:化工原理实验实验日期: 班级:姓名: 同组人:装置型号:沸腾干燥实验装置 流化床干燥实验 一、摘要 本实验通过对湿的小麦的干燥过程,要求掌握干燥的基本流程及流化床流化曲线的定,流化床床层压降与气速的关系曲线,物料含水量及床层温度随时间的变化 关系,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX。 二、关键词:流化床干燥、物料干燥速率、物料含水量、流化床床层压降、临界含水量 三、实验目的及任务 1、熟悉流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度随时间变化的关系曲线。。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及 恒速阶段的传值系数k H及降速阶段的比例系数K X 四、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。(如图一)

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段,D点处的流速即被称为带出速度。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点当气速继续降低,曲线无法按CBA继续变化,而是沿CA'变化。C点处的流速被称为起始流化速度(umf)在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线,干燥过程可分为以下三阶段。

流化床干燥实验报告

北方民族大学学生实验报告 院(部): 化学与化学工程 姓名: 汪远鹏学号: ******** 专业: 过程装备与控制工程班级: 153 同组人员: 田友安世康虎贵全 课程名称: 化工原理实验 实验名称: 流化床干燥实验 实验日期: 2017、10。30 批阅日期: 成绩: 教师签名: 北方民族大学教务处制 实验名称:流化床干燥实验 一、目得及任务 ①了解流化床干燥器得基本流程及操作方法、 ②掌握流化床流化曲线得测定方法,测定流化床床层压降与气速得关系曲线。 ③测定物料含水量及床层温度随时间变化得关系曲线、 ④掌握物料干燥速率曲线测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段得传质系数kH及降速阶段得比例系数Kx。 二、基本原理 1、流化曲线

当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入B C段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段、D点处流速即被称为带出速度(u0)、 在流化状态下降低气速,压降与气速关系线将沿图中得DC线返回至C点。若气速继续降低,曲线将无法按CBA继续变化,而就是沿CA’变化。C点处流速被称为起始流化速度(u mf)、 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这就是流化床得重要特点。据此,可以通过测定床层压降来判断床层流化得优劣。 2、干燥特性曲线 将湿物料置于一定得干燥条件下,测定被干燥物料得质量与温度随时间变化得关系,可得到物料含水量(X)与时间(τ)得关系曲线及物料温度(θ)与时间(τ)得关系曲线。物料含水量与时间关系曲线得斜率即为干燥速率(u)。将干燥速率对物料含水量作图。

电磁场实验指导书及实验报告

CENTRAL SOUTH UNIVERSITY 题目利用Matlab模拟点电荷电场的分布姓名xxxx 学号xxxxxxxxxx 班级电气xxxx班 任课老师xxxx 实验日期2010-10

电磁场理论 实验一 ——利用Matlab 模拟点电荷电场的分布 一.实验目的: 1.熟悉单个点电荷及一对点电荷的电场分布情况; 2.学会使用Matlab 进行数值计算,并绘出相应的图形; 二.实验原理: 根据库伦定律:在真空中,两个静止点电荷之间的作用力与这两个电荷的电量乘积成正比,与它们之间距离的平方成反比,作用力的方向在两个电荷的连线上,两电荷同号为斥力,异号为吸力,它们之间的力F 满足: R R Q Q k F ? 212 = (式1) 由电场强度E 的定义可知: R R kQ E ? 2 = (式2) 对于点电荷,根据场论基础中的定义,有势场E 的势函数为 R kQ U = (式3) 而 U E -?= (式4) 在Matlab 中,由以上公式算出各点的电势U ,电场强度E 后,可以用Matlab 自带的库函数绘出相应电荷的电场分布情况。 三.实验内容: 1. 单个点电荷 点电荷的平面电力线和等势线 真空中点电荷的场强大小是E=kq /r^2 ,其中k 为静电力恒量, q 为电量, r 为点电荷到场点P(x,y)的距离。电场呈球对称分布, 取电量q> 0, 电力线是以电荷为起点的射线簇。以无穷远处为零势点, 点电荷的电势为U=kq /r,当U 取

常数时, 此式就是等势面方程.等势面是以电荷为中心以r 为半径的球面。 平面电力线的画法 在平面上, 电力线是等角分布的射线簇, 用MATLAB 画射线簇很简单。取射线的半径为( 都取国际制单位) r0=, 不同的角度用向量表示( 单位为弧度) th=linspace(0,2*pi,13)。射线簇的终点的直角坐标为: [x,y]=pol2cart(th,r0)。插入x 的起始坐标x=[x; *x].同样插入y 的起始坐标, y=[y; *y], x 和y 都是二维数组, 每一列是一条射线的起始和终止坐标。用二维画线命令plot(x,y)就画出所有电力线。 平面等势线的画法 在过电荷的截面上, 等势线就是以电荷为中心的圆簇, 用MATLAB 画等势 线更加简单。静电力常量为k=9e9, 电量可取为q=1e- 9; 最大的等势线的半径应该比射线的半径小一点 r0=。其电势为u0=k8q /r0。如果从外到里取7 条等势线, 最里面的等势线的电势是最外面的3 倍, 那么各条线的电势用向量表示为: u=linspace(1,3,7)*u0。从- r0 到r0 取偶数个点, 例如100 个点, 使最中心点的坐标绕过0, 各点的坐标可用向量表示: x=linspace(- r0,r0,100), 在直角坐标系中可形成网格坐标: [X,Y]=meshgrid(x)。各点到原点的距离为: r=sqrt(X.^2+Y.^2), 在乘方时, 乘方号前面要加点, 表示对变量中的元素进行乘方计算。各点的电势为U=k8q. /r, 在进行除法运算时, 除号前面也要加点, 同样表示对变量中的元素进行除法运算。用等高线命令即可画出等势线 contour(X,Y,U,u), 在画等势线后一般会把电力线擦除, 在画等势线之前插入如下命令hold on 就行了。平面电力线和等势线如图1, 其中插入了标题等等。越靠近点电荷的中心, 电势越高, 电场强度越大, 电力线和等势线也越密。

流化床干燥实验报告

北方民族大学 学生实验报告 院(部):化学与化学工程 姓名:汪远鹏学号: ******** 专业:过程装备与控制工程班级: 153 同组人员:田友安世康虎贵全 课程名称:化工原理实验 实验名称:流化床干燥实验 实验日期:批阅日期: 成绩:教师签名: 北方民族大学教务处制 实验名称:流化床干燥实验 一、目的及任务 ①了解流化床干燥器的基本流程及操作方法。 ②掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 ③测定物料含水量及床层温度随时间变化的关系曲线。 及恒速阶段④掌握物料干燥速率曲线测定方法,测定干燥速率曲线,并确定临界含水量X 的传质系数k H及降速阶段的比例系数Kx。 二、基本原理 1、流化曲线 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。D点处

流速即被称为带出速度(u )。 在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。若气速继续 )。降低,曲线将无法按CBA继续变化,而是沿CA’变化。C点处流速被称为起始流化速度(u mf 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2、干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图。 干燥过程可分为以下三个阶段。 (1)物料预热阶段(AB段) 在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。 (2)恒速干燥阶段(BC段) 由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。 (3)降速干燥阶段(CDE段)

流化床干燥综合3D虚拟仿真试验项目操作说明

流化床干燥综合3D 虚拟仿真实验项目操作说明

流化床干燥综合3D虚拟仿真实验项目是利用动态数学模型实时模拟真实实验流化床干燥的现象和过程,通过3D 仿真实验装置交互式操作,产生和真实实验相一致的实验现象和结果。根据学生的需求与知识结构,构建了两个层次(基础理论型、仿真操作型)四个教学单元的实验内容,使实践教学内容由验证理论向综合应用、研究设计延伸,使不同层次、不同类型的学生都能在本仿真项目中,根据自己的需要来进行自主学习。能够体现化工实验步骤和数据梳理等基本实验过程,满足工艺操作要求,满足流程操作训练要求,能够安全、长周期运行。既能让每位学生都能亲自动手做实验,观察实验现象,记录实验数据,达到验证公式和原理的目的,且能够进一步通过对设备参数的改变,来加深对知识点和原理的理解。 一、干燥工艺及相关设备的认识 本单元主要包括干燥工艺的主要原理、流程、设备及过程特点等,并拓展介绍相关的流体输送设备、传热流程及设备。通过手动设备拆装,观察流化床干燥器内部构件,达到了解其整体结构的目的。 二、流化床干燥单元操作的开车、停车 本单元的主要目的是让学生掌握流化床干燥单元的开、停车方法过程中所需要控制的相

关参数等。在这一单元,采用指导模式和自主操作两种学习方式。指导模式的学习,是学生在软件提示下,进行设备的开停车步骤操作。学生也可以选择自主操作模式,自主操作设备的开车、正常运行和停车步骤。 基本操作 1、快捷键操作:W(前)S(后)A(左)D(右)、鼠标右键(视角旋转)。 图 1-1 注:在非中文输入状态下,点击 W 可逐步放大页面,点击 A 界面右移,可使左边装置进入视角,点击 D 界面左移,可使右边装置进入视角,点击 S,退出拉近,界面恢复。 2、进入主场景后,可进入相应实验室,如流体力学实验室,完成实验的全部操作,进入实验室后可回到主场景中。按住鼠标滚轮上下移动鼠标可进行视角的调整。 3、拉近镜头:鼠标左键双击设备进行操作,还可使用快捷键 W。 4、开关阀门或者其他电源键或者泵开启键为鼠标左键单击操作。 (二)、仿真操作 启动软件后,首先进入如下界面: 实验介绍:介绍实验的基本情况,如实验目的及内容、实验原理、实验装置基本情况,实验方法及步骤和实验注意事项等。 设置:可设置全局标签和环境音效。 退出:点击退出出现如下界面,继续点击确定,则退出软件。

化工原理流化床干燥实验报告

北京化工大学 实验报告 流化床干燥实验 一、摘要 本实验通过对湿的小麦的干燥过程,要求掌握干燥的基本流程及流化床流化曲线的定,流化床床层压降与气速的关系曲线,物料含水量及床层温度随时间的变化 关系,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX。 二、关键词:流化床干燥、物料干燥速率、物料含水量、流化床床层压降、临界含水量 三、实验目的及任务 1、熟悉流化床干燥器的基本流程及操作方法。 2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。 3、测定物料含水量及床层温度随时间变化的关系曲线。。 4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及 恒速阶段的传值系数k H及降速阶段的比例系数K X 四、实验原理 1.流化曲线 在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。(如图一) 当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在对数坐标系中)。当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。 当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气

速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段,D点处的流速即被称为带出速度。 在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点当气速继续降低,曲线无法按CBA继续变化,而是沿CA'变化。C点处的流速被称为起始流化速度(umf)在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。据此,可以通过测定床层压降来判断床层流化的优劣。 2干燥特性曲线 将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。物料含水量与时间关系曲线的斜率即为干燥速率(u)。将干燥速率对物料含水量作图,即为干燥速率曲线,干燥过程可分为以下三阶段。

人工智能及其应用实验指导书

《人工智能及其应用》 实验指导书 工业大学计算机科学与技术学院—人工智能课程组 2011年9月

前言 本实验是为了配合《人工智能及其应用》课程的理论学习而专门设置的。本实验的目的是巩固和加强人工智能的基本原理和方法,并为今后进一步学习更高级课程和信息智能化技术的研究与系统开发奠定良好的基础。 全书共分为八个实验:1.产生式系统实验;2.模糊推理系统实验;3.A*算法求解8数码问题实验;4.A*算法求解迷宫问题实验;5.遗传算法求解函数最值问题实验;6.遗传算法求解TSP问题实验;7.基于神经网络的模式识别实验;8.基于神经网络的优化计算实验。每个实验包括有:实验目的、实验容、实验条件、实验要求、实验步骤和实验报告等六个项目。 本实验指导书包括两个部分。第一个部分是介绍实验的教学大纲;第二部分是介绍八个实验的容。 由于编者水平有限,本实验指导书的错误和不足在所难免,欢迎批评指正。 人工智能课程组 2011年9月

目录 实验教学大纲 (1) 实验一产生式系统实验 (4) 实验二模糊推理系统实验 (7) 实验三A*算法实验I (12) 实验四A*算法实验II (15) 实验五遗传算法实验I (17) 实验六遗传算法实验II (22) 实验七基于神经网络的模式识别实验 (25) 实验八基于神经网络的优化计算实验 (29)

实验教学大纲 一、学时:16学时,一般安排在第9周至第16周。 二、主要仪器设备及运行环境:PC机、Visual C++ 6.0、Matlab 7.0。 三、实验项目及教学安排 序号实验名称实验 平台实验容学 时 类型教学 要求 1 产生式系统应用VC++ 设计知识库,实现系统识别或 分类等。 2 设计课 2 模糊推理系统应 用Matlab 1)设计洗衣机的模糊控制器; 2)设计两车追赶的模糊控制 器。 2 验证课 3 A*算法应用I VC++ 设计与实现求解N数码问题的 A*算法。 2 综合课4 A*算法应用II VC++ 设计与实现求解迷宫问题的A* 算法。 2 综合课5 遗传算法应用I Matlab 1)求某一函数的最小值; 2)求某一函数的最大值。 2 验证课6 遗传算法应用II VC++ 设计与实现求解不同城市规模 的TSP问题的遗传算法。 2 综合课 7 基于神经网络的 模式识别Matlab 1)基于BP神经网络的数字识 别设计; 2)基于离散Hopfiel神经网络 的联想记忆设计。 2 验证课 8 基于神经网络的 优化计算VC++ 设计与实现求解TSP问题的连 续Hopfield神经网络。 2 综合课 四、实验成绩评定 实验课成绩单独按五分制评定。凡实验成绩不及格者,该门课程就不及格。学生的实验成绩应以平时考查为主,一般应占课程总成绩的50%,其平时成绩又要以实验实际操作的优劣作为主要考核依据。对于实验课成绩,无论采取何种方

实验八流化床干燥实验

流化床干燥实验 一、实验目的: 1、了解掌握连续流化床干燥方法; 2、估算体积传热系数和热效率。 二、基本原理: 1)对流传热系数的计算 3 (/V m Q W m V t α=??℃) (1) 气体向固体物料传热的后果是引起物料升温Q1和水分蒸发Q2。其传热速率为: 12() (2)Q Q Q =+ w 1221221 ()(() (3)c m c m w Q G c G c x θθθθ=--)=(+c ) w 101('')-() (4)v L v m w Q W I I W r θθ=-)=((+c c ) w 式中: Q 1一湿含量为X 2的物料从θ1升温到θ2所需要的传热速率 Q 2一蒸发(kg /s)水所需的传热速率。 Cm 2一出干燥器物料的湿比热·(KJ /kg 绝干料·℃) I V ’—θm 温度下水蒸气的焓,KJ /kg I L ’一θ1温度下液态水的焓,KJ /kg 流化床干燥器有效容积24V D h π = 脱水速率由物料衡算求出: 12121112 0111121112()(1)()11 (1)() (5)11c w w W G X X G w w w G G w w w w w =-=-----=--?-- 式中: G c 一绝干料速率kg /s G 1一实际加料速率kg /s W 1,W 2一分别为进出口湿基含水量,kg 水/kg 物料:

X 1,X 2一分别为进出口干基含水量, kg 水/kg 绝干物料, G 01,G 11,一分别加料初重与余重,kg Δ1一为加料时间 s 2、热效率η计算 100% (6)Q Q η=?蒸入 干燥过程中蒸发水分所消耗的热量向干燥提供热量 Q 蒸=W(2490+1.88t 2—4.187θ1) (w) (7) Q 入由热量衡算求出: Q 入=Q p +Q D =U p I D +U D I D (8) 式中:U 、I 一表示电压电流 P 、D 一表示预热器和干燥器 Q 出=L(I 2—I 0)+Gc(I 2’—I 1’) (W) (9) 100%Q Q Q η=?入出入 — 三、装置与流程 设备流程图见图1,电路示意图见2。 图1 流态化干澡操作实验流程示意图 1-风机(旋涡泵): 2-旁路阀(空气流量调节阀); 3-温度计(测气体进流量计前的温度); 4-压差计(测流量); 5-孔板流量计:6-空气预热器(电加热器): 7-空气进口温度计; 8-放空阀:9-进气阀:10-出料接收瓶; 11-出料温度计:12-分布板(80不锈钢丝网)·;13-流化床干燥器·(玻璃制品,表面镀以透明导电膜); 14-透明膜电极引线:15-粉尘接收瓶;1 6-旋风分离器:17-干燥器出口温度计;18-取干燥器内剩科插口; 1 9-带搅拌器的直流电机(进固料用): 20、21-原料(湿固料)瓶;22-压差计;23-干燥器内剩料接收瓶;

相关文档
最新文档