金属中的电子气的理论

金属中的电子气的理论
金属中的电子气的理论

金属中的电子气的理论

金属中的自由电子并非真正自由,而是要受到金属离子的周期势场的作用,因此一些自由电子理论并不能解释金属的全部性质。由F.布洛赫和L.-N.布里渊确立的单电子能带论解释了金属导电性与绝缘体和半导体的差别(见能带理论,半导体),并能定量计算金属的结合能,在考虑了金属离子的热运动的影响后,在描述金属的导电和导热等输运过程方面均取得了很大成功。金属中自由电子之间有很强的相互作用,在低温下考虑了电子通过晶格推动相互耦合就能很好地解释单电子理论无法解释的超导电性。近年来,研究合金中电子运动规律的合金电子理论也是金属电子论中的重要内容。

一、托马斯-费米近似方法

在相互作用强度很大的情况下,相互作用能在系统能量中占主导地位,相比之下,处于基态的系统的粒子由于受到非常强的相互排斥作用,其运动范围受到了限制,因此,动能就会远小于相互作用能。这时候,哈密顿量中的动能就可以忽略掉,被称为托马斯-费米(Thomas-Fermi)近似。一维定态GP 方程变为

则玻色子的密度分布为

同时玻色子密度分布的边界满足,在外势为简谐势的情况

我们得到凝聚体的半径为

则系统的粒子数为

将上式变换一下,得到化学势μ满足

其中单粒子基态的特征半径为

边界R 满足

化学势u 和边界R 都是随着粒子个数N 和相互作用强度U 1的增加而增加的。

在处理多电子原子问题中,、通常采用Hartree-Fook 近似方法比较好,但是计算比较繁复,工作量大,在电子计算机使用以后,可以帮助人们进行大量的计算,减轻人们的负担,但用电子计算机计算有一个缺点,就是计算机只能进行数值计算,而不能解出一般形式,我们希望能找出一个普遍形式,这样对各种具体问题都能适用。

费米模型认为将金属中电子看作限制在边长为a 的立方体盒子中运动.盒子内部势能为0.盒外势能为无限大,这样通过解定态薛定谔方程,可得出金属中电子的许多性质,如电子能级,电子的最高能量,电子的平均能量,电子气的压强,电子气的能级密度和磁化率,而且费米气体模型在固体理论中和原子核结构上也有很大用处,可以推出原子核的质量公式,跟实验结果比较符合得很好。

对于多电子原子应用如下的近似方法,即托马斯——费米方法,这是一个统计方法.它不是直接解薛定愕方程,可得出一些有用结论,其基本思想是在重原子中把正电荷看作连续分布(背景),电子在背景中运动n,这样处理中性原子运动比较成功。

二、哈特利-福克近似方法

通过绝热近似,把电子运动与离子实的运动分开,但系统的薛定谔方程仍然是一个多体方程。由于电子间存在的库伦相互作用,严格求解这种多电子问题是不可能的。通过哈特利-福克(Hartree-Fock )近似,可以将多电子的薛定谔方程简化为单电子有效势方程。

哈特利波函数将多电子波函数表述为每个独立电子波函数的连乘积形式:

()()()()12n n φφφφ=12r r r r

哈特利-福克单电子近似方程可以表示为:

()()()()()''2'',-HF i i i V dr E ρρφφ??-???+-=??-????

?r r r r r r r r 哈特利-福克近似虽然包含了电子与电子的交换相互作用,得到了更进一步的结果,却没有考虑电子之间排斥相互作用,因此仍然具有一定的局限性,不能认为是一个严格的单电子理论。“单电子近似”的近代理论是在密度泛函理论的基础上发展起来的。

三、动态介电函数方法

在此之前,人们主要讨论的是电子系统在静态电场下的性质,而对于其在交流电场下介电性质有理论研究但并不多见,因此研究它在交流电场下的动态介电性质更具有十分重要的意义。我们在得出电子的有效相互作用后,通过动态介电函数计入了多体效应对库伦势的影响。

在研究多电子系统对外场的响应时,可假定在系统原点处附加了一个以一定频率振荡的“试探电荷”探针,由此可得出外场的附加哈密顿量,这其中引入一个指数因子,使得一定的极限条件得到满足,并且保证振荡外场与电子体系间的互作用是无限缓慢地加上的,使得整个系统随之振荡。由于系统的这种振荡,带动系统电子密度起伏而产生一个新的屏蔽势能,将其做傅里叶变换,可得到其所满足的RPA 响应的方程。由此可以引入一个随时间变化的动态介电函数。用这种无规相近似介电函数表示的响应方程,这个方程可决定互作用电子系统的个别激发与集体激发特征。以后我们将看到,利用有效交互作用讨论屏蔽效应,计算相关能和准电子寿命等实际问题将是十分简便的。但是有关的资料有限,所以我对这种近似方法还不是很清楚,这里只是稍加叙述,还需要在以后的学习中加深理解。

四、结论

固体理论是以二次量子化(量子场论、量子多体理论)方法为基础、进一步理论化、系统化固体物理的研究内容所形成的将固体物理特性阐释为环境扰动下相互作用系统元激发问题的学科,其研究范围包括晶格振动、固体磁性、金属和等离子体特性、超导电性、强关联体系和无序系统。在固体理论中使用了和固体

物理不同的描述方式,固体理论通过引入量子场论,用二次量子化的方法实现了对固体中不同现象的统一描述:元激发的概念被推广,固体理论中采用玻色型和费米型激发的模型分别成功的描述了声子、磁振子、等离体子等集体激发行为和准电子、空穴以及极化子等准粒子体系。通过二次量子化,采用库柏对模型可以成功解释第一类超导体的超导机制,并能较好描述电声相互作用、磁振子运动等现象,另外,作为第一性原理计算基础的重要理论——能带论也属于固体理论的研究范畴。固体理论的建立和发展,是为了阐明固体物理这门实验性科学所揭示出来的现象之间的内在本质。固体作为一个很复杂的客体,存在大量的原子和电子,而且他们之间的相互作用相当强。固体的宏观性质就是如此大量的粒子之间的相互作用和集体运动的总表现。在研究某些客观规律时,必须针对某一特殊过程,抓住主要矛盾,突出主要因素来进行分析研究。

金属自由电子气理论

金属自由电子气理论 特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量 自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率 特鲁德(Paul Drude )模型的基本假设1 1.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。 2.独立电子近似:电子与电子之间的相互作用可以忽略不计。外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。) 特鲁德(Paul Drude )模型的基本假设2 3.玻尔兹曼统计:自由电子服从玻尔兹曼统计。 4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。 特鲁德模型的成功之处——成功解释了欧姆定律 欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。

202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ?==-??=??-?? =+??=????==???=-?? 2.经典模型的另一困难:传导电子的热容 根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故 333 (),222 A B e U U N k T RT C R T ?====? 33/29v ph e C C C R R =+=+≈(卡/molK.) 但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。 4.2 Sommerfeld 的自由电子论 1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论 抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。 量子力学的索末菲模型 1、独立电子近似:所有离子实提供正电背景,忽略电子与电子之间的相互作用。 2、自由电子近似:电子与原子实之间的相互作用也被忽略。 3、采用费米统计以代替玻尔兹曼统计。 传导电子的索末菲模型

金属自由电子理论

第四章金属自由电子理论 1.金属自由电子论作了哪些假设?得到了哪些结果? 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。 2.金属自由电子论在k空间的等能面和费米面是何形状?费米能量与哪些因素有关? 解:金属自由电子论在k空间的等能面和费米面都是球形。费米能量与电子密度和温度有关。 3.在低温度下电子比热容比经典理论给出的结果小得多,为什么? 解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。 4.驰豫时间的物理意义是什么?它与哪些因素有关? 解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。 5.当2块金属接触时,为什么会产生接触电势差? 解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,

所以这2块金属接触时,会产生接触电势差。 6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。 解:(1)该一维金属晶体的电子状态密度为: dE dk dk dZ dE dZ E ? == )(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为: dk L dk dZ π =?= k 2 …………………………(2) 又由于 m k E 22 2 = 所以 m k dk dE 2 = …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为: E m L E 22)( πρ= …………………………(4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电

金属中的电子气的理论

金属中的电子气的理论 金属中的自由电子并非真正自由,而是要受到金属离子的周期势场的作用,因此一些自由电子理论并不能解释金属的全部性质。由F.布洛赫和 .布里渊确立的单电子能带论解释了金属导电性与绝缘体和半导体的差别(见能带理论,半导体),并能定量计算金属的结合能,在考虑了金属离子的热运动的影响后,在描述金属的导电和导热等输运过程方面均取得了很大成功。金属中自由电子之间有很强的相互作用,在低温下考虑了电子通过晶格推动相互耦合就能很好地解释单电子理论无法解释的超导电性。近年来,研究合金中电子运动规律的合金电子理论也是金属电子论中的重要内容。 一、托马斯-费米近似方法 在相互作用强度很大的情况下,相互作用能在系统能量中占主导地位,相比之下,处于基态的系统的粒子由于受到非常强的相互排斥作用,其运动范围受到了限制,因此,动能就会远小于相互作用能。这时候,哈密顿量中的动能就可以忽略掉,被称为托马斯-费米(Thomas-Fermi)近似。一维定态GP 方程变为 则玻色子的密度分布为

同时玻色子密度分布的边界满足,在外势为简谐势的情况 我们得到凝聚体的半径为 则系统的粒子数为 将上式变换一下,得到化学势μ 满足 其中单粒子基态的特征半径为 边界R满足 化学势u和边界R都是随着粒子个数N和相互作用强度U1的增加而增加的。

在处理多电子原子问题中,、通常采用Hartree-Fook近似方法比较好,但是计算比较繁复,工作量大,在电子计算机使用以后,可以帮助人们进行大量的计算,减轻人们的负担,但用电子计算机计算有一个缺点,就是计算机只能进行数值计算,而不能解出一般形式,我们希望能找出一个普遍形式,这样对各种具体问题都能适用。 费米模型认为将金属中电子看作限制在边长为a的立方体盒子中运动.盒子内部势能为0.盒外势能为无限大,这样通过解定态薛定谔方程,可得出金属中电子的许多性质,如电子能级,电子的最高能量,电子的平均能量,电子气的压强,电子气的能级密度和磁化率,而且费米气体模型在固体理论中和原子核结构上也有很大用处,可以推出原子核的质量公式,跟实验结果比较符合得很好。 对于多电子原子应用如下的近似方法,即托马斯——费米方法,这是一个统计方法.它不是直接解薛定愕方程,可得出一些有用结论,其基本思想是在重原子中把正电荷看作连续分布(背景),电子在背景中运动n,这样处理中性原子运动比较成功。 二、哈特利-福克近似方法 通过绝热近似,把电子运动与离子实的运动分开,但系统的薛定谔方程仍然是一个多体方程。由于电子间存在的库伦相互作用,严格求解这种多电子问题是不可能的。通过哈特利-福克(Hartree-Fock)近似,可以将多电子的薛定谔方程简化为单电子有效势方程。 哈特利波函数将多电子波函数表述为每个独立电子波函数的连

金属电子论

第六章 金属电子论 1列出你所知道的几种金属—绝缘体相变的名称。 Wilson 转变,派尔斯转变,Mott 转变,安德森转变 2什么是由于无序而导致的安德逊(Anderson )金属-绝缘体相变 改变无序度,使迁移率边的位置移动,就可能使费米面能级从位于定域态区域经过迁移率边进入扩展态区域使电导从非金属型转变成金属型,反之亦然,这类金属-绝缘体转变称为安德森转变。 3什么是派尔斯(Peierls )金属-绝缘体相变 4描述固体中电子输运的Boltzmann 方程和Kubo-Greenwood 公式各自的适用范围是什么 5什么是金属的剩余电阻,起因是什么 6利用费米子统计和自由电子气体模型说明低温下的电子比热满足T 线性关系。 0T K =时,自由电子气的总能量为:()()0,NE Ef E T N E dE ∞ =?,可以求出电子平均能量E 为:()22354B F F k T E E E π=+。其中第一项是基态的电子平均能量,第二项是热激发的能量,由此可得电子的比热为:e E C n T T γ?==?,222B F nk E πγ=。——电子比热系数。 7重费米系统、接触电势、安德森转变。 重费米系统: 接触电势:任意两个不同的导体A 和B 相接触,或以导线相联结时,就会带电并产生不同的电势V A 和V B ,称为接触电势。 8为什么金属电子自由程是有限的但又远远大于原子间距?

按照能带论,在严格周期性势场中,电子可以保持在一个本征态中,具有一定的平均速度,并不随时间改变,这相当于无限的自由程。实际自由程之所以是有限的,则是由于原子振动或其他原因致使晶体势场偏离周期场的结果。 9利用能带图定性说明主要金属-绝缘体转变类型 10在低温下金属钾的摩尔热容量的实验结果可写成 C= + mJ/mol?K,如果一个摩尔的金属钾有N =6×1023个电子, 求钾的费米温度T 。

金属中自由电子气体

1)经典定理固体原子作独立的简谐振动+能量均分定理仅在室温和高温范围内符合实验 2)爱因斯坦理论固体原子的振动模满足谐振子解+所有固体原子作同频共振+原子在振动模上服从玻尔兹曼分布在低温上定性符合3)德拜理论(非金属固体)固体原子的振动模式按频率的分布服从驻波条件+固体原子的振动模式的能量满足谐振子解+每一个振动模式只与一个原子的振动相对应+原子在振动模式上服从玻尔兹曼分布在低温时定性符合4)索末菲理(金属固体)对于金属固体:离子振动贡献+自由电子气体贡献。对自由电子气体:电子具有波粒二象性+电子的量子态满足驻波条件+自由电子在量子态上的填充满足费米分布。对离子振动:服从德拜理论,在低温处①金属中的自由电子形成强简并的费米气体,或者说自由电子气体以强简并形式占据量子态。 ②德布罗意假设——电子具有波粒二象性 ③电子自旋为1/2,且电子间为库仑相互作用。金属中的自由电子服从费米分布 ④在体积V 内,能量在的范围内,电子的实际量子态为⑤0K 时费米温度和电子简并压。当T=0K 时,化学势设为,则由费米分布有平均粒子数(体现了占据最低能量态和泡利不相容原理) 一般情况下,,即电子气体的分布与0K 时相差不大,与十分接近。由的分布可知,只有能量在附近,量级为的范围内的电子对热容量有贡献。这部分粒子数为、对能量和热容的贡献为固体的热容量问题 金属中的自由电子气体由自由电子在量子态上的费米分布,总电子数为 费米能级 费米动量费米温度(根据单个粒子的等效热温度概念) 0K 时的自由电子气体的内能 0K 时的自由电子气体的压强 T>0K 时自由电子气体性质自由电子气体的热容量的定量计算 低温下金属固体的实际定容热容量贡献的来源:金属中的离子振动——德拜理论+金属中的自由电子气体——索末菲理论。低温下金属的总定容热容量为自由电子气体

(完整版)第四章金属自由电子理论

第四章 金属自由电子理论 1.金属自由电子论作了哪些假设?得到了哪些结果? 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。 2.金属自由电子论在k 空间的等能面和费米面是何形状?费米能量与哪些因素有关? 解:金属自由电子论在k 空间的等能面和费米面都是球形。费米能量与电子密度和温度有关。 3.在低温度下电子比热容比经典理论给出的结果小得多,为什么? 解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。 4.驰豫时间的物理意义是什么?它与哪些因素有关? 解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。 5.当2块金属接触时,为什么会产生接触电势差? 解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。 6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。 解:(1)该一维金属晶体的电子状态密度为: dE dk dk dZ dE dZ E ? == )(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为: dk L dk dZ π =?=k 2 ………………………… (2) 又由于 m k E 22 2η= 所以 m k dk dE 2η= …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该 一维金属晶体中自由电子的状态密度为: E m L E 22)(ηπρ= (4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:

金属自由电子理论

金属自由电子理论文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

第四章金属自由电子理论 1.金属自由电子论作了哪些假设得到了哪些结果 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。 2.金属自由电子论在k空间的等能面和费米面是何形状费米能量与哪些因素有关 解:金属自由电子论在k空间的等能面和费米面都是球形。费米能量与电子密度和温度有关。 3.在低温度下电子比热容比经典理论给出的结果小得多,为什么 解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。 4.驰豫时间的物理意义是什么它与哪些因素有关 解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。 5.当2块金属接触时,为什么会产生接触电势差 解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。

6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。 解:(1)该一维金属晶体的电子状态密度为: dE dk dk dZ dE dZ E ? == )(ρ (1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为: dk L dk dZ π =?= k 2 (2) 又由于 m k E 22 2 = 所以 m k dk dE 2 = …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为: E m L E 22)( πρ= (4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:

金属键和金属晶体结构理论

金属键和金属晶体结构理论 在高中化学课本“金属键”一节中,简略地讲了金属键的自由电子理论和金属晶体的圆球密堆积结构。在本节中将介绍这两种理论的有关史实,并对理论本身进一步加以阐述。 一、金属键理论及其对金属通性的解释 一切金属元素的单质,或多或少具有下述通性:有金属光泽、不透明,有良好的导热性与导电性、有延性和展性,熔点较高(除汞外在常温下都是晶体),等等。这些性质是金属晶体内部结构的外在表现。 金属元素一般比较容易失去其价电子变为正离子,在金属单质中不可能有一部分原子变成负离子而形成离子键。由于X射线衍射法测定金属晶体结构的结果可知,其中每个金属原子与周围8到12个同等(或接近同等)距离的其它金属原子相紧邻,只有少数价电子的金属原子不可能形成8到12个共价键。金属晶体中的化学键应该属于别的键型。 1916年,荷兰理论物理学家洛伦兹(Lorentz.H.A.1853-1928)提出金属“自由电子理论”,可定性地阐明金属的一些特征性质。这个理论认为,在金属晶体中金属原子失去其价电子成为正离子,正离子如刚性球体排列在晶体中,电离下来的电子可在整个晶体范围内在正离子堆积的空隙中“自由”地运行,称为自由电子。正离子之间固然相互排斥,但可在晶体中自由运行的电子能吸引晶体中所有的正离子,把它们紧紧地“结合”在一起。这就是金属键的自由电子理论模型。 根据上述模型可以看出金属键没有方向性和饱和性。这个模型可定性地解释金属的机械性能和其它通性。金属键是在一块晶体的整个范围内起作用的,因此要断开金属比较困难。但由于金属键没有方向性,原子排列方式简单,重复周期短(这是由于正离子堆积得很紧密),因此在两层正离子之间比较容易产生滑动,在滑动过程中自由电子的流动性能帮助克服势能障碍。滑动过程中,各层之间始终保持着金属键的作用,金属虽然发生了形变,但不至断裂。因此,金属一般有较好的延性、展性和可塑性。 由于自由电子几乎可以吸收所有波长的可见光,随即又发射出来,因而使金属具有通常所说的金属光泽。自由电子的这种吸光性能,使光线无法穿透金属。因此,金属一般是不透明的,除非是经特殊加工制成的极薄的箔片。关于金属的良好导电和导热性能,高中化学课本中已用自由电子模型作了解释。 上面介绍的是最早提出的经典自由电子理论。1930年前后,由于将量子力学方法应用于研究金属的结构,这一理论已获得了广泛的发展。在金属的物理性质中有一种最有趣的性质是,包括碱金属在内的许多金属呈现出小量的顺磁性,这种顺磁性的大小近似地与温度无关。泡利曾在1927年对这一现象进行探讨,正是这一探讨开辟了现代金属电子理论的发展。它的基本概念是:在金属中存在着一组连续或部分连续的“自由”电子能级。在绝对零度时,电子(其数目为N个)通常成对地占据N/2个最稳定的能级。按照泡利不相容原理的要求,每一对电子的自旋方向是相反的;这样,在外加磁场中,这些电子的自旋磁矩就不能有效地取向。 当温度比较高时,其中有一些配对的电子对被破坏了,电子对中的一个电子被提升到比较高的能级。未配对的电子的自旋磁矩能有效地取向,所以使金属具有顺磁性。(前一节中介绍价键理论的局限性时已指出,顺磁性物质一般是具有自旋未配对电子的物质。)未配对电子的数目随着温度的升高而增多;然而,每个未配对电子的自旋对顺磁磁化率的贡献是随着温度的升高而减小的。对这二种相反的效应进行定量讨论,解释了所观察到的顺磁性近似地与温度无关。 索末菲与其他许多研究工作者,从1928年到30年代广泛地发展了金属的量子力学理论,建立起现代金属键和固体理论──能带理论,可以应用分子轨道理论去加以理解。(可参看大学《结构化学》教材有关部分) 二、等径圆球密堆积模型和金属单质的三种典型结构 在高中化学课本“金属键”一节中,讲到金属晶体内原子的排列,好象许多硬球一层一层地紧密地堆积在一起,形成晶体。课本中还画出了示意图。所谓等径圆球紧密堆积,就是要把许多直径相同的圆球堆积起来做到留下的空隙为最小。

2金属自由电子气的Drude模型

上讲回顾 ?固体的微观定义 *固体中的原子在其平衡位置附近作微小振动 ?贯穿课程的主线→ *周期性→波在周期性结构中的运动 10.107.0.68/~jgche/金属电子气的Drude模型1

本讲内容:建模→推演→比较→修正?如何用在1900年左右可以理解和接受的假设、 前提和经典理论,在微观层次上建立研究金属 宏观性质的模型,解释实验观察到的金属的良 好导电和导热现象 *对已知现象,用已有知识,抓住要点 *困难之处施展腾挪手段 #一时搞不清楚的相互作用,用近似和假定绕过去?自由电子近似、独立电子近似、弛豫时间近似*用该模型研究金属的电导、热导→ #成功地解释Wiedemann-Franz定律 *对比实验,分析该模型的局限,提出模型改进之道10.107.0.68/~jgche/金属电子气的Drude模型2

第2讲、金属电子气的Drude模型 1.已知的金属性质 2.模型的建立——基本假定及其合理性分析 3.金属电导率 4.金属热传导 5.Wiedemann-Franz定律 6.Hall效应和磁阻 7.Drude模型的局限 10.107.0.68/~jgche/金属电子气的Drude模型3

1、已知的金属性质 模型建立的依据 10.107.0.68/~jgche/金属电子气的Drude模型4

为什么研究固体从金属开始? ?金属最基本物质状态之一,元素周期表中有2/3是金属元素,应用很广泛,当时对金属的了解 比其他固体多 *比如,电导、热导、光泽、延展等性能很早开始就 被广泛应用 *区分非金属,实际上也是从理解金属开始 ?当时已经知道很多其他固体所没有的金属性质*这些性质很多已经有应用,亟需知道其之所以有这 些性质的原因 10.107.0.68/~jgche/金属电子气的Drude模型5

第四章 金属电子论

4.1 经典电子论 特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量 自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率 特鲁德(Paul Drude )模型的基本假设1 1.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。 2.独立电子近似:电子与电子之间的相互作用可以忽略不计。外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。) 特鲁德(Paul Drude )模型的基本假设2 3.玻尔兹曼统计:自由电子服从玻尔兹曼统计。 4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。 特鲁德模型的成功之处——成功解释了欧姆定律 欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。

202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ?==-??=??-?? =+??=????==???=-?? 2.经典模型的另一困难:传导电子的热容 根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故 333 (),222 A B e U U N k T RT C R T ?====? 33/29v ph e C C C R R =+=+≈(卡/molK.) 但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。 4.2 Sommerfeld 的自由电子论 1925年:泡利不相容原理 1926年:费米—狄拉克量子统计 1927年:索末菲半经典电子论 抛弃了特鲁德模型中的玻尔兹曼统计,认为电子气服从费米—狄拉克量子统计得出了费米能级,费米面等重要概念,并成功地解决了电子比热比经典值小等经典模型所无法解释的问题。 量子力学的索末菲模型 1、独立电子近似:所有离子实提供正电背景,忽略电子与电子之间的相互作用。 2、自由电子近似:电子与原子实之间的相互作用也被忽略。 3、采用费米统计以代替玻尔兹曼统计。 传导电子的索末菲模型

金属电子论-正文

金属电子论-正文 研究金属中电子运动状态的理论。金属由一种或多种元素的原子所组成。晶体学和金属学从原子尺度研究金属,而电子论则从电子的运动状态阐述金属的结构与特性。当孤立的原子结合成金属时,各原子的原子核和内层电子所构成的离子实变化很少,而外层电子的运动状态则显著改变。金属中带正电的离子实组成周期排列的空间点阵,而带负电的外层电子则由原来被束缚在单个原子内的局域状态变为整个点阵所共有的状态。因此,这些电子可以起到导电、导热作用,称为传导电子或自由电子。传导电子的公有化是金属键的主要特点。 电子论阐述;①单个电子在金属中受到的作用力,以及在其作用下电子的运动状态;②金属中数量极大,本质上相同的电子在不同的能量状态中的分布;③在前二者的基础上对电子进行统计研究,获得有关的宏观性质。 金属中的传导电子,既受到所有离子实的作用,也受其他众多的传导电子的作用。 早期的经典电子论,把金属中的传导电子作为在金属内部自由运动的经典粒子。除碰撞外不受点阵离子实的作用。它们相当于容器中自由运动的理想气体的分子(因而称为自由电子气),电子的能量是可以连续变化的,自由电子气服从玻耳兹曼(Boltzmann)分布律。 量子力学建立之后,用以处理自由电子运动,并采用量子统计,使自由电子论得到了发展。后来又用周期场来反映离子实点阵的作用,得到了能带理论。 在具有周期起伏势场的离子实点阵中,在相邻两阵点间的中点附近,场强接近于零;但在离子实中心附近,电子受到很强的吸引力,处理这问题可以有不同的近似方法。 近自由电子理论以自由电子状态作为起点,考虑一个微小起伏的周期势场的影响,用微扰法解薛定谔方程。图 1b是一维情况下的主要结果(图 1是自由电子论中自由能级和波数的关系曲线)。对于大多数能级,电子和自由电子相似,E-k曲线仍为抛物线,E为电子能量,k为电子波数。但在(a为点阵周期,n为整数)附近,曲线发生间断,出现能隙,E-k曲线偏离原来的抛物线。准连续的能级分成一些能带,电子不能具有能隙内能级的能量(即禁带),能隙宽度决定于周期势场相应的傅里叶分量,因而与该方向上的点阵周期和势函数的形式有关。出现间断的条件相当于电子波在相应晶面反射的布喇格条件nλ=2d sinθ(d为晶面间距,θ为入射波与晶面的夹角)。

金属自由电子理论

金属自由电子理论 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

第四章金属自由电子理论 1.金属自由电子论作了哪些假设得到了哪些结果 解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。 2.金属自由电子论在k空间的等能面和费米面是何形状费米能量与哪些因素有关 解:金属自由电子论在k空间的等能面和费米面都是球形。费米能量与电子密度和温度有关。 3.在低温度下电子比热容比经典理论给出的结果小得多,为什么 解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。 4.驰豫时间的物理意义是什么它与哪些因素有关 解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。 5.当2块金属接触时,为什么会产生接触电势差

解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。 6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。试求: (1)电子的状态密度; (2)电子的费米能级; (3)晶体电子的平均能量。 解:(1)该一维金属晶体的电子状态密度为: dE dk dk dZ dE dZ E ? == )(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为: dk L dk dZ π =?= k 2 (2) 又由于 m k E 22 2 = 所以 m k dk dE 2 = (3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:

金属自由电子

范佳华20111101113 物理一班 金属自由电子气体模型 1:金属自由电子气体模型和理想气体的联系 什么是理想气体:严格遵从气态方程(PV=(m/M)RT=nRT)的气体,叫做理想气体(Ideal gas)。从微观角度来看是指:分子本身的体积和分子间的作用力都可以忽略不计的气体,称为是理想气体。理想气体具有的性质: 1、分子体积与气体体积相比可以忽略不计; 2、分子之间没有相互吸引力; 3、分子之间及分子与器壁之间发生的碰撞不造成动能损失。 4、在容器中,在未碰撞时考虑为作匀速运动,气体分子碰撞时发生速度交换,无动能损失。 5、解热学题的时候,简单的认为是分子势能为零,分子动能不为零。 6、理想气体的内能是分子动能之和。 把理想气体的性质运用于金属中,金属中的大量传导电子近视的类似于经典理想气体,可以把它们归纳

为四个基本假设: 1:独立电子近似——忽视电子与电子之间的相互作用2:自由电子近似——近似认为单个电子在与离子实的相继两次碰撞之间做自由运动,故金属中的传到电子又称为自由电子。 3:弛豫时间近似——不论碰撞前后如何近似认为与离子实碰撞后电子速度的统计分布将恢复到平衡状态。4:经典近似——在与离子实的相继两次碰撞之间的电子的运动遵循牛顿运动定律,碰撞前后电子遵循boltzmann统计分布。 在我看来,这个时候金属自由电子气体模型有点理想化,对于理想气体我们知道这时气体的温度体积和压强都不会发生改变,也就是说处于一个非常稳定的状态,在金属中,我们可以考虑它的一些性质,金属在我们生活中最重要的性质我们知道是导电性,导热性,延展性,熔点高,这与金属的内部结构有关,这时把理想气体的性质运用到金属中,我们就能够假设金属内部的电子和电子~电子和离子实之间碰撞基本上队金属本身是没有什么影响的,而且彼此之间的碰撞可能还有一定的规律可循,可以运用一些宏观上的

金属电子气体理论

一,金属自由电子气体模型 1.1 经典电子论 特鲁德电子气模型:特鲁德提出了第一个固体微观理论利用微观概念计算宏观实验观测量 自由电子气+波尔兹曼统计→欧姆定律 电子平均自由程+分子运动论→电子的热导率 特鲁德(Paul Drude )模型的基本假设1 1.自由电子近似:传导电子由原子的价电子提供,离子实对电子的作用可以忽略不计,离子实的作用维持整个金属晶体的电中性,与电子发生碰撞。 2.独立电子近似:电子与电子之间的相互作用可以忽略不计。外电场为零时,忽略电子之间的碰撞,两次碰撞(与离子实碰撞)之间电子自由飞行(与经典气体模型不同,电子之间没有碰撞,电子只与离子实发生碰撞,这一点我们将在能带论中证明是错误的。) 特鲁德(Paul Drude )模型的基本假设2 3.玻尔兹曼统计:自由电子服从玻尔兹曼统计。 4.弛豫时间近似:电子在单位时间内碰撞一次的几率为1/τ,τ称为弛豫时间(即平均自由时间)。每次碰撞时,电子失去它在电场作用下获得的能量,即电子和周围环境达到热平衡仅仅是通过与原子实的碰撞实现的。 特鲁德模型的成功之处——成功解释了欧姆定律 欧姆定律E j ρ=(或j E σ=),其中E 为外加电场强度、ρ为电阻率、j 为电流密度。 202()1I j nev ne S j E eEt m v v E j m ne eE m v m τρτστρ?==-??=??-??=+??=????==???=-?? 1.2.经典模型的另一困难:传导电子的热容 根据理想气体模型,一个自由粒子的平均热量为3/2B k T ,故 333 (),222A B e U U N k T RT C R T ?====? 33/29v ph e C C C R R =+=+≈(卡/molK.) 但金属在高温时实验值只有6(卡/molK.),即3v C R ≈。 1.3 Sommerfeld 的自由电子论

相关文档
最新文档