《工程机械可靠性》课件-第一章-可靠性概述

工程机械可靠性

1981年4月12日首次发射,是美国第一架正式服役航天飞机;

2003年2月1日,返航时解体。

哥伦比亚号机舱长18米,能装运36吨重的

货物,外形象一架大型三角翼飞机,机尾装

有三个主发动机,和一个巨大的推进剂外贮

箱,里面装着几百吨重的液氧、液氢燃料。

它附在机身腹部,供给航天飞机燃料进入太

空轨道;外贮箱两边各有一枚固体燃料助推

火箭。整个组合装置重约2000吨。

飞行时间7至30天,航天飞机可重复使

用100次。航天飞机集火箭,卫星和飞

机的技术特点于一身

像火箭:垂直发射进入空间轨道

像卫星:在太空轨道飞行

像飞机:大气层滑翔着陆

是一种新型的多功能航天飞行器。

据宇航局的官员介绍,一架航天飞机可以反复使用75到100次,在美宇航局42年的载人飞行史上,航天飞机在返航时还未出现过事故。

原定2001年升空

技术故障和航天飞机调配等原因

发射日期一直被推迟到2003年1月16号

“哥伦比亚”号此次飞行总共搭载了6

个国家的学生设计的实验项目,其中包

括中国学生设计的“蚕在太空吐丝结茧”

实验。

外部燃料箱表面脱落的一块泡沫材料击中航天飞机左翼前缘的名为“增强

碳碳”(即增强碳-碳隔热板)的材料。当航天飞机返回时,经过大气层,

产生剧烈摩擦使温度高达摄氏1400度的空气在冲入左机翼后融化了内部结构,致使机翼和机体融化,导致了悲剧的发生。

可靠性技术的发展与应用

1964年人造卫星III号因机械故障而损坏

Apollo计划被称为可靠性的充分体现

美国于1961开始计划研制

Apollo-11号宇宙飞船,它

有720万个零件,重要零件

可靠性为99.9999999%。

1969年7月登月成功。

Apollo计划的种种技术,

至今仍为世界上的各种产

品所应用。

其中,可靠性技术是主要

技术之一。

数控机床可靠性技术的发展(新编版)

数控机床可靠性技术的发展 (新编版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0291

数控机床可靠性技术的发展(新编版) 在我国的中高档数控机床市场,由于国产数控机床的可靠性较低,也就成为了占有率较低的主要原因,而且可靠性已经成为国内数控机床的一个重要技术瓶颈。 1.数控机床可靠性概念及指标 1.1数控机床可靠性 所谓的数控机床可靠性,就是指数控机床产品及其系统能够在限定时间内完成一定的动作指令的能力。 1.2数控机床可靠性指标 对于数控机床可靠性主要有以下两个指标: 第一,平均无故障时间(MeanTimeBetweenFailure,简称MTBF),就是指数控机床产品连续发生两次故障之间的平均时间。这种平均

故障时间常用做数控机床可靠性评价的一个定量指标。该数值越大,说明系统的可靠性越高。 第二,平均故障修复时间(MeanTimeToRepair,简称MTTR),一般是指系统修复一次故障所需要的时间,其所需的流程是确认失效→配件获得→维修→重新投入使用。当该数值越小时,该系统的可靠性越高。 2.数控机床可靠性技术存在的问题 2.1数控机床可靠性研究的学者和机构较少 由于数控机床可靠性技术的研究需要很多部门、学科的交叉工作,并且耗时、耗资,再加上研究成果获得较慢。与一些关键共性技术的研究相比,国内很少有专门对数控机床可靠性进行较大力度的研究,那么能够对数控机床可靠性进行研究的科研机构非常稀缺,一直没能形成一套完整的技术体系。 2.2数控机床可靠性数据积累薄弱 对于数控机床的可靠性数据而言,不但要有数控机床的故障数据,也需要一些维修、载荷数据等。虽然我国已经积累了一定的数

机械可靠性习题

机械可靠性习题Newly compiled on November 23, 2020

第一章 机械可靠性设计概论 1、为什么要重视和研究可靠性 可靠性设计是引入概率论与数理统计的理论而对常规设计方法进行发展和深化而形成的一种新的现代设计方法。1)工程系统日益庞大和复杂,是系统的可靠性和安全性问题表现日益突出,导致风险增加。2)应用环境更加复杂和恶劣3)系统要求的持续无故障任务时间加长。4)系统的专门特性与使用者的生命安全直接相关。5)市场竞争的影响。 2、简述可靠性的定义和要点 可靠性定义为:产品在规定的条件下和规定的时间区间内完成规定功能的能力。主要分为两点:1)可靠度,指产品在规定条件下和规定时间内,完成规定功能的概率。1)失效率,定义为工作到时可t 时尚未失效的产品,在时刻t 以后的单位时间内发生失效的概率。 第二章 可靠性的数学基础 1、某零件工作到50h 时,还有100个仍在工作,工作到51h 时,失效了1个,在第52h 内失效了3个,试求这批零件工作满50h 和51h 时的失效率)50(-λ、)51(-λ 解:1)1,100)(, 1)(=?==?t t t n n s f 2)2,100)(, 3)(=?==?t t t n n s f 2、已知某产品的失效率14103.0)(---?==h t λλ。可靠度函数t e t R λ-=)(,试求可靠度 R=%的相应可靠寿命、中位寿命和特征寿命1-e t 解:可靠度函数 t e t R λ-=)( 故有 R t R e R t λ-=)( 两边取对数 t t R R R λ-=)(ln

则可靠度寿命 =?-=-=-h R t t 4999.0999.0103.0999.0ln )(ln λ 33h 中位寿命 =?-=- =-h R t t 45.0999.0103.05.0ln )(ln λ23105h 特征寿命 =?-=-=--h R e t 41999.010 3.03679.0ln )(ln λ33331h 第三章 常用的概率分布及其应用 1、次品率为1%的的大批产品每箱90件,今抽检一箱并进行全数检验,求查出次品数不超过5的概率。(分别用二项分布和泊松分布求解) 解:1)二项分布:3590559055901087.199.001.0! 85!5!90)5(---?=???===q p C x P 2)泊松分布:取9.001.090=?==np μ 2、某系统的平均无故障工作时间t=1000h ,在该系统1500h 的工作期内需要备件更换。现有3个备件供使用,问系统能达到的可靠度是多少 解:应用泊松分布求解5.115001000 1=?==t λμ 3、设有一批名义直径为d=的钢管,按规定其直径不超过26mm 时为合格品。如果钢管直径服从正态分布,其均值u=,标准差S=,试计算这批钢管的废品率值。 解:所求的解是正态概率密度函数曲线x=26以左的区面积,即: 变为标准型为1.13.04 .2526=-=-=σ μx z 由正态分布表查的1.1<<∞-z 的标准正态分布密度曲线下区域面积是 864.0)1.1(=Φ,所以: 136.0864.01)26(=-=

第1章 可靠性工程概述

工业工程专业《可靠性工程》第1章可靠性工程概述 讲授人:吴泽 E-mail: wuze@https://www.360docs.net/doc/8b11283096.html, 机械工程学院工业工程系

Chapter 1 Introduction to Reliability Engineering 2 ?可靠性基本概念 ?可靠性研究与应用的目的和意义 ?可靠性工程的发展 ?可靠性工程的内涵 ?可靠性工程面临的问题 ?可靠性工作要求 内容提要

Chapter 1 Introduction to Reliability Engineering 3 ?可靠性:产品在规定条件下、规定时间内完成规定功能的能力 ?对象:元件、组件、零件、部件、机器、设备、系统?使用条件:环境、操作、使用方法、运行条件等?规定时间:时间或等价于时间的衡量指标 ?规定功能:在规定参数下正常运行 ?可靠度:可靠性的概率表达 1.1 可靠性基本概念 ?可靠性的分类 ?固有可靠性和使用可靠性 ?广义可靠性(包含可靠性和维修性)和狭义可靠性

Chapter 1 Introduction to Reliability Engineering 4 ?维修性:故障部件在规定条件下、规定时间内,按照规定程序和方法进行维修,修复到指定状态的概率?维修时间:固有维修时间、维修延误、供应延误?可用性:部件在规定时间点、规定条件下完成规定功能的概率 ?与可靠性区别:可用性表示部件处于非故障状态的概率,同时考虑部件的可靠性与维修性 ?可靠性与质量 ?质量:依赖于制造过程和制造精度 ?可靠性:同时受质量和工作条件影响 1.1 可靠性基本概念

Chapter 1 Introduction to Reliability Engineering 5 ?为什么要搞可靠性? 1.2 可靠性研究与应用的目的和意义?世界上没有永恒的事物 ?产品故障会造成巨大的损失 ?经济损失 ?人员安全 ?武器装备丧失战斗力 ?政治、社会问题

数控机床的可靠性研究

Causes and Solution ofW ire Rupture i n H igh -Speed WEDM Process M a Gang ,Zhang Q i 1Abstract 2H i g h-Speed W ire WED M process often appears in the broken w ires .S i x m a i n factors of fila m ent break i n high speed w ire cutti n g m ach i n e w ere analyzed i n deta ils ,such as the use o f operati n g factors ,sto rage and transportati o n sil k fila m ent i n stitutional facto rs ,the w ork piece m ach i n i n g factors ,h i g h-frequency e lectric po w er para m eters ,pr ocessing of facto rs ,and the cho i c e of electrode w ire .Prevention m ethods were put fo r w ard ,w hich cou l d be he l p f u l for our w orkers and techn ica l personne.l 1Keywords 2H igh-SpeedW ire WED M;electrode w ire ;broken w ires pheno m enon ;第10卷第5期2008年10月 辽宁省交通高等专科学校学报 J O URNAL OF LI AON I NG PROV I NC I AL COLLEGE OF COMMUN I CAT I ONS Vo.l 10No .5Oct.2008 文章编号:1008-3812(2008)05-022-02 数控机床的可靠性研究 何丽辉 (辽宁省交通高等专科学校,辽宁沈阳 110122) 摘 要 我国数控机床制造水平与国外先进水平相比还有很大差距,主要反映在可靠性差、故障率高上。本 文通过对数控机床可靠性的分析,找出其可靠性的薄弱环节,进一步明确了其工作的改进方向。 关键词 数控机床 危害度 可靠性 中图分类号:TG 659 文献标识码: A 当今世界,工业发达国家在机床工业方面快速发展机电一体化、高精、高效、高自动化先进机床,以加速工业和国民经济发展。随着微电子、计算机技术不断进步,数控机床在20世纪80年代以后得到加速发展,早已成为国际机床展上各国机床制造商竞相展示先进技术,争夺用户及扩大市场的焦点。 数控机床较传统机床具有利用二进制数学方式输入,加工过程可任意编程,主轴及进给速度可按加工工艺需要变化,且能实现多座标联动,易加工复杂曲面。对加工对象具有/易变、多变、善变0等特点,换批调整方便,可实现杂件多品种中小批柔性生产,适应社会对产品多样化需求。 由于国产数控机床在技术上有重大突破,整机的可靠性显著提高,数控系统平均无故障时间可达一万小时以上,造成近一段时间数控机床产销量大 收稿日期:2008-06-11 幅增加,2007年1~5月金切机床行业机床产值数控化率达19.4%,是历史最好水平。有关人士认为,我国数控机床已进入快速发展时期。1 研究的必要性 据介绍,目前国产数控机床的品种已由过去100多种发展到500多种;主轴每分钟转速从原来的5000多转提高到8000~10000多转;进给速度从原来的每分钟12~15米提高到40~60米;换刀时间从原来的3~10秒降低到0.7~1.5秒。 但我国数控机床制造水平与国外先进水平相比还有很大差距,主要反映在可靠性差、故障率高上。由于随着我国数控机床市场的不断扩大,许多国外品牌大量进入中国,国内企业要想和这些国外品牌竞争的话,必须提高国产数控机床的可靠性。数控机床可靠性的提高可以直接减少机床生产厂家的售后服务费用和三包费用以及机床使用厂家的停机损失、机床维修等费用。国产数控机床可靠性的提高还可以抵制进口,扩大出口,增加外汇收 # 22#

数控机床可靠性技术的发展

仅供参考[整理] 安全管理文书 数控机床可靠性技术的发展 日期:__________________ 单位:__________________ 第1 页共6 页

数控机床可靠性技术的发展 在我国的中高档数控机床市场,由于国产数控机床的可靠性较低,也就成为了占有率较低的主要原因,而且可靠性已经成为国内数控机床的一个重要技术瓶颈。 1.数控机床可靠性概念及指标 1.1数控机床可靠性 所谓的数控机床可靠性,就是指数控机床产品及其系统能够在限定时间内完成一定的动作指令的能力。 1.2数控机床可靠性指标 对于数控机床可靠性主要有以下两个指标: 第一,平均无故障时间(MeanTimeBetweenFailure,简称MTBF),就是指数控机床产品连续发生两次故障之间的平均时间。这种平均故障时间常用做数控机床可靠性评价的一个定量指标。该数值越大,说明系统的可靠性越高。 第二,平均故障修复时间(MeanTimeToRepair,简称MTTR),一般是指系统修复一次故障所需要的时间,其所需的流程是确认失效配件获得维修重新投入使用。当该数值越小时,该系统的可靠性越高。 2.数控机床可靠性技术存在的问题 2.1数控机床可靠性研究的学者和机构较少 由于数控机床可靠性技术的研究需要很多部门、学科的交叉工作,并且耗时、耗资,再加上研究成果获得较慢。与一些关键共性技术的研究相比,国内很少有专门对数控机床可靠性进行较大力度的研究,那么能够对数控机床可靠性进行研究的科研机构非常稀缺,一直没能形成一套完整的技术体系。 第 2 页共 6 页

2.2数控机床可靠性数据积累薄弱 对于数控机床的可靠性数据而言,不但要有数控机床的故障数据,也需要一些维修、载荷数据等。虽然我国已经积累了一定的数控机床故障、维修以及载荷数据等,然而很多数据也仅是针对某一型号的数控机床而已,并不能涵盖较大的用户群体和多样的数控机床类型。那么就会使得数控机床进行可靠性设计时,不能得到较多的经验值,故使得我国的数控机床的可靠性设计严重先天不足。 2.3数控机床故障机理研究不足 目前大多数都是以故障独立为假设的条件下进行研究,然后对数控机床的故障数据进行可靠性建模,继而评估故障所带来的危害性。然后对于故障机理研究不具有普遍性,而对于很多问题存在较大的模糊性,其中包括故障之间的相关性、故障产生的本质原因等,以至于出现盲目改进,即费时又费钱,甚至有改进无效的情况出现。 2.4数控机床维修性和可用性重视不够 对数控机床这种类型的产品进行维修时,一般用户对于维修后的数控机床不但能够保证故障间隔时间得到延长,而且要求其维修简单、时间短。换句话说,既要求维修性好,有要求可靠性高。现在,对于我国数控机床行业的科研机构大多都是停留在对可靠度指标进行评估,以至于对于数控机床的维修性和可用性方面得不到科研机构的重视,目前也有一些论文对此进行研究分析,然而并未得到充分的重视,也仅仅是满足数控机床用户的需求而已。对此,就需要得到相关部门、政策进行引导,以便于得到数控机床领域的更多专家、学者对其维修性、可用性进行深入地研究分析,并针对问题予以解决。 3.数控机床可靠性技术的研究 第 3 页共 6 页

可靠性工程试卷

可靠性工程考核题答案 1. 某型号电视机有1000个焊点,工作1000小时后,检查100台电视机发现2点脱焊,试问 焊点的失效率多少? 解:100台电视机的总焊点有 1001000105 ?= 一个焊点相当一个产品,若取 ?t =1000 小时,按定义: )] ([)(t n N t n t -??= ∧ λ 8 5 102] 010[10002)0(-∧ ?=-= λ/小时=20 菲特 2. 一个机械电子系统包括一部雷达,一台计算机,一个辅助设备,其MTBF 分别为83小时,167 小时和500小时,求系统的MTBF 及5小时的可靠性? 解: 5002.01 002.0006.0012.01500 1167183111 ==++=++= = λ MTBF 小时 02.0=λ, %47.90)5(1.0502.0===-?-e e R 3. 比较二个相同部件组成的系统在任务时间24小时的可靠性,已知部件的/.010=λ小时 ①并联系统. ②串联系统. 解:单个部件在任务时间24小时的可靠性: 786602424010.)(.===?--e e R t λ ① 并联系统:954407866011241124221.).())(()(=--=--=R R ② 串联系统:61870786602424222..)()(===R R 4. 一种设备的寿命服从参数为λ的指数分布,假如其平均寿命为3700小时,试求其连续工作300小时的可靠度和要达到R *=0.9的可靠寿命是多少? 解: 92210300081103700 300.)(.===--e e R 83893700 11054 090./.ln * .== -= λ R T 5. 抽五个产品进行定时截尾的可靠性寿命试验,截尾时间定为100小时,已知在试验期间 产品试验结果如下:t 150=小时,和t 270=小时产品失效,t 330=小时有一产品停止试验,计算该产品的点平均寿命值?. 解:总试验时间 350100)35(7050=?-++=n T 小时 点平均寿命 MTTF= 1752 350 =小时 6. 试计算指数分布时,工作时间为平均寿命的1/5、1/10、1/20以及平均寿命时的可靠度,

数控机床可靠性技术的分析与研究

数控机床可靠性技术的分析与研究 作者时振伟 摘要: 当前数控技术在各个领域的广泛应用,促进了各个领域的极大发展。数控机床具有精密、高效、柔性自动化和易于实现工艺复合和信息集成等的诸多特点,特别适於加工复杂形状的零件,因而成为现代先进制造技术最重要的基础装备和世界机床市场的主流产品,备受到机械制造企业的青睐。但是数控机床市场仍然存在风险,数控机床技术也有诸多不完善之处,因此要想更好发挥数控技术的特点,就要将其故障率降低,所以数控机床可靠性技术也就显得尤为重要。本文主要是针对数控机床可靠性技术展开,对其进行分析研究。 关键词: 数控技术数控机床可靠性可靠性指标数控机床故障 一、数控技术、数控机床及可靠性技术概念阐释及可靠性指标 1.数控技术 简称数控(Numerical Control )就是用数字控制的方法对某一工作过程实现自动控制的技术。它通常是对位置、角度、速度等机械量和与机械能量流向有关的开关量的控制。 2.数控机床

数字控制机床(Computer numerical control machine tools)的简称,是一种装有程序控制系统的自动化机床。程序控制系统能够处理具有控制编码或其他符号指令规定的程序,并且将其进行译码,用代码化的数字表示出来,通过信息载体输入数控装置。经运算处理由数控装置发出各种控制信号,控制机床的动作使其按图纸要求的形状和尺寸,自动地将零件加工出来。 3.数控机床可靠性 数控机床产品、数控系统在其规定的特有条件下及规定的时间内,完成规定功能的能力,称为数控机床可靠性。 4.数控机床可靠性指标 平均无故障时间MTBF、平均故障修复时间MTTR、可用度A。 平均无故障时间(Mean Time Between Failure,简称MTBF),是指产品从一次故障到下一次故障的平均时间。 平均故障修复时间(Mean Time To Repair,简称MTTR),是随机变量恢复时间的期望值。它包括确认失效发生所需的时间,和维护所需要的时间,获得配件的时间,维修团队响应的时间,记录所有任务的时间,还有将设备重新投入使用的时间,即指系统修复一次故障所需要的时间。它是衡量一个产品可靠性的指标,它的值越小说明该系统的可靠性越高。 数控机床常用平均无故障时间MTBF作为可靠性的定量指标。二、数控机床可靠性技术存在的必要性 (一)数控机床市场的不断发展(需求)

可靠性工程基本理论

编号:SM-ZD-19351 可靠性工程基本理论Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

可靠性工程基本理论 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 可靠性(Reliability) 可靠性理论是从电子技术领域发展起来,近年发展到机械技术及现代工程管理领域,成为一门新兴的边缘学科。可靠性与安全性有密切的关系,是系统的两大主要特性,它的很多理论已应用于安全管理。 可靠性的理论基础是概率论和数理统计,其任务是研究系统或产品的可靠程度,提高质量和经济效益,提高生产的安全性。 产品的可靠性是指产品在规定的条件下,在规定的时间内完成规定功能的能力。 产品可以是一个零件也可以是一个系统。规定的条件包

括使用条件、应力条件、环境条件和贮存条件。可靠性与时间也有密切联系,随时间的延续,产品的可靠程度就会下降。 可靠性技术及其概念与系统工程、安全工程、质量管理、价值工程学、工程心理学、环境工程等都有十分密切的关系。所以,可靠性工程学是一门综合性较强的工作技术。 2 可靠度(Reliablity) 是指产品在规定条件下,在规定时间内,完成规定功能的概率。 可靠度用字母R表示,它的取值范围为0≤R≤1。因此,常用百分数表示。 若将产品在规定的条件下,在规定时间内丧失规定功能的概率记为F,则R=1-F。其中F称为失效概率,亦称不可靠度。

可靠性工程复习题

1. 某型号电视机有1000个焊点,工作1000小时后,检查100台电视机发现2点脱焊,试问焊点的失效率多少? 解:100台电视机的总焊点有 1001000105 ?= 一个焊点相当一个产品,若取?t =1000小时,按定义: λ∧ =-()[()] t n t N n t ?? λ∧=-=?()[]02100010021058/小时=20 菲特 2. 一个机械电子系统包括一部雷达,一台计算机,一个辅助设备,其MTBF 分别为83小时,167小时和500小时,求系统 的MTBF 及5小时的可靠性? 解: 5002.01002.0006.0012.01500 1167183111 ==++=++==λMTBF 小时 02.0=λ, %47.90)5(1.0502.0===-?-e e R 3. 比较二个相同部件组成的系统在任务时间24小时的可靠性,已知部件的/.010=λ小时 ①并联系统. ②串联系统. ③ 理想开关条件下的储备系统:1=SW λ,储备部件失效率/.*010==λλ小时. 解:单个部件在任务时间24小时的可靠性: 786602424010.)(.===?--e e R t λ ① 并联系统:954407866011241124221.).())(()(=--=--=R R ② 串联系统:61870786602424222..)()(===R R ③ 理想开关条件下的储备系统:97550240101786601243.).(.)()(=?+?=+=-t e R t λλ 4. 一种设备的寿命服从参数为λ的指数分布,假如其平均寿命为3700小时,试求其连续工作300小时的可靠度和要达到R *=0.9的可靠寿命是多少? 解: 92210300081103700300 .)(.===--e e R 8389370011054090./.ln * .==-=λ R T 5. 抽五个产品进行定时截尾的可靠性寿命试验,截尾时间定为100小时,已知在试验期间产品试验结果如下: t 150=小时,和t 270=小时产品失效,t 330=小时有一产品停止试验,计算该产品的点平均寿命值?. 解:总试验时间 350100)35(7050=?-++=n T 小时 点平均寿命 MTTF= 1752 350=小时 6. 试计算指数分布时,工作时间为平均寿命的1/5、1/10、1/20以及平均寿命时的可靠度, 解:设t=MTTF,1/5MTTF,1/10MTTF,1/20MTTF R(1/5MTTF)=2.05/1--=e e MTTF MTTF =82% R(1/10MTTF)=90% R(1/20MTTF)=95% R(MTTF)=36.8% 7. 喷气式飞机有三台发动机,至少需二台发动机正常才能安全飞行和起落,假定飞机单台发动机平均寿命为10000 小时,且事故由发动机引起,求飞机飞行10小时和100小时的可靠性? 解: R t R t R t s ()()()=-3223 R t e t MTTF ()=- R e ().10099900103==-- R e ().100099000102==-- R 323103099920999299419940999997().(.)...=?-=-= R 3231003099209909997().(.).=?-=

数控机床可靠性技术的研究进展

数控机床可靠性技术的研究进展 发表时间:2018-05-11T11:09:52.753Z 来源:《建筑学研究前沿》2018年第3期作者:刘慧深[导读] 来构建和数控机床相应可靠性的技术体系,是当前发展壮大我国的数控机床可靠性技术的必由之路。山东省城市服务技师学院山东烟台 264670 摘要:数控机床作为装备制造行业必不可少的生产部分,在整个机械制造行业中起着不可或缺,至关重要的作用。以当前形势来看,我国的数控机床,在自主研发方面,不论是表现在速度上,还是在制造精度上,或者是在多轴的联动或者是复合的加工上,每一项项目与之前相比有极大程度上的进步以及发展。然而,进步是有,但差距依旧存在,就单可靠性来说,我国的数控机床水平与很多国外的发达国 家来相比,依然差距还是很大。所以,进一步的研究分析我国目前数控机床的具体情况,探讨机床在可靠性技术领域的发展情况,对国家现况有正确的定位,对我国的数控机床行业整体发展进步都有重要的实际作用。关键词:数控机床;可靠性技术;研究;进展导言:数控机床可靠性技术研究的目的就是为了促进行业发展,确保数控机床在操作过程中能够顺利进行,进而提升产品的质量与生产效率。制造业是我国的支柱型产业,数控机床是装备制造业中不可取少的工作母机,其发展水平集中体现了一个国家制造业的发展情况。数控机床的操作系统十分复杂,它与电子产品以及机械结构产品不同,数控机床在我国缺乏相对完善的可靠性理论,在这个方面我国也缺少专业性人才,技术积累相对薄弱,因此在数控机床安全性技术的研究上必须要更进一步,才能够满足国家发展的要求。1数控机床可靠性技术的研究 1.1可靠性建模。在可靠性分析数据的基础上,产品结构的逻辑分析模式建立是非常必要的,数控机床的系统属于电液系统,因此其结构十分复杂,数控机床的使用寿命在不同的时期,所呈现出来的具体时间也不同,进而导致故障率曲线也呈现出差异。目前可靠性模型有三种类型,分别为串联模型、并联模型以及混联模型。在数控机床使用时间的增加,其可靠性也会不断下降,并且出现偶然性故障的频率也在增加,过去人们只针对故障间隔工作时间进行考虑,并不是针对发生次序而建立的。这样一来,可靠性模式与机床实际的安全情况并不一致,在机床不断使用的过程中,其可靠性也会逐渐降低。在这样的情况下,很多学者开始对间隔工作时间与故障间隔的时间次序进行建模研究。在掌握了机床安全性退化规律之后,人们发现数控机床可靠性建模经过了简单到复杂的过程,如果假设“修复如新”到“修复如旧”,从时间静态到动态的过程中,模型与工程实际则会不断接近,进而为研究数控机床的可靠性设计提供依据。 1.2可靠性指标。在进行数控机床可靠性技术研究的时候,首先要明确可靠性指标。具体来说,就是产品在规定条件下和规定范围内,对规定功能的执行能力。一般情况下这种性质是无法在同一时间用同一个量来表示的,必须要从实际环境出发,做到具体问题,具体分析。产品可靠性使用定量数据表示,设计与生产阶段,通过各种方法进行计算与分配,最终确定产品的可靠性。2可靠性分析 2.1应力分析 数控机床在运动的过程中所承受的载荷包括非常荷载以及工作荷载两个方面。前者是因为设计不合理而导致的,后者则是由于设备功能需要的。是能够通过合理进行结构设计而降低的,这就是应力分析的最终目的。 2.2故障树分析 故障树分析是对故障因果关系的一种描述,并且是进行数控机床分析最可靠的方法。在数控机床运行的时候,往往存在很多潜在的故障因素,对这些故障进行分析,一般都会使用这个方法,这个方法的特点是形象、直观、简单。 2.3故障模式影响与危害性分析 故障模式影响与危害性分析是在故障模式分析之后进行的,目的是为了对故障影响进行完善,这种技术实现了对数控机床故障影响要素的精细分析,尤其是一些薄弱环节和关键环节的分析,不仅可以有效识别,同时也十分具体、全面,有效提升了产品的可靠性与安全性。、可靠性设计。 2.4可靠性预计 可靠性预计是依靠工程经验以及机床的历史故障数据进行分析,结合目前的技术水平以及部件组成的可靠性进行分析,最终达到提升产品可靠性的目的。为了能够实现这个目标,必须要充分借助可靠性预计的结果,对原有的设计进行分析并完善,减少设备出现故障的几率。 2.5可靠性分配 可靠性分配是指把机床的可靠性指标按照一定的准则分配给各个组成单元,使机床的可靠性达到设计要求。通过使用可靠性更高的部件或者改进原有设计方案,来使不能达到可靠性要求的某些部件满足相关指标要求。清楚地知道零件部件可能实现的可靠度,根据可靠度采用恰当的分配方法,是实现可靠性分配的关键。3数控机床可靠性技术现存问题分析 综合分析目前我国数控机床在其自身可靠性技术方面的整体情况,可归纳总结出以下问题:其一,专业学者缺乏,相关研究结构严重不足。就数控机床而言,其多元化的故障形式、复杂化的故障原理、杂乱无章的修复系统,都是影响其可靠性技术发展和进步的重要原因。加之其可靠性技术研发和试验需要大量的人力和物力,而目前我国无论是在研究人员方面,还是在研究设备方面,都严重缺乏与之对应的研究投入。故此,我国数控机床在其自身可靠性技术上始终得不到显著性发展。其二,数据、信息等各方面资料薄弱。在数控机床的可靠性分析过程中,荷载、维修、故障等多元化数据无一不是至关重要的数据资料。但是在我国研究数控机床这些年间,其数据资料的收集和整理远远不够完善,尤其是荷载数据的相关资料,可以说是到了稀缺的地步。荷载数据对数控机床进行整机编制有非常重大的影响作用,一旦缺乏数据资料的支持和指导,其可靠性设计在概率计算方面的需求就无法得到相应的满足,这会直接导致数控机床出现大范围先天不足。其三,故障机理的探究不够深入。无论是物理层面,还是化学层面,故障机理都能直接影响数控机床故障发生的本质反应。但是,现阶段我国对故障原因的探究和分析还始终停滞在假设层面上,未进行深入的验证层面,这严重影响了故障本身的危害性以及相关性,为数控机床在可靠性建模、可靠性设计以及可靠性试验等各个方面造成了巨大的负面影响。4数控机床可靠性技术未来发展方向探究

数控设备可靠性指标

数控机床可靠性的四项指标 (1)平均无故障间隔时间 平均无故障间隔时间,MTBF (Mean Time Between Failures )是指对可修复产品,相邻故障工作时间的平均值,是衡量可靠性的重要指标,具体数值在产品标准中给出。据统计,数控系统最低可接受的MTBF 不应该低于3000h 。统计资料表明,国外数控系统的MTBF 为 5000h~22000h 。对可靠性的评估,主要是考核无故障性参数。数控系统丧失规定的功能称为故障。 平均无故障工作时间能准确反映数控设备正常工作的时间。它是指一次故障发生后,到下次故障发生前无故障间隙工作时间的平均值。MTBF 的观测值可用如下公式计算: MTBF =1N 0∑i =1n t i =∑i =1n t /∑i =1n r i 式中,N 0为在评定周期内机床累计故障频数;n 为机床抽样台数;i t 为在评定周期内第i 台机床实际工作时间h ,r i 为在评定周期内第i 台机床出现故障的频数。 数控机床经过早期磨损期后,消除了早期故障,进入正常工作阶段,其工作基本控制在偶然失效阶段,可以认为其故障间隔时间服从指数分布。 数控机床故障间隔时间的区间估计一般取置信区间水平为1-α=90%,即真值落在估计区间的概率为90%。 其双侧置信区间按下式估计: 其单侧置信区间按下式估计: θ>2T X 0.102(2r +2)=θL 式中,r 为发生故障的次数;T 为定时截尾试验时间,X 0.052、X 0.952、X 0.102为参数为 0.05、0.95、0.10的分布数。 评定时根据数控机床发生故障的次数及相关发生的时间,然后按照上述公式进行计算即可。MTBF 越长表示可靠性越高,正确工作能力越强。 (2)平均修复时间

可靠性技术发展简介概述

西北工业大学航空学院 可靠性技术发展简介 01041201

摘要 可靠性理论是近30年来发展起来的一门新兴学科,它对现代军事、宇航、电子等工业的发展起了重要作用。从六十年代开始逐渐发展到研究结构、机械、机电系统及由上述系统组成的综合系统的可靠性问题。其应用范围也从比较尖端的工业部门扩展到一般工业部门。目前,可靠性设计和分析技术已成为许多工业部门中产品发展工作不可缺少的一环。但在现代科技飞速发展的时期,系统可靠性在理论和研究模式上还有欠缺,需要结合其他理论如模糊理论、人工智能等,是可靠性理论、试验和管理能够更成熟、更完美。 关键词:可靠性工程航空工业电子工业宇航工业核工业机械和非电子产品人可靠性现代化

可靠性技术发展简介 二十世纪以前 可靠性是伴随着兵器的发展而诞生和发展的,在人类文明经历了4000多年发展成长的漫长过程中,人类已经对当时所制作的石兵器进行了简单检验。在殷商时代已有的文字记载中,就有关于生产状况和产品质量的监督和检验,对质量和可靠性方面已有了朴素的认识。与可靠性工程学有关的数学理论早就发展起来了,可靠性工程最主要的理论基础——概率论早在十七世纪就由伽利略、巴斯卡、费米、惠更斯、伯努利、德·莫根、高斯、拉普拉斯、泊松等人逐步确立。布尼科夫斯基在十九世纪写了第一本概率论教程,他的学生切比雪夫发展了大数定律,他的另一个学生马尔科夫创立了随机过程论,这是可修系统最重要的理论基础。可靠性工程另一门主要的基础理论——数理统计学在本世纪三十年代初也得到了迅速发展。 二十世纪三十至四十年代,可靠性工程的准备和萌芽阶段 除了三、四十年代提出的机械维修概率、长途电话强度的概率分布、更新理论、试件疲劳与极限理论的关系外,1939 年瑞典人威布尔为了描述材料的疲劳强度而提出了威布尔分布,后来成为可靠性最常用的分布之一。 美国 最早的可靠性概念来源于航空。二战期间,因可靠性引起的飞机损失惨重,损失飞机2100架,是被击落飞机的1.5倍。1939年,美国航空委员会出版的《适航性统计学注释》中,提出了飞机由于各种失效造成的事故率不应超过0.00001/小时,相当于飞机在一小时飞行中的可靠度为0.99999,尽管这里并未明确提出“可靠度”的概念。现在所用的“可靠性”定义是在1952年美国的一次学术会议上提出来的。电子管的可选性太差是导致美国航空无线电设备可靠性问题的最大因素,美国当时的航空无线电设备有60%不能正常工作,其电子设备在规定的使用期限内仅有30%的时间能有效工作。为了解决这一问题,美国国防部组织人力,开始对电子管的可靠性进行研究,在1934年成立电子管开发委员会(VTD),1946年成立电子管专业小组(PET)和航空无线小组(ARINC)。这标志着可靠性的起步。 在美国,四十年代改进可靠性的努力集中于质量的提高方面。更好的设计、更强的材料、更坚硬更光滑的摩擦表面、先进的检验仪器等等——强调这一切都是为了延长零件或组合件的使用寿命。例如,通用汽车公司的电动分布通过使用更好的绝缘,高温和试验,和改进了的锥-球形滚柱轴承等办法,把机车所使用的牵引马达的使用寿命从25万英里延长到100万英里。通过对曲轴和凸轮轴的轴承表面进行新式的TOCCO硬化处理大大延长了柴油发动机的寿命。可靠性工程在易维护型设计、以及为预防性的维护安排规划、设施、技术和进度等方面都取得了进展。四十年代展现的其他显著的进步还有管理部门对于检验抽样方案,高生产率机床的生产控制图,估算水平和促进购买优质产品

数控机床可靠性技术的发展

安全管理编号:LX-FS-A85992 数控机床可靠性技术的发展 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

数控机床可靠性技术的发展 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 在我国的中高档数控机床市场,由于国产数控机床的可靠性较低,也就成为了占有率较低的主要原因,而且可靠性已经成为国内数控机床的一个重要技术瓶颈。 1.数控机床可靠性概念及指标 1.1数控机床可靠性 所谓的数控机床可靠性,就是指数控机床产品及其系统能够在限定时间内完成一定的动作指令的能力。 1.2数控机床可靠性指标 对于数控机床可靠性主要有以下两个指标:

数控机床可靠性技术的发展参考文本

数控机床可靠性技术的发 展参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

数控机床可靠性技术的发展参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 在我国的中高档数控机床市场,由于国产数控机床的 可靠性较低,也就成为了占有率较低的主要原因,而且可 靠性已经成为国内数控机床的一个重要技术瓶颈。 1.数控机床可靠性概念及指标 1.1数控机床可靠性 所谓的数控机床可靠性,就是指数控机床产品及其系 统能够在限定时间内完成一定的动作指令的能力。 1.2数控机床可靠性指标 对于数控机床可靠性主要有以下两个指标: 第一,平均无故障时间(Mean Time Between Failure,简称MTBF),就是指数控机床产品连续发生两 次故障之间的平均时间。这种平均故障时间常用做数控机

床可靠性评价的一个定量指标。该数值越大,说明系统的可靠性越高。 第二,平均故障修复时间(Mean Time To Repair,简称MTTR),一般是指系统修复一次故障所需要的时间,其所需的流程是确认失效→配件获得→维修→重新投入使用。当该数值越小时,该系统的可靠性越高。 2.数控机床可靠性技术存在的问题 2.1数控机床可靠性研究的学者和机构较少 由于数控机床可靠性技术的研究需要很多部门、学科的交叉工作,并且耗时、耗资,再加上研究成果获得较慢。与一些关键共性技术的研究相比,国内很少有专门对数控机床可靠性进行较大力度的研究,那么能够对数控机床可靠性进行研究的科研机构非常稀缺,一直没能形成一套完整的技术体系。 2.2数控机床可靠性数据积累薄弱

可靠性工程A卷试题及答案(供参考)

东北农业大学成人教育学院考试题签 可靠性工程(A) 一、填空题(每空1分,总分40分) 1、软件可靠性是指在()和()软件完成()的能力。所谓规定的条件是指软件所处的()、()及其()。 2、软件可靠性定义与时间密切相关,()、()、()是最常使用的三种时间度量。 3、某软件系统由6个顺序执行的模块构成,该软件系统成功运行的条件是所有模块都成功执行,假设该软件系统失效率的目标值为0.01失效数/小时,那么,分配到6个模块的失效率指标分别为:λi=()失效数/小时。 4、一般地,软件的可靠性要求可分为()和()两类。 5、一般地,软件可靠性模型的评价体系由()、()、( )、()、()、()等要素构成。6、软件可靠性工程研究和实践的三个基本问题分别是:()、()、()。 7、在严格遵循软件工程原理的基础上,为了保证和提高软件的可靠性,通常在软件设计过程中还采用()、()、()设计和()等软件可靠性设计方法。 8、软件可靠性设计准则是长期的软件开发实践经验和可靠性设计经验的总结,使其()、()、(),成为软件开发人员进行可靠性设计所遵循的原则和应满足的要求。 9、一般地,软件容错的基本活动包括()、()、()、()和()等内容。 10、在配合硬件系统进行软件的健壮性设计时,通常应考虑()、( )、( )、( )、( )、( )、( )等因素。 二、判断题(每题1分,总分10分) 1、软件缺陷是由于人为差错或其他客观原因,使得软件隐含导致其在运行过程中出现不希望或不可接受的偏差的软件需求定义以及设计、实现等错误。() 2、通常情况下,软件运行剖面难以直接获得,在工程上按照:确定客户剖面→定义系统模式剖面→建立用户剖面→确定功能剖面→确定运行剖面的流程来开发软件的运行剖面。() 3、一旦时间基准确定之后,软件失效就可以用累积失效函数、失效密度函数、失效平均时间函数这三种方式中的任一种来表示,且这三种度量标准是密切相关且可以相互转化。() 4、在浮点数运算过程中,10.0乘以0.1一定等于1.0。() 5、在汇编语言编程过程中,原则上禁止使用暂停(halt)、停止(stop)以及等待(wait)等指令。() 6、在系统简化设计过程中,因为软件易于实现或实现成本相对较低,因此首选采用软件简化设计或者说通过软件简化设计来代替硬件简化设计。() 7、常规软件测试是一种基于运行剖面驱动的测试,而软件可靠性测试则是一种基于需求的测试。() 8、软件可靠性预计是一个自上而下的归纳综合过程,而软件可靠性分配则是一个自下而上的演绎分解过程。软件可靠性的分配结果是可靠性预计的目标,可靠性预计的结果是可靠性分配与指标调

相关文档
最新文档