均值不等式的一个推广

均值不等式的一个推广
均值不等式的一个推广

基本不等式(很全面)

基本不等式 【知识框架】 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若*,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则22?? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则12x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab b a +≤+≤≤+ 6、柯西不等式 (1)若,,,a b c d R ∈,则22222 ()()()a b c d ac bd ++≥+

(2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 【题型归纳】 题型一:利用基本不等式证明不等式 题目1、设b a ,均为正数,证明不等式:ab ≥b a 112 + 题目2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++222 题目3、已知1a b c ++=,求证:22213a b c ++≥ 题目4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 题目5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ??????---≥ ???????????

(完整版)均值不等式及其证明

1平均值不等式及其证明 平均值不等式是最基本的重要不等式之一,在不等式理论研究和证明中占有重要的位置。平均值不等式的证明有许多种方法,这里,我们选了部分具有代表意义的证明方法,其中用来证明平均值不等式的许多结论,其本身又具有重要的意义,特别是,在许多竞赛的书籍中,都有专门的章节介绍和讨论,如数学归纳法、变量替换、恒等变形和分析综合方法等,这些也是证明不等式的常用方法和技巧。 1.1 平均值不等式 一般地,假设12,,...,n a a a 为n 个非负实数,它们的算术平均值记为 12...,n n a a a A n +++= 几何平均值记为 112(...)n n n G a a a == 算术平均值与几何平均值之间有如下的关系。 12...n a a a n +++≥ 即 n n A G ≥, 当且仅当12...n a a a ===时,等号成立。 上述不等式称为平均值不等式,或简称为均值不等式。 平均值不等式的表达形式简单,容易记住,但它的证明和应用非常灵活、广泛,有多种不同的方法。为使大家理解和掌握,这里我们选择了其中的几种典型的证明方法。供大家参考学习。 1.2 平均值不等式的证明 证法一(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 1 1212...(...)k k n a a a a a a k +++≥。 那么,当1n k =+时,由于

121 1 (1) k k a a a A k +++++= +,1k G +=, 关于121,,...,k a a a +是对称的,任意对调i a 与j a ()i j ≠,1k A +和1k G +的值不改变,因此不妨设{}1121min ,,...,k a a a a +=,{}1121max ,,...,k k a a a a ++= 显然111k k a A a ++≤≤,以及1111()()0k k k a A a A +++--<可得 111111()k k k k A a a A a a +++++-≥. 所以 1111211 1(1)...k k k k k k kA k A A a a a A A k k k +++++++-+++-= == 2111...()k k k a a a a A k ++++++-=≥即12111...()k k k k k A a a a a A +++≥+- 两边乘以1k A +,得 111211112111...()...()k k k k k k k k k k A a a A a a A a a a a G ++++++++≥+-≥=。 从而,有11k k A G ++≥ 证法二(归纳法) (1) 当2n =时,已知结论成立。 (2) 假设对n k =(正整数2k ≥)时命题成立,即对 0,1,2,...,,i a i k >=有 12...k a a a +++≥ 那么,当1n k =+时,由于

不等式的证明方法及其推广

不等式的证明方法及其推广 摘要:在初等代数和高等代数中,不等式的证明都占有举足轻重的位置。初等代数中介绍了许多具体的而且相当有灵活性和技巧性的证明方法,例如换元法、放缩法等研究方法;而高等代数中,可以利用的方法更加灵活技巧。我们可以利用典型的柯西不等式的结论来证明类似的不等式;除此还可以利用导数,微分中值定理,泰勒公式,积分中值定理等有关的知识来证明不等式;在正定的情况下,也可以用判别式法;掌握了定积分化为重积分的内容之后,对于某类不等式,也可以将定积分化为重积分,再证明所求的不等式。由此我们可以看到,不等式的求解证明方法并不唯一,但是初等数学里的不等式,都可以用高等数学的知识来解决,解答更为简洁。所以,高等数学对初等数学的教学和学习具有重要的指导意义。本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握证明不等式的思想方法;注重对一些着名不等式的推广及应用的介绍。 关键词:不等式;证明方法 1引言 1.1研究的背景 首先,我们要从整个数学,特别是现代数学在21世纪变得更加重要来认识不等式的重要性。美国《数学评论》2000年新的分类中,一级分类已达到63个,主题分类已超过5600 多个,说明现代数学已形成庞大的科学体系,并且仍在不断向纵深化发展。它在自然科学、 工程技术、国防、国民经济(如金融、管理等)和人文社会科学(如语言学、心理学、历史、 文学艺术等)以至我们的日常生活中的应用都在不断深化和发展。它为我们提供了理解信 息世界的一种强有力的工具,它也是新世纪公民的文化和科学素质的重要组成部分。而不 等式在数学中又处于独特的地位。美国《数学评论》在为匡继昌的《常用不等式》第2版 写的长篇评论中指出:“不等式的重要性,无论怎么强调都不会过分。”这说明不等式仍 然是十分活跃又富有吸引力的研究领域。 再者不等式的求解和证明一直是高考的热点和难点。近年来高考虽然淡化了单纯的不等式证明的证明题。但是以能力立意的、与证明有关的综合题却频繁出现。常常与函数、 数列、三角等综合,考查逻辑推理能力。是高考考查的一项重要内容。而要解决这一点的 关键在于掌握常用方法,理解不等式证明中的数学思想,熟练地运用性质和基本不等式。 因此,本文归纳和总结了一些求解证明不等式的方法与技巧,突出了不等式的基本思想和基本方法,便于更好地了解各部分的内在联系,从总体上把握不等式的思想方法;注 重对一些着名不等式的推广及应用的介绍,以便更好地理解和运用。 1.2文献综述 数学问题(猜想)的重要性先哲们已有过精辟的阐述。的确,形式优美、新颖、内涵丰富的不等式问题,不仅丰富了我们的研究素材,而且孕育了新思想、新方法的胚芽。当

均值不等式的应用(习题-标准答案)

、 均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) } 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x ' 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42) 45 x x --不是常数,所以对42x -要进行拆、凑项, [ 5,5404x x <∴->,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+=

基本不等式完整版(非常全面)

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若* ,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则 ab b a ≥+2 (2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若* ,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式 (1)若,,,a b c d R ∈,则2 2 2 2 2 ()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 222 222 2 1 2311 23112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有 22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ b a 112+ 2、已知 c b a ,,为两两不相等的实数,求证: ca bc ab c b a ++>++222 3、已知1a b c ++=,求证:222 13 a b c ++≥ 4、已知,,a b c R + ∈,且1a b c ++=,求证: abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R + ∈,且1a b c ++=,求证: 1111118a b c ??????---≥ ??????????? 6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222 1a b c b c a ++≥. 7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 2 2 3 3 22-≥- 题型二:利用不等式求函数值域 1、求下列函数的值域 (1)2 2 21 3x x y += (2))4(x x y -=

(均值不等式的推广)

均值不等式的推广: 2/]2^...2^1[n an a ++≥(a1+a2+…+an)/n≥n an a a ...21≥n/(1/a1+1/a2+…+1/an) 证明: 1. 2/]2^...2^1[n an a ++≥(a1+a2+…+an)/n 两边平方,即证 ((a1)^2+(a2)^2+… +(an)^2)≥(a1+a2+…+an) ^2 /n (如果你知道柯西不等式的一个变式,直接代入就可以了) 柯西不等式: (a1^2 + a2^2 +...+an^2)* (b1^2+b2^2+...+bn^2)≥ (a1b1+a2b2+...+anbn )^2 柯西不等式变式: [a1^2 + a2^+...+an^2] ×n ≥(a1+a2+...+an )^2

得等号!!! 2.(a1+a2+…+an)/n≥n an 1 2 a a... 琴生不等式: 若f(x)在定义域内是凸函数,则nf((x1+x2+...+xn)/n)≥f(x1)+f(x2)+...+f(xn) 令f(x)=lgx 显然,lgx在定义域内是凸函数[判断凸函数的方法是二阶导数<0或从图象上直接观察] nf((x1+x2+...xn)/n)=nlg[(a1+a2+..an)/n]≥ f(x1)+f(x2)+...f(xn)=lga1+lga2+lga3+...+lgan =lga1*a2*…*an 也即 lg[(a1+a2+..an)/n]≥1/n(lga1a2a3...an)=lg(a1a2 a...an)^(1/n)=lg n an 2 1 a... a f(x)在定义域内单调递增,所以 (a1+a2+..an)/n≥n an 1 2 a... a

三个数的均值不等式

平均值不等式导学案2 ☆学习目标: 1.理解并掌握重要的基本不等式; 2.理解从两个正数的基本不等式到三个正数基本不等式的推广; 3.初步掌握不等式证明和应用 一、课前准备(请在上课之前自主完成) 1.定理1 如果,a b R ∈, 那么22 2a b ab +≥. 当且仅当a b =时, 等号成立. 2. 定理2(基本不等式) 如果+∈R b a ,, 那么 . 当且仅当 时, 等号成立. 利用基本不等式求最值的三个条件 推论10. 两个正数的算术平均数 , 几何平均数 , 平方平均数 ,调和平均数 , 从小到大的排列是: ☆课前热身: (1) 某汽车运输公司,购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利 润y (单位:10万元)与营运年数x 的函数关系为),(11)6(2* ∈+--=N x x y 则每辆客车 营运多少年,其运 营的年平均利润最大( ) A .3 B .4 C .5 D .6 (2) 在算式“4130??+?O =”中的△,〇中,分别填入两个正整数,使它们的倒数和最步, 则这两个数构成的数对(△,〇)应为 . (3) 设+∈R x 且12 22 =+y x ,求21y x +的最大值. 二、新课导学 请你类比两个数的基本不等式得出三个数的基本不等式: 如果+ ∈R b a ,, 那么2a b +≥.当且仅当a b =时, 等号成立. 如果,,a b c R +∈,那么 .当且仅当 时, 等号成立. ?建构新知: 问题:已知,,a b c R +∈, 求证:3333.a b c abc ++≥当且仅当a b c ==时, 等号成立. 证明: ∵3333a b c abc ++-= 定理3 如果,,a b c R +∈, 那么3 a b c ++≥当且仅当a b c ==时, 等号成立. 语言表述:3个数的 平均数不小于它们的 平均数 推论 对于n 个正数12,,,n a a a L , 它们的

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

均值不等式应用(技巧)

均值不等式应用(技巧) Wekede 整理 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2 b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥ +2 (2)若* ,R b a ∈,则ab b a 2 ≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则12x x +≤- (当且仅当1x =-时取 “=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a + ≥+ ≥+ ≤即 或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 ( 2 2 2 b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知54 x < ,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404 x x < ∴-> ,1 1425434554y x x x x ? ?∴=-+ =--+ + ?--? ? 231≤-+= 当且仅当15454x x -= -,即1x =时,上式等号成立,故当1x =时,m ax 1y =。

证明n元均值不等式

学习好资料 欢迎下载 证明n 元均值不等式 1212n n n a a a n a a a +++≥证明: 首先证明,23n 2,222当,,,,时,不等式成立。 显然,12122a a a a +≥, 又因为412341234123412342+2222=4a a a a a a a a a a a a a a a a +++≥≥?, 同理可以证明得到n 2也成立。 再证明,当k k+1n 22∈(,) 也成立。 k k n=2+i 1i 2-1≤≤不妨设 ,其中,则有k k k k 21212 222a a a a a a ++ +≥, k+1k+1k+1k+121212 222a a a a a a ++ +≥ 则k k k 121222+12+i =++ +n a a a a a a a a +++++ +(), k k k k k k k k k k k k k k k k+1212 22k 2+i 1212 22+12+i 1222+1k 2+i 12 22+1 2++1 2+i i 2+2-i =++++2-i 2i i n a a a a a a a a a a a a a a a a a a a a a a a +++++++ ?+≥? (则()()) k k k k k k k k k 2+i 12 22+1 2+i k 2+i 12 22+1 2+i 2-2i i -a a a a a a a a a a 其中可以看成是()个相()加所得。 k k k k k k k k k k k k 2+i 12 22+12+i k 2+i 1212 22+12+i 22+1 2+i 2-i ++ +2+i a a a a a a a a a a a a a a a ?++ +≥()最后,在式两边同时减去就得到了()() 1212 n n n a a a n a a a ++ +≥即:得证。

柯西不等式高考题精选

柯西不等式高考题精选 1.(2013年湖北)设,,x y z R ∈,且满足:2221x y z ++=, 2314x y z ++=,则x y z ++=_______. 【答案】314 7 2.(2013年陕西)已知a, b, m, n 均为正数, 且a+b=1, mn=2, 则(am+bn)(bm+an)的最小值为_______. 【答案】2 3.[2014·福建] 已知定义在R 上的函数 f(x)=|x +1|+|x -2|的最小值为a. (1)求a 的值; (2)若p ,q ,r 是正实数,且满足p +q +r =a , 求证:p 2+q 2+r 2 ≥3. 解:(1)因为|x +1|+|x -2|≥|(x+1)-(x -2)|=3, 当且仅当-1≤x≤2时,等号成立, 所以f(x)的最小值等于3,即a =3. (2)由(1)知p +q +r =3,又p ,q ,r 是正实数, 所以(p 2+q 2+r 2)(12+12+12)≥(p×1+q×1+r×1)2=(p +q +r)2=9,即p 2+q 2+r 2≥3. 4.[2014·陕西] A .(不等式选做题)设a ,b ,m ,n∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________. 【答案】 5 5.[2014·浙江] (1)解不等式2|x -2|-|x +1|>3;

(2)设正数a ,b ,c 满足abc =a +b +c , 求证:ab +4bc +9ac ≥36,并给出等号成立条件. 解:(1)当x≤-1时,2(2-x)+(x +1)>3, 得x <2,此时x≤-1; 当-1<x≤2时,2(2-x)-(x +1)>3,得x <0,此时 -12时,2(x -2)-(x +1)>3,得x>8,此时x>8. 综上所述,原不等式的解集是(-∞,0)∪(8,+∞). (2)证明:由abc =a +b +c ,得1ab +1bc +1ca =1.由柯西不等式,得(ab +4bc +9ac)? ?? ???1ab +1bc +1ca ≥(1+2+3)2, 所以ab +4bc +9ac≥36,当且仅当a =2,b =3,c =1时,等号成立. 6.【2015福建】已知0,0,0a b c >>>,函数()||||f x x a x b c 的最小值为4. (Ⅰ)求a b c 的值; (Ⅱ)求2221149 a b c 的最小值. 【答案】(Ⅰ) 4;(Ⅱ)87 . 【解析】(Ⅰ)因为(x)|x ||x ||(x )(x )||a |f a b c a b c b c ,当 且仅当a x b 时,等号成立,又0,0a b ,所以|a b |a b ,所以(x)f 的最小值为a b c , 所以a b c 4. (Ⅱ)由(1)知a b c 4,由柯西不等式得 ()()2 2222114912+3+1164923a b a b c c a b c ????++++≥???=++= ? ????? 即2 22118497 a b c .

均值不等式的证明(精选多篇)

均值不等式的证明(精选多篇) 第一篇:常用均值不等式及证明证明 常用均值不等式及证明证明 这四种平均数满足hn?gn? an?qn ?、ana1、a2、 ?r?,当且仅当a1?a2?? ?an时取“=”号 仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用 均值不等式的变形: (1)对实数a,b,有a 2 22 ?b2?2ab (当且仅当a=b时取“=”号),a,b?0?2ab (4)对实数a,b,有 a?a-b??b?a-b? a2?b2? 2ab?0 (5)对非负实数a,b,有 (8)对实数a,b,c,有

a2? b2?c2?ab?bc?ac a?b?c?abc(10)对实数a,b,c,有 均值不等式的证明: 方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序 不等式法、柯西不等式法等等 用数学归纳法证明,需要一个辅助结论。 引理:设a≥0,b≥0,则?a?b??an?na?n-1?b n 注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0 ,a+b≥0 (用数学归纳法)。 当n=2时易证; 假设当n=k时命题成立,即 那么当n=k+1时,不妨设ak?1是则设 a1,a2,?,ak?1中最大者, kak?1?a1?a2???ak?1 s?a1?a2???ak 用归纳假设 下面介绍个好理解的方法琴生不等式法 琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点, 设f?x??lnx,f

?x?为上凸增函数所以, 在圆中用射影定理证明(半径不小于半弦) 第二篇:均值不等式证明 均值不等式证明一、 已知x,y为正实数,且x+y=1求证 xy+1/xy≥17/4 1=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥2 当且仅当xy=1/xy时取等 也就是xy=1时 画出xy+1/xy图像得 01时,单调增 而xy≤1/4 ∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4 得证 继续追问: 拜托,用单调性谁不会,让你用均值定理来证 补充回答: 我真不明白我上面的方法为什么不是用均值不等式证的法二: 证xy+1/xy≥17/4

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

均值不等式的证明方法

柯西证明均值不等式的方法 by zhangyuong (数学之家) 本文主要介绍柯西对证明均值不等式的一种方法,这种方法极其重要。 一般的均值不等式我们通常考虑的是n n G A ≥: 一些大家都知道的条件我就不写了 n n n x x x n x x x ......2121≥ +++ 我曾经在《几个重要不等式的证明》中介绍过柯西的这个方法,现在再次提出: 8444844)()(: 4422)()(abcdefgh efgh abcd h g f e d c b a abcd abcd cd ab d c b a d c b a ≥+≥+++++++=≥+≥+++=+++八维时二维已证,四维时: 这样的步骤重复n 次之后将会得到 n n n x x x x x x n 2 221221 (2) ...≥ +++ 令A n x x x x x x x x x x n n n n n n =+++= =====++......;,...,2122111 由这个不等式有 n n n n n n n n n n A x x x A x x x A n nA A 2 121 212 221)..(..2 )2(- -=≥ -+= 即得到 n n n x x x n x x x ......2121≥ +++ 这个归纳法的证明是柯西首次使用的,而且极其重要,下面给出几个竞赛题的例子: 例1: 1 1 12101(1,2,...,)11(...)n i i i n n n a i n a a a a =<<=≥ --∑ 若证明 例2:

1 1 1211(1,2,...,)1 1(...)n i i i n n n r i n r r r r =≥=≥ ++∑ 若证明 这2个例子是在量在不同范围时候得到的结果,方法正是运用柯西的归纳法: 给出例1的证明: 12121 2 212 2 123 4 211(1)2(1)(1) 11,(1)(2)2(1) 22(1)2(1)2211111111n a a a a a a p a q a q p p q p q pq q p q q q p q a a a a =+ ≥ ?- --≥----=+= ?--≥-+?-+≥?+≥+?≥+ + + ≥+ ----≥ 当时设,而这是元均值不等式因此此过程进行下去 因2 1 1 2 1221 1212221 12 2 1 1 2 11(...)...(...)112 2 (2) 1111() 111n n n n n n n n i i n n n n n n n n n i i n n i i a a a a a a a a a a G n a G G G G n a G =++-==≥ --=====+-≥ = ----≥ --∑ ∑ ∑ 此令有即 例3: 1 115,,,,1(1),,111,,11( )( ) 1 1 n n i i i i i i i i i n n n i i i i i i n n i i i i i i i i i i i n r s t u v i n R r S s n n T t U u V v n n n r s t u v R ST U V r s t u v R ST U V =>≤≤== = = = ++≥--∑∑∑∑∑∏ 已知个实数都记,求证下述不等式成立: 要证明这题,其实看样子很像上面柯西的归纳使用的形式

均值不等式的待定系数法

均值不等式的待定系数篇 在处理一些不等式问题的时候,往往难以直接使用均值不等式,这就需要我们根据题目自身的结构特点来进行适当的配凑,一种被称之为待定系数法均值的方法就这样产生了。在配的时候要牢牢把握住“正,定,等”。这个纯属个人一些观点,高手直接pass 掉。我的用意是在普及的基础上能帮助一些朋友有所提高,不至于有那么多,啊!啊!啊! 引子: 已知,,x y z R + ∈,求函数 2 22 xy yz u x y z +=++的最大值。 解析:取待定正数α,β,有基本不等式得: 2222222222222 22111[()()][()] 22y y y z y xy yz x x x y x y x αβαβαββαβαβαβ +=?+?≤+++≤++++令22 2211αβαβ=+= ,解得:α= β=,于是 2222222 ()) 22 xy yz x y z x y z α+≤++=++ 所以222222222() 22 x y z xy yz u x y z x y z +++=≤=++++ y ==时,等号成立。 推广:设,a b 为给定实数,,,x y z 为任意不全为0的实数,则222 axy byz x y z +++的最大值 ,最小值为。 简析:即证2222 22222 222222a y b y x z x z x y z a b a b ?+?≤+++=++++。 1. 设 是不全为零的实数,求 的最大值 分析:显然只需考虑的情形 直接均值显然不行,我们是不是可以这么考虑,引入待定的正参数 满足

故依据取等条件显然参数就是我们要求的最大 值。 消去我们得到一个方程 此方程的最大根为我们所求的最大值 解之得 我们再来看一个类似的,相信你已经找到了怎么处理这个问题了 2. 设是不全为零的正实数,求的最大值 是的同我们依然可以引进参数使其满足 依据取等条件我们有 消去参数我们得到一个方程 这个方程的最大根为我们所求的目标。 解之得 呵呵扯到这里,或许你说天啊,这个方程好恐怖,是的很遗憾这个题目手工解我认为很困难解决,当然我们可以借助计算机求解这个高次方程。有了这个待定系数我们也可以冒充一回高手,你可以很轻飘飘的对这个题目来个一行秒杀。 你也可以打出这么一个让别人,啊!啊!啊!有木有的解答。 当且仅当取等。 好了,我相信通过这两个例题你对待定系数均值有了个大致的思路了,那我们开始来处理下面的几个问题吧! 3.设是正实数,求的最小值。 解:我们考虑引进参数使其满足:

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

相关文档
最新文档