用卡诺图化简逻辑函数

1.4用卡诺图化简逻辑函数

本次重点内容

1、卡诺图的画法与性质

2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图

逻辑函数可以用卡诺图表示。所谓卡诺图,就是逻辑函数的一种图形表示。对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。 二、最小项的定义及基本性质: 1、最小项的定义

在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。通常用m 表示最小项,其下标为最小项的编号。编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。如最小项

C B A 对应的变量取值为000,它对应十进制数为0。因此,最小项C B A 的编号为m 0,如

最小项C B A 的编号为m 4,其余最小项的编号以此类推。 2、最小项的基本性质:

(1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。

(2)不同的最小项,使它的值为1的那组变量取值也不同。 (3)对于变量的任一组取值,全体最小项的和为1。

m 0,m 1,m 2,……来编号。

1

01

00

01

11

10

01

A BC

AB CD B A

00011110

00

01

11

10

m m m m m m

m

m

m m m m 012

3

00112233m m m m m m m m m m m m m m m m 45678910

1112131415图

1.4.1卡诺图

二、应用卡诺图表示逻辑函数

应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。如果逻辑式不是由最小项构成,一般应先化为最小项或将其列出逻辑状态表后填写。 三、应用卡诺图化简逻辑函数 1、一个正确卡诺圈的要求:

(1)画在一个卡诺圈内的1方格数必须是2m 个(m 为大于等于0的整数)。

(2)画在一个卡诺圈内的2m 个1方格必须排列成方阵或矩阵。 (3)一个卡诺圈内的1方格必须是对称相邻的。 2、利用卡诺图化简逻辑函数的步骤:

(1)先找没有相邻项的独立1方格,单独画圈。

(2)其次,找只能按一条路径合并的两个相邻方格,画圈。 (3)再次,找只能按一条路径合并的四个相邻方格,画圈。 (4)再次,找只能按一条路径合并的八个相邻方格,画圈。 (5)依此类推,若还有1方格未被圈,找合适的圈画出。 如:化简C B A BC A C B A C B A Y +++=1 则有:Y1=C C B +A

化简)15,14,13,12,5,4,3,0(2m Y ∑= 3、具有无关项的逻辑函数的化简

逻辑函数中的无关项: 用“×”(或“d ”)表示 利用无关项化简原则:

无关项即可看作“1”也可看作“0”。卡诺图中,圈组内的“×”视为“1”, 组外的视为“0”。

例1为8421BCD 码,当其代表的十进制数≥5时,输出为“1”,求Y 的最简表达式。(用于间断输入是否大于5) 解:先列真值表,再画卡诺图 写出表达式:

Y=D C B +B +A

作业:用卡诺图化简下列逻辑表达式:

卡诺图化简法

卡诺图化简法又称为图形化简法。该方法简单、直观、容易掌握,因而在逻辑设计中得到广泛应用。

一卡诺图的构成

卡诺图是一种平面方格图,每个小方格代表一个最小项,故又称为最小项方格图。

1.结构特点

A B C D Y A B C D Y 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 × 0 0 1 1 0 1 0 1 1 × 0 1 0 0 0 1 1 0 0 × 0 1 0 1 1 1 1 0 1 × 0 1 1 0 1 1 1 1 0 × 0

1 1 1

1

1

1

1

1

×

卡诺图中最小项的排列方案不是唯一的,图2.5(a)、(b)、(c)、(d)分别为2变量、3变量、4变量、5变量卡诺图的一种排列方案。图中,变量的坐标值0表示相应变量的反变量,1表示相应变量的原变量。各小方格依变量顺序取坐标值,所得二进制数对应的十进制数即相应最小项的下标i。

在五变量卡诺图中,为了方便省略了符号“m”,直接标出m的下标i。

图2.52~5变量卡诺图

从图2.5所示的各卡诺图可以看出,卡诺图上变量的排列规律使最小项的相邻关系能在图形上清晰地反映出来。具体地说,在n个变量的卡诺图中,能从图形上直观、方便地找到每个最小项的n个相邻最小项。以四变量卡诺图为例,图中每个最小项应有4个相邻最小项,如m5的4个相邻最小项分别是m1,m4,m7,m13,这4个最小项对应的小方格与m5对应的小方格分别相连,也就是说在几何位置上是相邻的,这种相邻称为几何相邻。而m2则不完全相同,它的4个相邻最小项除了与之几何相邻的m3和m6之外,另外两个是处在“相对”位置的m0(同一列的两端)和m10(同一行的两端)。这种相邻似乎不太直观,但只要把这个图的上、下边缘连接,卷成圆筒状,便可看出m0和m2在几何位置上是相邻的。同样,把图的左、右边缘连接,便可使m2和m10相邻。通常把这种相邻称为相对相邻。除此之外,还有“相重”位置的最小项相邻,如五变量卡诺图中的m3,除了几何相邻的m1,m2,m7和相对相邻的m11外,还与m19相邻。对于这种情形,可以把卡诺图左边的矩形重叠到右边矩形之上来看,凡上下重叠的最小项相邻,这种相邻称为重叠相邻。

归纳起来,卡诺图在构造上具有以下两个特点:

☆n个变量的卡诺图由2n个小方格组成,每个小方格代表一个最小项;

☆卡诺图上处在相邻、相对、相重位置的小方格所代表的最小项为相邻最小项。

二卡诺图的性质

卡诺图的构造特点使卡诺图具有一个重要性质:可以从图形上直观地找出相邻最小项合并。合并的理论依据是并项定理AB+AB=A。例如,

根据定理AB+AB=A和相邻最小项的定义,两个相邻最小项可以合并为一个与项并消去一个变量。例如,4变量最小项ABCD和ABCD相邻,可以合并为ABD;ABCD和ABCD相邻,可以合并为ABD;而与项ABD和ABD又为相邻与项,故按同样道理可进一步将两个相邻与项合并为BD。

用卡诺图化简逻辑函数的基本原理就是把上述逻辑依据和图形特征结合起来,通过把卡诺图上表征相邻最小

项的相邻小方格“圈”在一起进行合并,达到用一个简单“与”项代替若干最小项的目的。

通常把用来包围那些能由一个简单“与”项代替的若干最小项的“圈”称为卡诺圈。

三逻辑函数在卡诺图上的表示

1.给定逻辑函数为标准“与-或”表达式

当逻辑函数为标准“与-或”表达式时,只需在卡诺图上找出和表达式中最小项对应的小方格填上1,其余小方格填上0,即可得到该函数的卡诺图。

例如,3变量函数F(A,B,C)=∑m(1,2,3,7)的卡诺图如图2.6所示。

图2.6函数F(A,B,C)=∑m(1,2,3,7)的卡诺图

2.逻辑函数为一般“与-或”表达式

当逻辑函数为一般“与-或”表达式时,可根据“与”的公共性和“或”的叠加性作出相应卡诺图。

例如,4变量函数F(A,B,C,D)=AB+CD+A·BC的卡诺图如图2.7所示。

图2.7函数F(A,B,C,D)=AB+CD+A·BC的卡诺图

填写该函数卡诺图时,只需在4变量卡诺图上依次找出和“与项”AB、CD、A·BC对应的小方格填上1,便可得到该函数的卡诺图。

当逻辑函数表达式为其他形式时,可将其变换成上述形式后再作卡诺图。

为了叙述的方便,通常将卡诺图上填1的小方格称为1方格,填0的小方格称为0方格。0方格有时用空格表示。

四卡诺图上最小项的合并规律

卡诺图的一个重要特征是,它从图形上直观、清晰地反映了最小项的相邻关系。当一个函数用卡诺图表示后,究竟哪些最小项可以合并呢?下面以2、3、4变量卡诺图为例予以说明。

1.两个小方格相邻,或处于某行(列)两端时,所代表的最小项可以合并,合并后可消去一个变量。

例如,图2.8给出了2、3、4变量卡诺图上两个相邻最小项合并的典型情况的。

图2.8两个相邻最小项合并的情况

2.四个小方格组成一个大方格、或组成一行(列)、或处于相邻两行(列)的两端、或处于四角时,所的表的最小项可以合并,合并后可消去两个变量。

例如,图2.9给出了3、4变量卡诺图上四个相邻最小项合并的典型情况的。

图2.9四个相邻最小项合并的情况

3.八个小方格组成一个大方格、或组成相邻的两行(列)、或处于两个边行(列)时,所代表的最小项可以合并,合并后可消去三个变量。

例如,图2.10给出了3、4变量卡诺图上八个相邻最小项合并的典型情况的。

图2.10八个相邻最小项合并的情况

至此,以3、4变量卡诺图为例,讨论了2,4,8个最小项的合并方法。依此类推,不难得出n个变量卡诺图中最小项的合并规律。

归纳起来,n个变量卡诺图中最小项的合并规律如下:

(1)卡诺圈中小方格的个数必须为2m个,m为小于或等于n的整数。

(2)卡诺圈中的2m个小方格有一定的排列规律,具体地说,它们含有m个不同变量,(n-m)个相同变量。

(3)卡诺圈中的2m个小方格对应的最小项可用(n-m)个变量的“与”项表示,该“与”项由这些最小项中的相同变量构成。

(4)当m=n时,卡诺圈包围了整个卡诺图,可用1表示,即n个变量的全部最小项之和为1。

五、卡诺图化简逻辑函数

1.几个定义

蕴涵项:在函数的“与-或”表达式中,每个“与”项被称为该函数的蕴涵项(Implicant)。

显然,在函数卡诺图中,任何一个1方格所对应的最小项或者卡诺圈中的2m个1方格所对应的“与”项都是函数的蕴涵项。

质蕴涵项:若函数的一个蕴涵项不是该函数中其他蕴涵项的子集,则此蕴涵项称为质蕴涵项(PrimeImplicant),简称为质项。

显然,在函数卡诺图中,按照最小项合并规律,如果某个卡诺圈不可能被其他更大的卡诺圈包含,那么,该卡诺圈所对应的“与”项为质蕴涵项。

必要质蕴涵项:若函数的一个质蕴涵项包含有不被函数的其他任何质蕴涵项所包含的最小项,则此质蕴涵项被称为必要质蕴涵项(EssentialPrimeImplicant),简称为必要质项。

在函数卡诺图中,若某个卡诺圈包含了不可能被任何其他卡诺圈包含的1方格,那么,该卡诺圈所对应的“与”项为必要质蕴涵项。

2.求函数最简“与-或”表达式

(1)一般步骤:

第一步:作出函数的卡诺图。

第二步:在卡诺图上圈出函数的全部质蕴涵项。按照卡诺图上最小项的合并规律,对函数F卡诺图中的1方格画卡诺圈。为了圈出全部质蕴涵项,画卡诺圈时在满足合并规律的前题下应尽可能大,若卡诺圈不可能被更大的卡诺圈包围,则对应的“与”项为质蕴涵项。

第三步:从全部质蕴涵项中找出所有必要质蕴涵项。在卡诺图上只被一个卡诺圈包围的最小项被称为必要最小项,包含必要最小项的质蕴涵项即必要质蕴涵项。为了保证所得结果无一遗漏地覆盖函数的所有最小项,函数表达式中必须包含所有必要质蕴涵项。

第四步:求出函数的最简质蕴涵项集。若函数的所有必要质蕴涵项尚不能覆盖卡诺图上的所有1方格,则从剩余质蕴涵项中找出最简的所需质蕴涵项,使它和必要质蕴涵项一起构成函数的最小覆盖。

(3)举例

例1用卡诺图化简逻辑函数F(A,B,C,D)=∑m(0,3,5,6,7,10,11,13,15)。

解根据卡诺图化简的步骤,该题化简过程如下:

图2.11

该题中,5个必要质蕴涵项已将函数的全部最小项覆盖,故将各卡诺圈对应的与项相或即可得到函数F的最简“与-或”表达式为

F(A,B,C,D)=A·B·C·D+ABC+ABC+BD+CD

例2用卡诺图化简逻辑函数F(A,B,C,D)=∑m(2,3,6,7,8,10,12)。

解根据卡诺图化简的步骤,该题化简过程如下:

图2.12

由图可知,该函数包含两个必要质蕴涵项,即AC和AC·D。在选取必要质蕴涵项之后,尚有最小项m10未被覆盖。为了覆盖最小项m10,可选质蕴涵项BCD或者AB·D,由于这两个质蕴涵项均由3个变量组成,故可任选其中之一作为所需质蕴涵项,即F的最简质蕴涵项集可为

{AC,AC·D,BCD}或者{AC,AC·D,AB·D}

因而,可求得函数F的最简“与-或”表达式为

F(A,B,C,D)=AC+AC·D+BCD或者F(A,B,C,D)=AC+AC·D+AB·D

这里,函数F的最简“与-或”式有两个,其复杂程度相同。由此可见,一个函数的最简“与-或”表达式不一定是唯一的!

归纳起来,卡诺图化简的原则是:

☆在覆盖函数中的所有最小项的前提下,卡诺圈的个数达到最少。

☆在满足合并规律的前题下卡诺圈应尽可能大。

☆根据合并的需要,每个最小项可以被多个卡诺圈包围。

3.求函数的最简“或-与”表达式

当需要求一个函数的最简“或-与”表达式时,可采用“两次取反法”。

具体如下:

☆先求出函数F的反函数F的最简“与-或”表达(合并卡诺图上的0方格);

☆然后对F的最简“与-或”表达式取反,从而得到函数F的最简“或-与”表达式。

例如,用卡诺图求逻辑函数F(A,B,C,D)=∑m(3,4,6,7,11,12,13,14,15)的最简“或-与”表达式。

解首先画出函数F的卡诺图如图2.13所示。

图2.13

图中,F的0方格即反函数F的1方格,它们代表F的各个最小项,将全部0方格合并就可得到反函数F的最简“与-或”表达式

F(A,B,C,D)=AB+CD+BD

再对上述函数式两边取反,即可求得函数的最简“或-与”表达式

卡诺图化简逻辑函数具有方便、直观、容易掌握等优点。但依然带有试凑性。尤其当变量个数大于6时,画图以及对图形的识别都变得相当复杂。

为了克服它的不足,引入了另一种化简方法--列表化简法。

↑返回顶部

用卡诺图化简逻辑函数

1.4 用卡诺图化简逻辑函数 本次重点内容 1、卡诺图的画法与性质 2、用卡诺图化简函数 教学过程 应用卡诺图化简 一、卡诺图 逻辑函数可以用卡诺图表示。所谓卡诺图,就是逻辑函数的一种图形表示。对n 个变量的卡诺图来说,有2n 个小方格组成,每一小方格代表一个最小项。在卡诺图中,几何位置相邻(包括边缘、四角)的小方格在逻辑上也是相邻的。 二、最小项的定义及基本性质: 1、最小项的定义 在n 个变量的逻辑函数中,如乘积项中包含了全部变量,并且每个变量在该乘积项中或以原变量或以反变量的形式但只出现一次,则该乘积项就定义为该逻辑函数的最小项。通常用m 表示最小项,其下标为最小项的编号。编号的方法是:最小项的原变量取1,反变量取0,则最小项取值为一组二进制数,其对应的十进制数便为该最小项的编号。如最小项C B A 对应的变量取值为000,它对应十进制数为0。因此,最小项C B A 的编号为m 0,如最小项C B A 的编号为m 4,其余最小项的编号以此类推。 2、最小项的基本性质: (1)对于任意一个最小项,只有一组变量取值使它的值为1,而其余各种变量取值均使它的值为0。 (2)不同的最小项,使它的值为1的那组变量取值也不同。 (3)对于变量的任一组取值,全体最小项的和为1。 图1.4.1分别为二变量、三变量和四变量卡诺图。在卡诺图的行和列分别标出变量及其状态。变量状态的次序是00,01,11,10,而不是二进制递增的次序00,01,10,11。这样排列是为了使任意两个相邻最小项之间只有一个变量改变(即满足相邻性)。小方格也可用二进制数对应于十进制数编号,如图中的四变量卡诺图,也就是变量的最

逻辑函数的卡诺图化简法

逻辑函数的卡诺图化简法 逻辑函数的卡诺图化简法 由前面的学习得知,利用代数法可以使逻辑函数变成较简单的形式。但要求熟练掌握逻辑代数的基本定律,而且需要一些技巧,特别是经化简后得到的逻辑表达式是否是最简式较难确定。运用卡诺图法可以较简便的方法得到最简表达式。但首先需要了解最小项的概念。 一、最小项的定义及其性质 1.最小项的基本概念 由A、B、C三个逻辑变量构成的许多乘积项中有八个被称为A、B、C的最小项的乘积项,它们的特点是 1. 每项都只有三个因子 2. 每个变量都是它的一个因子 3. 每一变量或以原变量(A、B、C)的形式出现,或以反(非)变量(A、B、C)的形式出现,各出现一次一般情况下,对n个变量来说,最小项共有2n个,如n =3时,最小项有23=8个

2.最小项的性质 为了分析最小项的性质,以下列出3个变量的所有最小项的真值表。 由此可见,最小项具有下列性质: (1)对于任意一个最小项,只有一组变量取值使得它的值为1,而在变量取其他各组值时,这个最小项的值都是0。 (2)不同的最小项,使它的值为1的那一组变量取值也不同。 (3)对于变量的任一组取值,任意两个最小项的乘积为0。 (4)对于变量的任一组取值,全体最小项之和为1。 3.最小项的编号 最小项通常用mi表示,下标i即最小项编号,用十进制数表示。以ABC为例,因为它和011相对应,所以就称ABC是和变量取值011相对应的最小项,而011相当于十进制中的3,所以把ABC记为m3按此原则,3个变量的最小项

二、逻辑函数的最小项表达式 利用逻辑代数的基本公式,可以把任一个逻辑函数化成一种典型的表达式,这种典型的表达式是一组最小项之和,称为最小项表达式 。下面举例说明把逻辑表达式展开为最小项表达式的方法。例如,要将化成最小项表达式,这时可利用的基本运算关系,将逻辑函数中的每一项都化成包含所有变量A、B、C的项,然后再用最小项下标编号来代表最小项,即 又如,要将化成最小项表达式,可经下列几步: (1)多次利用摩根定律去掉非号,直至最后得到一个只在单个变量上有非号的表达式; (2)利用分配律除去括号,直至得到一个与或表达式; (3)在以上第5个等式中,有一项AB不是最小项(缺少变量C),可用乘此项,正如第6个等式所示。 由此可见,任一个逻辑函数都可化成为唯一的最小项表达式。

逻辑函数卡诺图表示方法

逻辑函数卡诺图表示方法 从前面可知,代数化简法有其优点,但是代数化简法也不易判断所化简的逻辑函数式是否已经达到最简式。 一、最小项的定义 1.最小项 如果一个具有n 个变量的逻辑函数的“与项”包含全部n 个变量,每个变量以原变量或反变量的形式出现,且仅出现一次,则这种“与项”被称为最小项。 对两个变量A 、B 来说,可以构成4个最小项:AB B A B A AB 、、、;对3个变量A 、B 、C 来说,可构成8个最小项:C AB C B A C B A BC A C B A C B A C B A 、、、、、、和 ABC ;同理,对n 个变量来说,可以构成2n 个最小项。 2.最小项的编号 最小项通常用符号m i 表示,i 是最小项的编号,是一个十进制数。确定i 的方法是:首先将最小项中的变量按顺序A 、B 、C 、D … 排列好,然后将最小项中的原变量用1表示,反变量用0表示,这时最小项表示的二进制数对应的十进制数就是该最小项的编号。例如,对三变量的最小项来说,ABC 的编号是7符号用m 7表示,C B A 的编号是5符号用m 5表示。下表为3变量最小项对应表。 3变量全部最小项的真值表 3.最小项表达式 如果一个逻辑函数表达式是由最小项构成的与或式,则这种表达式称为逻辑函数的最小项表达式,也叫标准与或式。例如:ABCD D ABC D BC A F ++=是一个四变量的最小项表达式。对一个最小项表达式可以采用简写的方式,例如

()()∑=++=++=7,5,2,,752m m m m ABC C B A C B A C B A F 要写出一个逻辑函数的最小项表达式,可以有多种方法,但最简单的方法是先给出逻辑函数的真值表,将真值表中能使逻辑函数取值为 1的各个最小项相或就可以了。 例:已知三变量逻辑函数:F =AB +BC +AC ,写出F 的最小项表达式。 解:首先画出F 的真值表,将表中能使F 为1的最小项相或可得下式 ABC C AB C B A BC A F +++=()∑=7,6,5,3m 4.最小项的性质: ①任意一个最小项,只有一组变量取值使其值为1,而其余各项的取值均使它的值为0。 ②不同的最小项,使它的值为1 的那组变量取值也不同。 ③对于变量的任一且取值,任意两个不同的最小项的乘积必为0。 ④全部最小项的和必为1。二、表示最小项的卡诺图 逻辑函数的图形化简法是将逻辑函数用卡诺图来表示,利用卡诺图来化简逻辑函数。 1.相邻最小项 定义:如果两个最小项中只有一个变量为互反变量,其余变量均相同,则这样的两个最小项为逻辑相邻,并把它们称为相邻最小项,简称相邻项。 2.最小项的卡诺图表示 卡诺图的构成:将逻辑函数真值表中的最小项重新排列成矩阵形式,并且使矩阵的横方向和纵方向的逻辑变量的取值按照格雷码的顺序排列,这样构成的图形就是卡诺图。下图为各不同变量的卡诺图。 图6.33二变量卡诺图 00011110m AB m AB 1m 03m AB AB 4A (a) B 1 3 2 AB (b) 0m ABC m ABC 1m 3m ABC ABC 265m ABC 74ABC m m m ABC ABC 0(a) (b) 1324 5 7 6 10 01 11 00 BC A 01 B C A

卡诺图化简方法

卡诺图化简方法 学生姓名:陈曦指导教师:杜启高 将输出与输入之间的逻辑关系写成与、或、非等运算的组合式,就是逻辑函数式。 一、逻辑函数的卡诺图表示法 将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上也相邻地排列起来,所得到的图形称为n变量最小项的卡诺图。 为了保证图中几何位置相邻地最小项在逻辑上也具有相邻性,这些数码不能按自然二进制数从小到大地顺序排列,而必须按图中的方式排列,以确保相邻的两个最小项仅有一个变量是不同的。 从卡诺图上可以看到,处在任何一行或一列两端的最小项也仅有一个变量不同,所以它们也具有逻辑相邻性。因此,从几何位置上应当将卡诺图看成是上下、左右闭合的图形。 任何一个逻辑函数都能表示为若干最小项之和的形式,自然也可以用卡诺图来表示任意一个逻辑函数。具体做法是:首先将逻辑函数化为最小项之和的形式,然后在卡诺图上标出与之相对应的最小项,在其余位置上标入0,就得到了表示该逻辑函数的卡诺图。也就是说,任何一个逻辑函数都等于卡诺图中填入1的那些最小项之和。 二、用卡诺图化解逻辑函数 化简时依据的基本原理就是具有相邻性的最小项可以合并,并消去不同的因子。由于在卡诺图上几何位置相邻与逻辑上的相邻性是一致的,因而从卡诺图上能直观的找出那些具有相邻性的最小项并将其合并化简。 合并最小项的原则:若两个最小项相邻,则可以合并为一项并消去一对因子。若四个最小项相邻并排列成一个矩形组,则可合并为一项并消去两队因子。若八个最小项相邻并且排列成一个矩形组,则可以合并成一项并消去三对因子。合并后的结果中只剩下公共因子。 卡诺图化简法步骤:(一)将函数式化为最小项之和的形式; (二)画出表示该逻辑函数的卡诺图; (三)找出可以合并的最小项; (四)画出包围圈并选取化简后的乘积项。 在画包围圈时要注意:(一)包围圈越大越好; (二)包围圈的个数越少越好; (三)同一个“1”方块可以被圈多次; (四)画包围圈时,可先圈大,再圈小; (五)每个圈要有新的成分,如果某一圈中所有的“1”方块均被别的包围圈包围,就可以舍掉这个包围圈; (六)不要遗漏任何方块。 通常我们都是通过合并卡诺图中的1来求得化简结果得。但有时也可以通过合并卡诺图中的0先求出'Y的化简结果,然后再将'Y求反而得到Y。

用卡诺图化简或——与表达式

用卡诺图化简或——与表达式 引言: 随着电子技术的飞快发展,卡诺图已经变成了逻辑设计中十分重要的数学工具。卡诺图因为它能用图形将复杂的逻辑函数形象直观的表示出来。所以,卡诺图在数字电子技术当中应用十分的广泛。数字电子技术当中的逻辑函数是“或”、“与”、“非”复合而成,所以使用卡诺图分析逻辑函数是具有现实意义的。 1.使用卡诺图的优点 化简或——与函数可以使用卡诺图化简法和公式分析法来进行化简。但是在现实当中的逻辑函数化简当中,逻辑函数可能十分复杂,化简需要熟记大量的基本公式。不仅如此还需要能够灵活巧妙的使用基本公式、方法,所以使公式化简法显得十分繁琐,所需的技巧性十分强。 但是使用卡诺图时不仅可以用于多输入变量的逻辑函数化简,还可以用图像来直观、快速表示出最简表达式,所以卡诺图是一种十分实用的化简方法。 2. 卡诺图 2.1卡诺图概述 一个逻辑函数的卡诺图就是讲此函数的最小项表达式中的各最小项相应地填入一个特定的方格图内,从此方格图称为卡诺图。 卡诺图的实质就是真值表的图形化,使得最小项排列得更紧凑,更便于化简。卡诺图中最小项的排列方案不是惟一的;变量的坐标值0表示相应变量的反变量,1表示相应变量的原变量;各小方格依变量顺序取坐标值,所得二进制数对应的十进制数即相应最小项的下标i。 对于n个变量的逻辑函数有2^n个最小项。如果把每个最小项用一个小方格表示,再讲这些小方格按格雷码顺序排列,就可以构成n个变量的卡诺图。

以4变量为例的卡诺图 表一 2.2卡诺图特点 卡诺图的特点是:几何位置相邻的最小项在逻辑上也是相邻的。即相邻的两个最小项只有一个变量不同,这是用卡诺图化简逻辑函数的主要依据。 正如表一中m4与m5两个相邻相中只有D与非D两的差别。 2.3卡诺图化简逻辑函数依据 卡诺图具有相邻性,若两个相邻的方格均为1,则这两个最小项之和有一个变量可以被消去。以此为依据通过把卡诺图上相邻最小项的相邻小方格圈起来进行合并,达到用“与”项来代替。 2.4卡诺图化简或——与表达式步骤 (1)将或——与逻辑函数采用分配律消去括号 (2)消去括号后进行配项(例:对C进行配项用C+非C进行配项) (3)按最小项表达式填卡诺图,凡式中包含了的最小项,其对应的方格填1,其余的方格填0。 (4)找出为1的相邻最小项,用虚线(或者细实线)画一个包围圈,每个包围圈含个方格,写出每个包围圈的乘积项。 (5)将所有包围圈对应的乘积项相加。 2.4.1画包围圈的原则 (1)包围圈内的方格数必定是2^n个,n等于0、1、2、3…… (2)相邻方格上下底相邻,左右边相邻和四个角两两相邻。 n 2

多变量卡诺图及其在逻辑函数化简中的应用

多变量卡诺图及其在逻辑函数中的应用 摘要:卡诺图是在数字电路中十分有用的工具,本文介绍了多变量卡诺图在逻辑函数化简中的应用。 关键词:卡诺图、逻辑函数、化简 Multi-variable Karnaugh Map and the Application of it in Logic Function Abstract:Karnaugh map is very useful in the study of digital design, in this article; we have introduce the application of multi-variable Karnaugh map in simplification of logic functions. Key words:Karnaugh map, simplification, logic function. 卡诺图(Karnaugh map)是由美国科学家卡诺首先提出的。在数字电子技术中,卡诺图是逻辑函数真值表的一种图形表示,即用图形表示输入变量与函数之间的逻辑关系。就n个变量的卡诺图来说,它是由n2个小方格组成,每一小方格代表一个最小项。在卡诺图中,几何位置相邻(这里的几何位置相邻包括边缘、四角)的小方格在逻辑上也是相邻的,卡诺图用几何位置上的相邻, 形象地表示了组成逻辑函数的各个最小项之间在逻辑上的相邻性。在数字电路原理与实践课程中,我们常常将卡诺图作为化简逻辑函数的工具。 利用卡诺图化简逻辑函数的方法称为卡诺图化简法或图形化简法。化简时依据的基本原理就是具有相邻性的最小项可以合并,以此消去不同的因子。由于在卡诺图上几何位置相邻与逻辑上的相邻性是一致的,因而我们能够从卡诺图上直观地找出那些具有相邻性的最小项并将其合并、化简。利用卡诺图合并最小项的规则如下: 如果两个最小项逻辑相邻,那么二者可以合并成为一项并消去一对因子,合并后的结果中只包含公共因子。 如果四个最小项逻辑相邻并且排列成一个矩形组,那么它们可以合并成为一项并且消去两对因子,合并后的结果中只包含公共因子。 如果八个最小项逻辑相邻并且排列成一个矩形组,那么它们可以合并为一项并且消去三对因子,合并后的结果中只包含公共因子。 事实上,我们可以总结出,在卡诺图中,可以圈起i2个“1”单元的矩形集,矩形的定义包括图的边缘。相应乘积项的变量可以直接从卡诺图中确定,每个变

逻辑函数的化简方法

一、公式法化简:是利用逻辑代数的基本公式,对函数进行消项、消因子。常用方法有: ①并项法利用公式AB+AB’=A 将两个与项合并为一个,消去其中的一个变量。 ②吸收法利用公式A+AB=A 吸收多余的与项。 ③消因子法利用公式A+A’B=A+B 消去与项多余的因子 ④消项法利用公式AB+A’C=AB+A’C+BC 进行配项,以消去更多的与项。 ⑤配项法利用公式A+A=A,A+A’=1配项,简化表达式。 二、卡诺图化简法 逻辑函数的卡诺图表示法 将n变量的全部最小项各用一个小方块表示,并使具有逻辑相邻性的最小项在几何位置上相邻排列,得到的图形叫做n变量最小项的卡诺图。 逻辑相邻项:仅有一个变量不同其余变量均相同的两个最小项,称为逻辑相邻项。 1.表示最小项的卡诺图 将逻辑变量分成两组,分别在两个方向用循环码形式排列出各组变量的所有取值组合,构成一个有2n个方格的图形,每一个方格对应变量的一个取值组合。具有逻辑相邻性的最小项在位置上也相邻地排列。 用卡诺图表示逻辑函数: 方法一:1、把已知逻辑函数式化为最小项之和形式。 2、将函数式中包含的最小项在卡诺图对应的方格中填1,其余方格中填0。 方法二:根据函数式直接填卡诺图。 用卡诺图化简逻辑函数: 化简依据:逻辑相邻性的最小项可以合并,并消去因子。 化简规则:能够合并在一起的最小项是2n个。 如何最简:圈数越少越简;圈内的最小项越多越简。 注意:卡诺图中所有的1 都必须圈到,不能合并的1 单独画圈。 说明,一逻辑函数的化简结果可能不唯一。 合并最小项的原则: 1)任何两个相邻最小项,可以合并为一项,并消去一个变量。 2)任何4个相邻的最小项,可以合并为一项,并消去2个变量。 3)任何8个相邻最小项,可以合并为一项,并消去3个变量。 卡诺图化简法的步骤: 画出函数的卡诺图; 画圈(先圈孤立1格;再圈只有一个方向的最小项(1格)组合); 画圈的原则:合并个数为2n;圈尽可能大(乘积项中含因子数最少);圈尽可能少(乘积项个数最少);每个圈中至少有一个最小项仅被圈过一次,以免出现多余项。 写出最简与或表达式。

卡诺图化简逻辑函数

卡诺图化简逻辑函数的方法和理论依据

摘要:从最小项的定义和性质入手,简述卡诺图化简逻辑函数的理论依据以及化简是否达到最简形式的判定标准。通过举例来解释利用卡诺图化简少变量逻辑函数的一般方法,以及卡诺图在数字电子技术中其他应用。另外介绍一种多变量逻辑函数的卡诺图解法。关键词:卡诺图;最小项;逻辑函数化简;多变量

0 引言 在逻辑电路的分析和设计中,经常会遇到逻辑函数的化简问题。如果利用常规的公式法化简,除需要掌握大量的基本公式外,还需要能够灵活、交替地运用各种方法,方可求得最简结果,而且有时不易判断是否已简化到最简形式,技巧性较强,对使用者的要求较高。 当所需化简的逻辑函数输入变量较少时(一般不大于4个),利用科诺图化简法可以更简单、直接的得到逻辑函数的最简表达式。因此逻辑函数的卡诺图化简法在实际分析、设计电路时有很广泛的应用。 1 最小项定义及其性质 1.1最小项的定义 设有n个逻辑变量,由它们组成具有n个变量的“与”项中,每个变量以原变量或者反变量的形式出现一次且仅出现一次,则称这个与项为最小项。对于n个变量来说,可有2n个最小项。 任何一个逻辑函数均可表示成惟一的一组最小项之和,称它为标准的与或表达式,也称为最小项表达式。对于任意一个最小项,只有一组变量取值使它的值为1,而变量的其他取值都使该最小项为0。事实上,真值表的每一行对应着一个最小项。表(1)中列出了最小项取值为1时,各输入变量的取值。我们约定:将最小项为l时各输入变量的取值视为二进制,其对应的十进制i作为最小项的编号,并把该最小项记作m i。如A、B、C三个变量有2n =8个最小项,如表(1)所示。 图(1)

用卡诺图化简逻辑函数

用卡诺图化简逻辑函数

小项可用m 0, m 1,m 2,……来编号。 1 01 00 01 11 10 01A BC AB CD B A 00011110 00 01 11 10 m m m m m m m m m m m m 012 3 00112233m m m m m m m m m m m m m m m m 45678910 1112131415 图1.4.1 卡诺图 二、应用卡诺图表示逻辑函数 应用卡诺图化简逻辑函数时,先将逻辑式中的最小项(或逻辑状态表中取值为1的最小项)分别用1填入相应的小方格内,其它的则填0或空着不填。如果逻辑式不是由最小项构成,一般应先化为最小项或将其列出逻辑状态表后填写。 三、应用卡诺图化简逻辑函数 1、一个正确卡诺圈的要求: (1)画在一个卡诺圈内的1方格数必须是2m 个(m 为大于等于0的整数)。 (2)画在一个卡诺圈内的2m 个1方格必须排列成方阵或矩阵。 (3)一个卡诺圈内的1方格必须是对称相邻的。 2、利用卡诺图化简逻辑函数的步骤: (1)先找没有相邻项的独立1方格,单独画圈。 (2)其次,找只能按一条路径合并的两个相邻方格,画圈。 (3)再次,找只能按一条路径合并的四个相邻方格,画圈。 (4)再次,找只能按一条路径合并的八个相邻方格,画圈。 (5)依此类推,若还有1方格未被圈,找合适的圈画出。 如: 化简C B A BC A C B A C B A Y +++=1

A BC 1 0000111101 1110 00 则有:Y1=C C B +A 化简)15,14,13,12,5,4,3,0(2m Y ∑= AB C B D C A CD B A Y +++=2 3、 具有无关项的逻辑函数的化简 逻辑函数中的无关项: ⎩ ⎨ ⎧的取值不可能出现)一定约束关系,使它们约束项(逻辑变量之间,输出是任意的)任意项(对某些输入项 用“×”(或“d ” )表示 利用无关项化简原则: 无关项即可看作“1”也可看作“0”。卡诺图中,圈组内的“×”视为“1”, 组外的视为“0”。

数字逻辑电路 《逻辑函数的卡诺图化简法》

逻辑函数的卡诺图化简法 (1)卡诺图化简性质 性质1:卡诺图中两个逻辑相邻的1方格的最小项可以合并成一个与项,消去一个变量。 值得注意的是:逻辑相邻不仅仅是几何位置上的相邻,最左边的列与最右边的列、最上面的行和最下面的行都是逻辑相邻的。 性质2:卡诺图中四个逻辑相邻1方格的最小项可以合并成一个与项,并消去两个变量。 性质3:卡诺图中八个逻辑相邻的1方格可以合并成一个与项,并消去三个变量。 (2)卡诺图化简步骤及举例 用卡诺图化简逻辑函数的步骤: ① 画出函数的卡诺图; ② 仔细观察卡诺图,找出n 2(n 为正整数)个逻辑相邻的1值格,并给它们画上圈,画圈的原则要使圈尽可能大; ③ 按照卡诺图化简性质,写出最简与或表达式。 例1 用卡诺图化简方法求逻辑函数)7,6,3,2,1(),,,(∑=C B A F 的最简与或表达式。 解 ① 画出函数F 的卡诺图。 对于在函数F 的标准与或表达式中出现的最小项,在该卡诺图的对应小方格中填1,其余方格填0或者不填,该函数的卡诺图如图1(a )所示。 ② 给逻辑相邻的1值格画圈。 把图中相邻且能合并在一起的1值格圈在一个大圈中,如图1(b )所示。 注意相邻的1值格可被重复圈用。 ③ 按照卡诺图化简性质,写出每个圈的最简与或表达式,并把它们相或起来,就得到该逻辑函数的最简与或表达式。 对卡诺图中画的两个圈进行化简,四个1值格相邻的圈,可以消掉2个变量,化简后得到B ;两个1值格相邻的圈,可以消掉1个变量,化简后得C A 。 将这两个与项相或,便得到该逻辑函数的最简与或表达式:B C A F +=。 例2 用卡诺图化简函数D C AB CD B A D C B A CD B A D C B A F +++= ),,,(。 解 ① 画出函数F 的卡诺图。 把逻辑函数写成最小项形式如下: D C AB CD B A D C B A CD B A D C B A F +++= ),,,( 131193m m m m +++= ∑=)13,11,9,3(m 图1 例1的卡诺图

数字逻辑电路 《逻辑函数的卡诺图化简法》习题及参考答案

逻辑函数的卡诺图化简法 习题及参考答案 习题1 用卡诺图化简下列函数,并写出最简与或表达式: (1)C B C B B A F ++= 参考答案:B A F +=,卡诺图如下所示。 (2)D B A CD A B A D C A ABD F ++++= 参考答案:CD A D B A D C B BD B A F +⋅+⋅⋅++=,卡诺图如下所示。 (3)()15,13,10,8,7,5,2,0),,,(∑=D C B A F 参考答案:D B BD F ⋅+=,卡诺图如下所示。

习题2 用卡诺图化简下列具有约束条件为AB +AC = 0的函数,并写出最简与或表达式: (1)C A B A F += 参考答案:C A B F ⋅+=,卡诺图如下所示。 (2)D C B A D B A BD A C B A F +++= 参考答案:D A C B F ++=,卡诺图如下所示。 习题3 根据如下真值表,写出逻辑函数。化简此函数,并画出逻辑图。 A B C F 1 F 2 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 参考答案:C B A AC C B ABC C B A C B A C B A F ++=+++⋅=1

BC AC AB ABC C AB C B A BC A F ++=+++=2 逻辑图如下所示: 习题4 某逻辑电路有三个输入A 、B 、C ,当输入相同时,输出为1,否则输出为0,列出此逻辑事件的真值表,写出逻辑表达式。 参考答案:真值表如下图所示 逻辑表达式为ABC C B A F +⋅⋅=

卡诺图化简逻辑函数

卡诺图化简逻辑函数

卡诺图化简逻辑函数的方法和理论依据

0 引言 在逻辑电路的分析和设计中,经常会遇到逻辑函数的化简问题。如果利用常规的公式法化简,除需要掌握大量的基本公式外,还需要能够灵活、交替地运用各种方法,方可求得最简结果,而且有时不易判断是否已简化到最简形式,技巧性较强,对使用者的要求较高。 当所需化简的逻辑函数输入变量较少时(一般不大于4个),利用科诺图化简法可以更简单、直接的得到逻辑函数的最简表达式。因此逻辑函数的卡诺图化简法在实际分析、设计电路时有很广泛的应用。 1 最小项定义及其性质 1.1最小项的定义 设有n个逻辑变量,由它们组成具有n个变量的“与”项中,每个变量以原变量或者反变量的形式出现一次且仅出现一次,则称这个与项为最小项。对于n 个变量来说,可有2n个最小项。 任何一个逻辑函数均可表示成惟一的一组最小项之和,称它为标准的与或表达式,也称为最小项表达式。对于任意一个最小项,只有一组变量取值使它的值为1,而变量的其他取值都使该最小项为0。事实上,真值表的每一行对应着一个最小项。表(1)中列出了最小项取值为1时,各输入变量的取值。我们约定:将最小项为l时各输入变量的取值视为二进制,其对应的十进制i作为最小项的编号,并把该最小项记作m 。如A、B、C三个变量有2n =8个最小项,如表 i (1)所示。 图(1)

1.2最小项的性质 最小项具有以下三个性质: (1)全体最小项之和为1; (2)任意两个最小项之积为0; (3)若两个最小项之间只有一个变量不同,即在一个最小项中是原变量,在另一个最小项中是反变量,其余各变量均相同,则称这两个最小项是相邻项。两个相邻的最小项之和可以合并成一个与项,并消去一个因子。这一性质很重要,这正是用卡诺图化简逻辑函数的逻辑依据。如:ABC+ABC=(A+A)BC=BC。 2 卡诺图 2.1 卡诺图 把真值表中的最小项重新排列,把它们排列成矩阵形式,并且使矩阵的横方向和纵方向的布尔变量按格雷码的顺序排列,这样构成的图形就是卡诺图。 卡诺图是逻辑函数的一种图形表示。将一个逻辑函数的最小项表达式中的各最小项相应地填入一个方格图内,此方格图即为卡诺图。卡诺图是一种平面方格图,每个小方格代表一个最小项,故又称为最小项方格图。 卡诺图的实质就是真值表的图形化,使得最小项排列得更紧凑,更便于化简。卡诺图中最小项的排列方案不是惟一的;变量的坐标值0表示相应变量的反变量,1表示相应变量的原变量;各小方格依变量顺序取坐标值,所得二进制数对应的十进制数即相应最小项的下标i。 对应于一组n个逻辑变量,则函数共有2n个最小项。如果把每个最小项用一个小方格表示,再将这些小方格以格雷码顺序排列,就可以构成n个变量的卡诺图。

相关主题
相关文档
最新文档