预测微生物学数学建模模型

预测微生物学数学建模模型
预测微生物学数学建模模型

预测微生物学数学模型

预测微生物学是运用微生物学、工程数学以及统计学进行数学建模,利用所建模型来预测或描述处在特定食品环境下,微生物生长和死亡的规律。预测微生物学的目的在于“用数学语言描述食源性微生物在特定环境条件下的生长与死亡”。随着预测微生物学的发展,这种描述的特点已进化成:在未进行微生物检测的前提下,可以预测微生物的生长和死亡。此处的环境条件包括了内部因素(pH和水分活度)和外部因素(温度、所处环境的空气组成)等。虽然环境条件影响着微生物生长和死亡,但是,对食品中的微生物而言,往往个别几个因素就影响或决定着微生物的生长和死亡。

虽然模型并不总是精确地预测微生物的生长和死亡,但它的确量化了两个或多个环境因子协同作用时对微生物的影响,并在此过程中,可对模型中的环境因子进行插入和删除(预测微生物学假设,各环境因素对食品中微生物的影响总是相对独立的)。在实际生产过程中,任何水平的环境因子(pH,水分活度和温度)都不能完全控制致病菌的生长,只有通过添加防腐剂才能达到此目的。那么,将添加剂作为一个环境因子使得预测模型更为实用。需要指出的是:预测微生物学模型,建立是以液体培养环境(Broth)为基础。

●模型及分类

预测微生物学数学模型分为三级:初级模型、二级模型和三级模型。

I 初级模型

初级模型是表征微生物数量与时间的关系,既微生物的响应。表征微生物响应的模型响应参数有直接响应参数和间接响应参数两种。直接参数有:每毫升菌落形成单位数、毒素产生、底物浓度及代谢产物;间接参数包括:电阻抗和吸光率。

初级模型主要包括:Gompertz函数, 对数方程(Logistic function)等。所谓初级模型就是一个数学方程或数学函数,表示微生物响应与时间的关系,并用一系列特定参数来表示。例如,Gompertz函数中的延迟期和传代时间。

II 二级模型

二级模型侧重描述环境因子的变化如何影响初级模型中的参数(如,Gompertz

function中A、C、B和M)。二级模型主要包括:反应面方程(Response surface equation)、Arrhenius relationship和平方根方程(square root model)。

III 三级模型

三级模型是计算机程序,是将初级模型和二级模型转换成计算机共享软件(预测微生物软件)。三级模型也称为专家系统,它使得非专业人士可以获得来自预测微生物学的专业指导。其主要功能为:计算由于环境因子的改变,微生物所做出的响应;比较各环境因子对微生物的影响;相同环境因子下,不同微生物之间的差别等。

●模型局限性

I 统计学局限

因预测模型表征的是一个动态连续过程,而模型中的数据来源于非连续型试验数据。那么,从统计学角度来看,在非连续型数值之间的模型预测值就可能存在相对较大的误差。此外,由于试验方法的局限,不可能获得完全的连续型试验数据,故模型的局限是不可能避免的。但是,我们可通过增加试验重复次数,降低这种预测误差。

II 生物学局限

预测微生物学模型所包括的环境因子主要有:温度、所处环境的空气组成、水分活度、pH和添加剂。实际食品当中影响微生物生长的因素还有很多,如保湿剂的添加、微生物之间的生存竞争、多种防腐剂的添加以及食品在运输过程中冷链的温度波动。那么,当这些“外在”因素成为不可忽视的主要矛盾时,模型预测值就会失去原有的准确度。

III 建模中应考虑的问题

在建模的过程中,必须考虑到以下几个方面:

1. 精确度。在实验收集数据过程中,并不能对环境因子所涉及到的范围,全部进行实验。这就要求模型必须具备较高的预测精度;

2. 对各环境因子的整合性。模型所包含的参数不应太多,利于使用;

3. 对出现的预测错误,可以从模型的局限性进行解释;

4. 模型所包含的参数应具有生物学意义和实际意义;

5. 回归分析是建模的基础。因此,建立恰当的回归分析标准在建模过程中至关重要。

●建模

对预测微生物学数学建模而言,最简单的模型是:生长/不生长(Growth-No Growth)模型。早在1952年,Bell 和Etchells(1952)发现了在泡菜中加入乙酸和食糖可以阻止酵母菌的生长,并建立数学方程计算乙酸和食糖的加入量到达何值时,可使酵母菌停止生长。

I 时间生长模型(Time-to-Growth Modle)

对于简单的生长/不生长模型,Time-to-Growth 模型可提供更多的信息。它可以计算微生物从接种(液体培养)到生长、浑浊和毒素生成等阶段所需要的时间,是典型的初级模型。

在该模型中,微生物生长速率并非关键参数,起决定作用的参数是:微生物何时进入对数期;毒素最初出现的时间。Hauschild(1982)成功地运用Time-to-Growth 模型,描述肉毒梭状芽孢杆菌(Cl. botulinum)从孢子开始生长到产肉毒毒素毒所需的时间。Time-to-Growth 模型作为初级模型与多种二级模型进行结合。Smith 等(1988)运用响应面方程(Response surface equation)控制Time-to-Growth 模型中的参数,预测pH 、水分活度、储藏温度以及山梨酸钾等因素对面包饼干等半干制品中霉菌生长的影响。

Lindroth(1986)将一系列稀释浓度的肉毒梭菌孢子接种到液体培养基中,对液体培养基的混浊度进行观察,并对最可能数量(Most Probable Number, MPN)进行统计。Lindroth 将MPN 结合到Time-to-Growth 模型中,建立了Time-to-Turbidity 模型:

,/)100((%)S MPN P ?= (2.4.1)

其中P 是液体培养基混浊的概率,MPN 是最大可能的孢子生长数量,S 是接种量。在此基础上,Graham 和Lund(1987)建立肉毒梭菌产毒概率模型:

,/)/(ln s q n P = (2.4.2)

P 是产毒的概率,n 是接种样品(液体培养基)的总量,q 表示未显示生长样品的数量,s 表示每个样品的接种量。

随后,Genigeorgis(1991)将方程(2.4.1)和(2.4.2)与一个二次多项式(二级模型)相结合,建立了肉毒梭菌生长随时间和温度变化的方程(初级模型):

,3)]1/([5(%)ln -+=y y e e P (2.4.3)

其中Y 是温度、天数和迟滞期(Lag period)的函数(二次三项式) ;T , D 和L 分别表示温度、天数和迟滞期,ε是误差项:

.2928276543210ε++++++++++=L b D b T b LD b TL b TD b L b D b T b b Y

(2.4.4) Lund(1990)将模型(2.4.4)简化为产毒概率P 和时间t 之间的线性函数关系:

),((%)ln max 1t t k a P --= (2.4.5)

其中a 1表示肉毒梭菌生长数量的峰值,k 表示对数生长期时所成曲线的最大斜

率,m ax t 是达到峰值所需的时间,t 是培养时间。

Cole(1987)将对数模型作为初级模型,多项式作为二级模型,对果汁中的接合酵母(Zygosaccharomyces bailii)的生长进行建模。储藏温度23℃,储藏时间三周,环境因子(方程中以x 1和x 2等表示)包括:pH 、果糖、苯甲酸和山梨酸等,方程为:

.121222110Λ++++=x a x a x a a Y (2.4.6)

Cuppers(1993)提出Time-to-Turbidity 模型的数学表达式,基础方程为:

,/)(01K N N T T turb turb -+= (2.4.7)

其中turb T 是从接种到浑浊所需的时间(液体培养),T 1为延迟期,turb N 为达到浑浊后的微生物数量(lg cfu/ml),N 0为接种量,K 为生长速率(是对微生物生长由接种到浑浊整体过程的生长速率描述)。不难看出turb T 与接种量N 0之间是线性关系,同时该方程也为生长速率K 提供了新的算法:

)./()(210201turb tur T T N N K --= (2.4.8)

II 动态生长模型(Growth Models )

1. 初级模型(Primary Growth Models)

与时间生长模型相比较,动态生长模型复杂一些:它表示了微生物动态生

长、死亡的全过程。动态生长模型中一般将指数函数、对数函数(Logistic

function)和Gompertz 函数作为初级模型,其中Gompertz 函数运用的最为关泛。

1) 指数函数

微生物纯培养的群体生长规律而言,对数期和衰亡期均呈现线性关系。对数期的线性方程为:

,2ln /0kt t e N N = (2.4.9)

其中t N 是t 时刻时微生物数量的对数值(lg cfu/ml),0N 是初始微生物数量的对数值,k 是斜率,其计算方程为:

)./()ln (ln 1212t t N N k --= (2.4.10)

Baranyi 和Roberts(1992)指出所谓微生物生长速率是每一瞬时微生物增长的数量(d M /d t )。一般认为,微生物生长具有的特征性规律为:每一瞬时微生物数量的变化率与当时微生物的数量成正比。由此,得微生物增殖模型为:

,)(01t t e M M -=μ (2.4.11)

其中M 0为初始微生物数量的对数值,μ为比生长速率,t 1表示延迟期时间长度。

2) Gompertz 函数

Gompertz 函数是预测微生物学的基座。美国农业部开发的病原菌模型程序 (Pathogen Modeling Program, PMP)和英国农粮渔部开发的食品微型模型(Food Micromodel ,FM)都是以Gompertz 函数作为初级模型。Gompertz 对同一年内出生人数和死亡人数进行统计,对二者之间的关系建立了经验模型。这一原理同样适用于微生物。其数学方程式为:

))).-(-exp(-exp( += )(M T B C A t L (2.4.12)

Gompterz 函数形式不变,其精确性高低取决于各参数的计算(B 和M )。A 是初始微生物数量对数值,B 是微生物最大生长速率(对数期中),C 为稳定期数量与初始值之差,M 为最大生长速率时所对应的时刻(即曲线拐点所对应的时刻)。Gompertz 函数各个参数的含义可由图2.4.1表示。

B 和M 由二级模型确定。例如:Buchanan 和Bagi(1994)对氧气充足条件下,大肠杆菌O157:H7动态生长进行建模,以Gompterz 为初级模型,以二次响应面方程为二级模型,其B 和M 的表达式为:

,×0.000489 + ×0.1373-×0.000295- ×0.00386+×0.000125-×0.000938+ ×0.0657-×1.8524+×0.2407+11.9212- )(ln 222S P T PS

TS TP S

P T B = (2.4.13)

图2.4.1 Gompertz 函数各个参数的含义图

.

0.000143×0.0206-×0.000209- ×0.0000697+×0.000194-×0.00119+ ×0.000138-×0.2564+×0.0175+0.9272- 2225.0S P T PS

TS TP S

P T M ?+=- (2.4.14)

其中T 表示温度,P 为pH 值,S 则表示NaCl 浓度。

在选定建模所用初级模型后,二级模型的多项式拟合尤为关键。对Gompterz 参数的评估则是用最小二乘法。Bratchell(1989)对以Gompterz 为初级模型的建模进行误差统计,认为曲线上必须有十个以上的点与实际值相吻合,模型才算成功。Gompterz 参数还可与微生物生长参数进行换算:

延迟期 (Lag Phase Duration) = M - (1/B );

生长速率 (Growth Rate) = (B ×C )/e ;

传代时间 (Generation Time) = (ln 2)×e/(B ×C ).

对于延迟期求解,也可通过令Gompterz 方程二次导数为零的方法进行计算。Zwietering(1992a)对比了上述两种方法,认为由二次求导进行计算略有不同:

延迟期 (Lag Phase Duration) = M - (0.96/B ).

Zwietering(1992b)将同为S 行曲线的Gompterz, Richards, Schnute 和Stannard 方程作为初级模型,对胚芽乳杆菌(Lactobacillus plantarum)的生长进行建模,发现Gompterz 更加准确地描述了其生长情况,并提出了Gompterz 方程的变形式:

]},1)-()/ex p[(-ex p{ =)/(ln 10+t t a e a N N t μ (2.4.15) a 是微生物稳定期数量与初始期数量之差(Ln cfu/ml),μ最大生长速率,t 1为延迟期。

需要指出的是Gompterz 函数具有其内在特性:M 时刻(即曲线拐点所对应的时刻)发生在微生物数量达到0.37C ,而延迟期结束在微生物数量达到A +0.066C 时。

当然,Gompterz 函数存在局限。首先,微生物生长处于对数期时,其生长曲线具有较好的线性性质,也就是说可以将这段曲线视为一条直线。而Gompterz 函数则认为该段曲线为非线性,具有拐点(相对最大生长速率)。其次,通过Gompterz 函数计算延迟期时,因函数曲线形式相对固定,延迟期有时被计算为负值。

3) 对数方程

对数方程在形式上接近Gompterz 函数,表达式为:

},])/-ex p( 1/[{0G t M B N N t ++= (2.4.16)

N t 表示t 时刻微生物数量(以光密度值为单位),N 0为初始微生物数量,B 为微生物最大生长数量(稳定期),M 为最大生长速率时所对应的时刻,G 为传代时间。就建模原理而言,对数方程以指数函数为基础,描述生物阶梯性增长和衰减,其精确度不及Gompterz 函数。

4) 其他类型的初级模型

由于Gompterz 方程存在的局限, Whiting 和Cygnarowicz(1992)建立了肉毒梭菌的生长死亡模型(液体培养),认为肉毒梭菌的孢子萌发和迟滞期的过程属于一元函数。其生长模型为:

,)ex p(1t k M M A B = (2.4.17)

其中M B 和M A 分别为t 时刻和初始时刻的肉毒梭菌的数量,t 为时间,k 1是生长速率参数。随后,将传代时间作为一个新的参数引入方程(2.4.17),形式为:

M B =M A 2t /g . (2.4.18)

传代时间参数g 的引入使得方程对肉毒梭菌生长情况的描述更为准确。生长速率参数k 1是通过数据线性回归得到的,k 1在该方程中并不具备生物学意义。而传代时间参数g 与肉毒梭菌的数量存在一个非线性的关系(随着代谢产物的积累和底物的消耗,传代时间慢慢增长) ,表达式为:

,) 生长长时×肉毒梭菌数量(32∑+=a a g (2.4.19)

其中,a 2为初始生长时刻的传代时间,a 3是一常数(矫正因子)。进入稳定期后,肉毒梭菌数量达到峰值时,传代时间也达到最大值。在随后的衰亡期中,模型的表现形式回到原来的生长模型:

,)ex p(2t k M M C D = (2.4.20)

M D 为死亡的肉毒梭菌数量,M C 为进入稳定期后,肉毒梭菌数量达到的峰值,k 2是死亡速率参数,同样由数据线性回归得来。

Jones 和Walker(1993)建立了小肠结肠炎耶尔森氏菌(Yersinia enterocolitica)的生长死亡模型,不同的是其初级模型是将生长和死亡模型结合到一起:

,2210t t y y t M M -= (2.4.21)

M t 和M 0分别是t 时刻和初始时刻的小肠结肠炎耶尔森氏菌数量,y 1t 和y 2t 是两个三元二次响应面方程(含有三个环境变量:pH ,水分活度和温度;各项所含的最高

地震紧急撤离问题数学建模

辽宁工业大学2010年数学建模(论文) 题目:地震紧急撤离问题 院(系):电子与信息工程学院 专业班级:计算机071班 学生:伟、何林强、章杰 起止时间:2010.4.5—2010.4.16

摘要 本文借用流体动力学中的微分关系,通过将离散的人员转化为连续的人流,以人流密度为研究主体,建立了人员撤离的动态微分方程优化模型,分析了地震发生时人员紧急撤离的问题。并根据我们所在教学楼的楼层建筑的数据分别估算了混乱状况下与有组织时人员撤离的时间,为人员的紧急撤离提供了参考方案。 第一,本文分析了在无组织的状态下,人员撤离的一般情形。一方面,无组织下人员的运动具有随机性,故此引入人流密度作为基本研究对象。另一方面,流量的变化率是人流密度对距离积分后对时间的导数,人流量对时间的积分即为撤离人员的数量。由此几方面关系,可以列出整个动态过程的微分方程。经分析发现,单位时间的人流量与密度和速度成正比关系,而整体的人流速度与密度之间又是成一次线性关系,恰好符合流体力学中的流量、流速与密度之间的关系。根据实际情况对整求解过程做了简化,以楼道中的平均人流量为研究主体,最终以数值解求得全部人员逃离所需时间大约为420s. 第二,利用得出的人流量随时间变化的图像可知,由于人员无组织的涌出教室,导致人流密度很大,人群得不到有效的移动,从而使流量达到最大值后又迅速减小。故最好的撤离方式是在达到流量最大的时候,保持住一定的人流密度从而来维持最大的流量。结合数据后可知,在撤离开始一分钟的时候应该有人组织撤离,这样可以避免由于人员的过多涌入楼道而导致的拥堵现象。这样子调控后最佳的撤离时间可以降到240秒左右。 第三,除去人为堵塞的因素对撤离时间影响较大外,改变楼层的设计同

地震检测模型

楚雄师范学院 2014年“雁峰杯”数学建模竞赛论文 题目地震检测 姓名杨子月 学院数学与统计学院 专业数学与应用数学 2014年5月28日

地震检测模型 摘要 继2008年5月12日在四川汶川大地震之后,2013年4月22日四川雅安又发生了一次7.0级地震,这些重大自然灾害,给我们每一位中国人带来了巨大的伤痛,痛定思痛,我们应该为减少震后灾害做些事情。当地震发生时,震中位置的快速确定对第一时间展开抗震救灾起到非常重要的作用,而震中位置可以通过多个地震观测站点接收到地震波的时间推算得到。 现已采集到某地观测的30个指标的数据,和该地区该时期内已发生地震的经纬度、地震波到达的时间的数据。科学地截取这些数据的有用片段,对数据进行合理地预测处理,用数学方法计算出地震的中心位置。 关键词:地震检测经纬度地震波到达时间震源中心

一、问题重述 假设你是一位地震学家,在某地部署了30座地震台。这些地震台装备了测量和记录地质运动的设备。现已采集了这30座地震台的坐标和某次地震时这些的地震台测得的地震运动到达时间t,现在我们需要建立一个数学模型求出这次地震中心的坐标M(x,y)。 二、模型假设 1、假设震源在地下,发生地震之后地震波沿着各个方向匀速传播,且在传播过程中速度保持不变。 2、假设地震波在各种介质中的传播速度相等。 3、假设地震发生的区域范围内时差为零。 4、、假设由于其他因素而引起10多个指标数据的变化以及非正常波动可以忽略不计。 5、假设地震的前兆指标的数据特征符合一定的概率统计分布。 6、地形各观测点没有剧烈变化。 通过以上条件虽然不能精确求出地震发生的地点,但是可以建立一种在空间和时间上准确模拟地震发生以及预测的模型机制,对于地震预报及防治有很大的现实意义。地震源可能在地下,地震发生之后,地震波从震源点开始以球面方式沿各个方向传播,在空间和时间上是一个三维的立体模型结构。 三、符号说明及名词解释 3.1符号说明 震中位置 M(x,y) 经度 x(度) 纬度 y(度) 震源深度 h(千米) 地震波在各种介质中的传播速度v(千米/秒) 地震波到达时间 t(秒) 3.2 名词解释 地震波:地震被按传播方式分为三种类型:纵波、横波和面波。纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。[1]

数学建模之减肥问题的数学模型

数学建模之减肥问题的 数学模型 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

东北大学秦皇岛分校 数学模型课程设计报告 减肥问题的数学建模 学院数学与统计学院 专业信息与计算科学 学号5133117 姓名楚文玉 指导教师张尚国刘超 成绩 教师评语: 指导教师签字: 2016年01月09日

摘要 肥胖已成为公众日益关注的卫生健康问题. 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一. 但是实际情况却是人们不会理性的对待自己的身体状况,经常使用一些不健康的方式减肥,到最后适得其反,给自己的身体造成很大的伤害. 本文特别的从数学模型的角度来考虑和认识问题,通过该模型的建立,科学的解释了肥胖的机理,引导群众合理科学的减肥. 本文建立了减肥的数学模型,从数学的角度对有关身体肥胖的规律做进一步的探讨和分析. 在研究此问题时,体重的实时变化数据是我们研究的核心数据,这就会使我们联系到变量的变化率或导数,这样所得到变量之间的关系式就是微分方模型. 微分方程模型反映的是变量之间的间接关系,因此,在研究体重,能量与运动之间的关系时,得到直接关系就得求解微分方程. 本文利用了微分方程模型求解减肥的实际问题,根据基本规律写出了平衡关系式 [()()][()()]t t t D A B R t t ωωω+?-=-+? 再利用一定的转换条件进行转化为简单明了的式子,求解出模型关系式 然后根据建立的模型表达式来解决一些实际的减肥问题,给出数学模型所能解答的一些实际建议. 关键字: 微分方程模型 能量守恒 能量转换系数 1 问题重述 课题的背景 随着社会的进步和发展,人们的生活水平在不断提高,饮食营养摄入量的改善和变化、生活方式的改变,使得肥胖成了社会关注的一个问题. 为此,联合国世界卫生组织曾颁布人体体重指数(简记BMI ):体重(单位:kg )除以身高(单位:m )的平方,规定BMI 在至25为正常,大于25为超重,超过30则为肥胖.据悉我国有关机构针对东方人的特点,拟将上述规定中的25改为24,30改为29.无论从健康的角度,是从审美的角度,人们越来越重视减肥,大量的减肥机构和商品出现,不少自感肥胖的

数学建模神经网络预测模型及程序

年份 (年) 1(1988) 2(1989) 3(1990) 4(1991) 5(1992) 6(1993) 7(1994) 8(1995) 实际值 (ERI) 年份 (年) 9(1996) 10(1997) 11(1998) 12(1999) 13(2000) 14(2001) 15(2002) 16(2003) 实际值 (ERI) BP 神经网络的训练过程为: 先用1988 年到2002 年的指标历史数据作为网络的输入,用1989 年到2003 年的指标历史数据作为网络的输出,组成训练集对网络进行训练,使之误差达到满意的程度,用这样训练好的网络进行预测. 采用滚动预测方法进行预测:滚动预测方法是通过一组历史数据预测未来某一时刻的值,然后把这一预测数据再视为历史数据继续预测下去,依次循环进行,逐步预测未来一段时期的值. 用1989 年到2003 年数据作为网络的输入,2004 年的预测值作为网络的输出. 接着用1990 年到2004 年的数据作为网络的输入,2005 年的预测值作为网络的输出.依次类推,这样就得到2010 年的预测值。 目前在BP 网络的应用中,多采用三层结构. 根据人工神经网络定理可知,只要用三层的BP 网络就可实现任意函数的逼近. 所以训练结果采用三层BP模型进行模拟预测. 模型训练误差为,隐层单元数选取8个,学习速率为,动态参数,Sigmoid参数,最大迭代次数3000.运行3000次后,样本拟合误差等于。 P=[。。。];输入T=[。。。];输出 % 创建一个新的前向神经网络 net_1=newff(minmax(P),[10,1],{'tansig','purelin'},'traingdm') % 当前输入层权值和阈值 inputWeights={1,1} inputbias={1} % 当前网络层权值和阈值 layerWeights={2,1} layerbias={2} % 设置训练参数 = 50; = ; = ; = 10000; = 1e-3;

地震成因及风险模型

摘要首先,介绍了地震形成的自然因素和非自然因素,并对其发生原因进行了分析和研究;其次,通过对1999-2009年间的地震现场的灾害调查资料和损失评估的资料进行研究,对其进行分析与处理,采取以实际烈度区作为分配单元,建立适用于县级区域小尺度的地震风险分析模型;最后基于烈度的地震分析模型与基于建筑物易损性地震分析模型预测结果进行比较,由此说明在县级区域小尺度上,地震风险分析模型的适用性。 关键词分析模型烈度地震灾害损失评估 A Study on the Analysis Mode for the Causes and Risks of Earthquakes//Wang Xingyu[1],Chen Peng[2]* Abstract We first introduced the earthquake causes which con-sist of the natural factors and unnatural factors.Second,we use data from the investigation of earthquake disasters and the inf-ormation of disaster losses1999-2009,gathering respective sec-tions strength data of the population,the per capita GDP and the area of land,from evaluation information of earthquake disa-ster and statistics of the earthquake province when the earthqu-ake happens.By analyzing and handling the above data,use virtual broken-level areas as allocation units and establish risk analysis model for medium and small scale earthquake of https://www.360docs.net/doc/8b2978104.html,parison the two forecast results from the earthquake analysis model based on strength and building damage to prove that the earthquake analysis model based on strength is more suitable for medium and small scale county.Finally,we introduced some knowledge about self-protection when the earthquake happens. Key words analysis model;strength;earthquake disaster;evalu-ation of losses First-author's address Changkou Middle School of Fuyang City,311400,Hangzhou,Zhejiang,China 1引言 地震作为中国灾害中破坏力最强,损失最严重的灾种,而被研究者所重视。因此,对地震成因的分析以及如何减轻地震风险是这篇文章的主要内容。随着城市化进程日益加快,承灾数量不断增加,但是,灾害评价分析模型还不能满足现代应急的需求。以往的地震评价研究模式,主要是针对地震风险分析模型在地震减灾中长期规划研究,但不适用于突发性地震事件。如何快速、准确地对突发性地震事件发生前或者发生时做出应急管理是决策者面临的重大难点。本文提出了一个地震风险分析模型,该模型能够很好地满足地震应急需求,同时在一定程度上满足抗震风险分析需求。 2地震发生的自然原因 地震是地壳运动的一种特殊表现形式,也是极为常见的地质现象。地震有多种成因,根据其成因分为构造地震、火山地震和陷落地震三种主要类型。 2.1构造运动 构造地震是由地壳运动所引起的地震。一般而言,地壳运动是长期的、缓慢的,一旦地壳所积累的地应力超过了组成地壳岩石极限强度时,岩石就要发生断裂而引起地震,也就是说地应力从逐渐积累到突然释放时才发生地震。构造地震是一种活动频繁、影响范围大、破坏力强的地震,世界上最多(90%以上)和最大的地震都属于构造地震[1]。 2.2火山运动 由于火山活动时岩浆喷发的冲击力或热力作用而引起的地震,称为火山地震。火山地震一般较小,数量约占地震总数的7%左右,地震和火山往往存在关联,火山爆发可能会激发地震,而发生在火山附近的地震也可能引起火山爆发,通常发生在板块的生长边界。其特点是震源常限于火山活动地带,一般深度不超过10公里的浅源地震,震级较大,多属于没有主震的地震群型,影响范围小。 2.3陷落运动 陷落地震是由于岩层大规模崩塌或陷落而引起的地震。这种地震为数很少,只占地震总数的3%左右,一般震级较小,影响范围不大,地震能量主要来自重力作用。陷落运动主要发生在石灰岩或其他易溶的岩石地区,由于地下溶洞不断扩大,洞顶崩塌,引起震动,导致矿洞塌陷或大规模山崩、滑坡等也可能导致这类地震发生。 3地震发生的非自然原因 在特定地区由于某种地壳外界的非自然因素而引起的地震,称为诱发地震。这些外界因素可能是地下核爆炸、陨石坠落、油井灌水等,其中最常见的是水库地震。水库蓄水,石油和天然气、盐卤、地下热(汽)储的开发,废液处理和油田开采中的深井注水,钻进过程中的井漏,矿山抽排水,固 ([1]杭州市富阳市场口中学浙江·杭州311400; [2]吉林师范大学旅游与地理科学学院吉林·四平136000) 中图分类号:K909文献标识码:A文章编号:1672-7894(2012)15-0081-03 81

减肥问题的数学模型

减肥问题的数学模型 一、 问题的提出 现今社会,随着物质生活水平的提高,肥胖已成为困扰人们身体健康的一大疾病,减肥已日趋大众化。如何有效地,健康地减肥成为一个亟待解决的问题。下面本文从减肥机理的角度出发建立合理的数学模型来解决这个问题。 二、 问题的分析 肥胖困扰着很大一部分人群。如何耗去多余的脂肪,提高身体健康质量,成为人们的共识。本题要求我们从减肥的机理角度出发说明怎样有效地减肥。 根据生物知识,减肥就是要消耗体内多余的脂肪,也即把多余的脂肪转化为能量释放出来。实际上,我们吃的食物都是以能量的形式被人体吸收,当摄入能量为λE 时,减肥效果取决于能量的消耗E 。若E λE ?,他的能量消耗大于摄入,将达到减肥的目的;若E λE =,他的体重将维持原状;若E λE ?,则他不但不能减肥,反而会增胖。 每日摄入能量的来源有:碳水化合物、蛋白质和脂肪,设它们被消化后产生的热量为Q i =i i m λ(i=1,2,3)(其中i i m ,λ分别为上述三种物质的燃烧值和摄入质量)。则摄入的总能量为E λ=∑=3 1i i i m λ 每日消耗的能量E=1.1×(Q 0+Q P ),而Q 0=W Q ω,Q P =Q 0k ,k =∑=4 1 j j j k ω 故E=1.1×WQ ω(1+∑=4 1 j j j k ω) 从而,我们比较λE 与E 的大小,可以得出体重的变化。 三、 问题的假设: (1) 燃烧相同质量的人体各部位脂肪产生的热量相同。 (2) 同一人在一段时间内每天各种强度活动所占比例一定。

(3) 人体健康状况良好,体内的生理活动稳定。 四、 符号说明: E ——— 每天消耗的能量 E λ———正常人体每天摄入的能量 m i ————每天摄入的碳水化合物、蛋白质、脂肪的质量 i λ(I=1,2,3)——单位质量的碳水化合物、蛋白质、脂肪燃烧放出的热量。 W ——减肥前的体重(单位:斤) Q 0——人体基础代谢需要的基本热量 Q p ——体力活动所需要的热量 Q ω——人体单位体重基础代谢需要的基本热量 k j (j=1,2,3,4)——各类型活动的活动强度系数(极轻、轻、中、重) j ω(j=1,2,3,4)——每天各强度活动所占比例(∑=4 1 j j w =1) m ? ——自身脂肪变化的质量 五、 模型的建立与求解 在问题的分析中我们已得出: E λ= ∑=3 1i i i m λ (i=1,2,3) E=1.1×Q ωW (1+∑=4 1j j j k ω) (j=1,2,3,4) 因而我们有 m ? = 3 λλE E -= 3 4 1 3 1 ) 1(1.1λλ∑∑==+-j j j w i i i w k Q m 下面我们分三种情形: (1) 0??m 即E E ?λ时,结果是人体增胖 (2) 0=?m 即E=E λ时,维持原状不变。

地震预测模型doc

精心整理2011年赣南师院数学建模竞赛选拔赛 题目地震预测模型 摘要: 本文前三个任务主要考虑是各指标的变化对地震发生问题的影响,通过对各指标数据量的分析建立相应的模型,并对任务四和任务五给出了合理的解答。 针对任务一:我们从原始数据中计算出各项指标的日均值,绘制出各指标分年度的时间序列图, 磁波幅度 。 关键词: 一·问题的重述 1.1背景分析 地震是地壳快速释放能量过程中造成的振动。虽然预测地震是世界性难题,但迄今科学界普遍认为,有可能反映地震前兆特征的指标可能不少于10个。已经有专业仪器在多个定点实时按秒记录这些指标的数据,期望通过对记录数据的分析研究找到地震的前兆特征。 现已采集到某地2005年1月1日至2010年6月30日按小时观测的10多个指标的数据,和该地区该时期内已发生地震的时刻、经纬度、震级及震源深度的数据。这些数据中隐藏着地震发生的前兆特征。科学地截取这些数据的有用片段,对数据进行合理地预处理,用数学方法揭示地震前兆

的数据特征,是一项很有意义的研究工作。 题给数据中的这10多个指标,究竟哪些与地震的发生有关,有何种关系,是单一关系还是复合关系;除这10多个指标外还有哪些因素及含题给指标在内的哪些指标的哪种数学模型更能反映地震的前兆特征等等,人们迄今仍不很清楚,需要进行深入地研究。地震数据的观测是持续进行的,随着时间的推移数据的规模会不断扩大。从中挖掘地震的前兆特征,必须有合理的数学模型,也必须有科学高效的算法分析平台。因此,需要我们结合附件中给出的实际记录数据,尝试完成以下任务。 1.2任务的提出 任务一:分析数据特征,建立数学模型以度量各指标对地震发生的敏感程度。 越大 任务三:中要结合题给数据,建立数学模型来研究地震发生前的数量特征。主要运用贝叶斯判别分析法进行建模,对已给数据进行先验信息、后验信息分析。 任务四:要将计算程序集结成地震数据分析平台,能够完成其它地震数据的分析,并能自动输出前任务的重要分析结果。 任务五:是针对进一步的研究设想写一篇切实可行的报告。 三·问题的基本假设 (1)地震监测点的监测设施能正常运转; (2)地震监测设施周围不存在影响其工作效能的干扰源,如飞机场、发电厂等;

数学建模分数预测论文完整版

高考录取分数预测模型 姓名: 班级: 姓名: 班级: 姓名: 班级:

关于高考录取分数预测模型的探究 摘要 本文通过差分指数平滑法和自适应过滤法分别建立模型,根据历年学校录取线预测下一年的录取分数线。最后,根据预测出来的最佳数据,给2014年报考本校的考生做出合理的建议。 对于问题一和问题二,首先根据题意和所给出的学校历年的录取分数线,不难分析出高校的录取分数线是由当年的题目难度、考生报考数量、“大年”和“小年”等因素决定的。每年的分数线还是有一定差距的,例如,本校2012在北京市电气专业的录取线是428分,而2013年是488分,相差60分。因此,预测的时候,需要通过一些方法使数据趋于平滑,使之便于预测。通过这些分析,建立了两种可靠的预测模型。 模型一通过差分的方法,利用Matlab软件将后一年Y t与前一年Y t-1的数据相减得到一个差分值,构成一个新序列。将新序列的值与实际值依次迭加,作为下一期的预测值。以此类推,预测出2014年的录取分数线。模型二是根据一组给定的权数w对历年的数据进行加权平均计算一个预测值y,然后根据预测误差调整权数以减少误差,这样反复进行直至找到一组最佳权数,使误差减小到最低限度,再利用最佳权数进行加权平均预测。这两种方法很好的解决了历年录取分数相差较大难以预测的问题。预测值相对准确。预测结果数据量较大,在此以河北省为例,给出预测结果模型一:2014年本校电气专业录取线为495,模型二:2014年本校电气专业录取线为536。 最后,通过预测出的数据,比对模型一和模型二,取最佳预测值,给报考科技学院的考生做出较为合理的建议。 关键词:序列权数差分值加权平均高考录取线

《数学建模》选题.

《数学建模》选题(一) 1、选址问题研究 在社会经济发展过程中, 经常需要在系统中设置一个或多个集散物质、传输信息或执行某种服务的“中心”。在设计和规划商业中心、自来水厂、消防站、医院、飞机场、停车场、通讯系统中的交换台站等的时候,经常需要考虑将场址选在什么位置才能使得系统的运行效能最佳。选址问题, 是指在指定的范围内, 根据所要求的某些指标,选择最满意的场址。在实际问题中,也就是关于为需要设置的“设施”选择最优位置的问题。选址问题是一个特殊类型的最优化问题,它属于非线性规划和组合最优化的研究范围。由于它本身所具有的特点,存在着单独研究的必要性和重要性。 1.1“中心”为点的情形 如图1,有一条河,两个工厂P 和Q位于河岸L(直线)的同一侧,工厂 P 和 Q 距离河岸L分别为8千米和10千米,两个工厂的距离为14千米,现要在河的工厂一侧选一点R,在R处建一个水泵站,向两工厂P、Q 输水,请你给出一个经济合理的设计方案。 图1 图2 (即找一点 R ,使 R 到P、Q及直线l的距离之和为最小。) 要求和给分标准: 提出合理方案,建立坐标系,分情况定出点R的位置,0分——70分。 将问题引申: (1)、若将直线 L缩成一个点(如向水库取水),则问题就是在三角形内求一点R,使R到三角形三顶点的距离之和为最小(此点即为费尔马点)。 (2)、若取水的河道不是直线,是一段圆弧(如图2),该如何选点? 对引申问题给出给出模型和讨论30分——50分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺点讨论扣10分。 1.2“中心”为线的情形

在油田管网和公路干线的设计中提出干线网络的选址问题: 问题A :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ∑=n i i i L P d w 1 ),( (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题B :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ∑=n i i i L X d w 1 ),( (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 问题C :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ),(max 1L P d w i i n i ≤≤ (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题D :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ),(max 1i i n i L X d w ≤≤ (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 参考文献 【1】林诒勋, 尚松蒲. 平面上的点—线选址问题[J]. 运筹学学报,2002,6(3):61—68. 【2】尚松蒲, 林诒勋. 平面上的min-max 型点—线选址问题[J]. 运筹学学报,2003,7(3):83—91. 要求和给分标准: 选择问题A 和B(或者C 和D)进行研究:根据文献重述模型(10分),提出自己的算法(30分),计算机仿真验证算法的正确性(40分,含如何在平面上随机产生n 个点,对每个点随机赋权,按照算法编程实现求干线的程序,并将寻得的干线和点在平面上图示,建议用MATLAB 编程)。 将问题引申: 如果同时确定两条、三条干线,应该如何讨论?其他情形的讨论? 对引申问题给出给出模型和讨论20分——30分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺

高阶统计量地震子波估计建模

2006年10月 第41卷 第5期  3山东省东营市中国石油大学(华东)信息与控制工程学院,257061本文于2005年12月21日收到,修改稿于2006年5月12日收到。 本项研究受高等学校博士学科点专项科研基金(No.20020008004)部分资助。 ?处理方法? 高阶统计量地震子波估计建模 戴永寿3①② 郑德玲① 魏 磊② 霍志勇② (①北京科技大学信息工程学院;②中国石油大学(华东)信息与控制工程学院) 摘 要 戴永寿,郑德玲,魏磊,霍志勇.高阶统计量地震子波估计建模.石油地球物理勘探,2006,41(5):514~518,540 本文在反射系数序列为非高斯、平稳和统计独立的随机过程,地震子波为非因果、混合相位的假设条件下,分别应用滑动平均(MA )和自回归滑动平均(ARMA )模型对地震记录进行建模,并采用运算代价较小的基于高阶累积量的线性化求解方法———累积量矩阵方程法进行了子波提取和模型适应性的研究。数值模拟结果和实际地震数据处理结果表明:自回归滑动平均(ARMA )模型比滑动平均(MA )模型具有参数节省、模型更为高效的特点;累积量矩阵方程法可以有效地压制加性高斯噪声,但对累积量样本估计的准确性要求较高;如果累积量样本估计的误差和方差适度,结合自回归滑动平均(ARMA )模型描述的累积量矩阵方程法可以高效、准确地估计出地震子波。 关键词 高阶累积量 子波 自回归滑动平均(ARMA ) 滑动平均(MA ) 建模 1 引言 作为地震资料反褶积处理、波阻抗反演以及正演模拟的基础工作,准确的地震子波估计对于高分辨率、高信噪比、高保真度的地震勘探数据处理具有极为重要的意义。统计性子波提取方法的基本原理是首先对反射系数序列的分布做某种假设,然后利用地震记录的统计信息进行子波估计。在没有任何先验知识的情况下,通常假设反射系数序列为一个非高斯、平稳和统计独立的随机过程,假设子波为一个非因果、非最小相位系统,加性噪声为高斯色噪声。因此在利用地震记录的统计信息进行子波估计时,其高阶累积量不仅能保留系统的相位信息,而且能较好地压制高斯色噪声,显示出此法的优越性。 近年来,基于高阶累积量的参数化子波估计方法得到了快速发展。Lazear [1]首先引入滑动平均(MA )模型描述地震记录,然后将子波四阶矩和地震资料的四阶累积量在最小均方误差意义下进行拟合,并用梯度下降法求解目标函数。随后,Velis 等人[2]及尹成等人[3]试图应用特性更好的全局最优化 方法解拟合函数,但求解效率普遍较低。石殿祥等 人[4]基于高阶累积量研究了非最小相位子波提取问题,虽取得了一定的成果,但依然沿用了滑动平均(MA )模型来描述地震记录。 本文分别采用滑动平均(MA )模型和自回归滑动平均(ARMA )模型来描述地震记录,并借助基于高阶累积量的线性化参数估计方法———矩阵方程法求解模型参数,最终精确估计了地震子波。 2 地震记录的滑动平均(MA)模型描 述及矩阵方程法子波提取 地震记录y (n )可视为一个零均值的平稳随机过程,且符合如下褶积模型 y (n )= ∑q i =0 w (i )r (n - i )+v (n ) =w (n )3r (n )+v (n ) (1) 式中:w (n )为地震子波;r (n )为反射系数序列;v (n )为环境噪声。显然,式(1)符合典型的滑动平均(MA )模型表达式,因此可以把地震记录看作是有限脉冲响应(FIR )系统的含噪输出。对于上述模型有如下假设:

关于减肥计划的数学模型

2011第一学期数学建模选修课期末作业 名称:减肥计划 学号:1008054311 系别:计算机系 姓名:宛笛 上课时间:周四晚上 是否下学期上课:是

减肥计划 摘要:近年来,随着人们生活水平的提高,肥胖现象也日趋普遍,越来越多的人开始关注和解决肥胖问题,与此同时,各类减肥食品充斥市场,却达不到好的效果,或者不能维持,有的还会对消费者的身体带来一定损害. 本文中,我们建立了节食与运动的模型,通过控制饮食和适当的运动,在不伤害身体的前提下,达到减轻体重并维持下去的目标. 关键字:肥胖节食运动不伤害减轻体重 1问题重述 当今社会,人们对于健康越来越重视,而肥胖也成为困扰很多人的健康问题,肥胖者通过各种方式减肥,但很多人收效甚微,本文通过制定合理的节食和运动计划科学的直到肥胖者减肥. 2 问题分析 (1) 体重变化由体内能量守恒破坏引起; (2)人体通过饮食(吸收热量)引起体重增加; (3)代谢和运动(消耗热量)引起体重减少 3符号说明 1)K: 表示第几周; 2)ω(k):表示第k周的体重; 3)C(k):表示第k周吸收的热量; 4)α:表示热量转换系数[α =1/8000(kg/kcal)]; 5)β:表示代谢消耗系数(因人而异); 6) β’:表示通过运动代谢消耗系数在原有的基础上增加,即可表为β’=β+β1, β1有运动形式和时间决定. 4模型假设 1)体重增加正比于吸收的热量——每8000千卡增加体重1千克; 2)代谢引起的体重减少正比于体重——每周每公斤体重消耗200千卡 ~ 320千卡(因人而异),相当于70千克的人每天消耗2000千卡 ~ 3200千卡; 3)运动引起的体重减少正比于体重,且与运动形式有关; 4)为了安全与健康,每周体重减少不宜超过1.5千克,每周吸收热量不要小于10000千卡。 5 减肥计划 事例:某甲体重100千克,目前每周吸收20000千卡热量,体重维持不变。现欲减肥至75千克。 1)在不运动的情况下安排一个两阶段计划。 第一阶段:每周减肥1千克,每周吸收热量逐渐减少,直至达到下限(10000千卡); 第二阶段:每周吸收热量保持下限,减肥达到目标 2)若要加快进程,第二阶段增加运动,试安排计划。 3)给出达到目标后维持体重的方案。

数学建模之灰色预测模型

、灰色预测模型 简介(P372) 特点:模型使用的不是原始数据列,而是生成的数据列。 优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性 和可靠性低的问题。 缺点:只适用于中短期的预测和指数增长的预测。 1、GM(1,1)预测模型 GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。 1.1模型的应用 ① 销售额预测 ② 交通事故次数的预测 ③ 某地区火灾发生次数的预测 ④ 灾变与异常值预测,如对旱灾,洪灾,地震等自然灾害的时间与程度进行预报 (百度文库) ⑤ 基于GM(1,1)模型的广州市人口预测与分析(下载的文档) ⑥ 网络舆情危机预警(下载的文档) 1.2步骤 ① 级比检验与判断 由原始数据列x (0) =(x (o ) (1),x (o ) (2),…,x (0)(n))计算得序列的级比为 2 2 若序列的级比(k) -(e^ '.e 0 2),贝U 可用x (0)作令人满意的GM(1,1)建模。 光滑比为 P (k )= k x <0) ( k) \- (0) x (I) i 珀 若序列满足 p(k 1) ::1,k =2,3,…,n-1; p(k) p(k)〔0,T,k=3,4, ,n; 「:: 0.5. ■ (k)二 x (0)(k -1) x (0) (k) ,k - 2,3, , n.

则序列为准光滑序列。 否则,选取常数c 对序列x (0)做如下平移变换 y (o )(k)=x (o ) (k) c,k=1,2「, n, 序列y (0)的级比 、 y 0(k-1) 一 'y (k) (0) ,k = 2,3, , n ? y(k) ② 对原始数据x (0)作一次累加得 x ⑴=(x ⑴(1),X (1)(2),…,x (1)(n)) =(x (0)(1,x (0)(1 +x (0) (2),…,x (0)⑴+…+x (0)(n)). 建立模型: dx ( 1 ) ——ax ⑴=b,( 1) dt ③ 构造数据矩阵B 及数据向量丫 ■ -z (1) ⑵ 1 1 f x (0) (2)1 B = -z ⑴⑶1 9 亍 ,丫二 x (0)(3) a -z ⑴(n) 1_ x (0) (n)J 其中:z ⑴(k) =0.5x ⑴(k) 0.5x ⑴(k -1),k =2,3, ,n. ④ 由 求得估计值召=b?= ⑤ 由微分方程(1)得生成序列预测值为 ( b?) b? x>(1)(k+1)= :x (0)(1)—三 ,k=0,1,…,n —V, l 召丿 召 则模型还原值为 00)(k 1)=0)化 1)-0),k =1,2, ,n-1,. ⑥ 精度检验和预测 残差 ;(k) =x (0)(k)-?(0)(k),k=1,2, ,n, -(B T B)4B T Y u?=

实用文库汇编之数学建模地震预测模型

*实用文库汇编之 * 题目:地震预测数学建模 姓名:张志鹏 学号:12291233 学院:电气工程学院 姓名: 赵鑫 学号:10291033 学院:电气工程学院 数学建 模竞赛 论文

姓名:张书铭学号:12291232 学院:电气工程学院 目录 摘要 (3) 一、问题重述 (4) 二、问题的分析 (4) 三、建模过程 (5) 问题1:地震时间预测 (5) 1、问题假设 (5) 2、参数定义 (6) 3、求解 (6) 问题2:地震地点预测 (7) 1、问题假设: (7) 2、参数定义 (7) 3、求解过程: (7) 四、模型的评价与改进 (10) 参考文献 (11)

摘要 大地振动是地震最直观、最普遍的表现。在海底或滨海地区发生的强烈地震,能引起巨大的波浪,称为海啸。在大陆地区发生的强烈地震,会引发滑坡、崩塌、地裂缝等次生灾害。对人们的生产生活成巨大影响,严重威胁人们的生命和财产安全,所以,对地震的预测是十分必要的。 本文根据从1900年以来中国发生的八级以上地震的时间和地点分析,利用合理的数学建模方法,对下一次中国可能发生的八级以上地震的和时间和地点进行合理的预测。建模方法分为对于时间的预测和地点的预测两个方面。 问题1:对于时间的预测 采用的方法为指数平滑法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。 问题2:对于地点的预测 根据长久的数据表明,八级以上地震主要发生在东经70°——110°,北纬20°——50°这个范围内,据此将整个地震带划分为100个区域,按顺序进行编号。建立时间与地震区域编号的数学模型,利用线性回归的方法对下次地震地点预测。

数学建模减肥计划

减肥计划——节食与运动 摘要:肥胖已成为公众日益关注的卫生健康问题。肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。但是实际情况确是违禁广告屡禁不止。之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。数学模型的优点是科学的解释了肥胖的机理,引导群众合理科学的减肥。 关键词:减肥饮食合理运动 一、问题重述 联合国世界卫生组织颁布的体重指数(简记BMI)定义为体重(单位:kg)除以身高(单位:m)的平方,规定BMI在18.5至25为正常,大于25为超重,超过30则为肥胖。据悉,我国有关机构对东方人的特点,拟将上述规定中的25改为24,30改为29。 在国人初步过上小康生活以后,不少自感肥胖的人纷纷奔向减肥食品的柜台。可是大量事实说明,多数减肥食品达不到减肥的目标,或者即使能减肥一时,也难以维持下去。许多医生和专家的意见是,只有通过控制饮食和适当的运动,才能在不伤害身体的条件下,达到减轻体重并维持下去的目的。 肥胖是与目前严重危害人类健康疾病,如糖尿病、高血压、冠心病、血脂异常、胆囊疾病、痛风、骨关节病、阻塞性睡眠呼吸暂停、某些癌症等的发病有明显相关的危险因素之一。肥胖也是身体健康的晴雨表,反映着体内多方面的变化。很多人在心理上害怕自己变得肥胖,追求苗条,因而减肥不仅是人们经常听到的话题,更有人花很多的时间和金钱去付诸实践的活动,从而也就造成了各种减肥药、器械和治疗方法的巨大的市场。各种假药或对身体有害的药品和治疗方法、夸大疗效的虚假广告等等就应运而生了,对老百姓造成了不应有的伤害。 情况的严重使得国家广电总局、新闻出版总署等不得不发出通知,命令所有电视台自2006年8月1日起停止播出丰胸、减肥等产品的电视购物节目。但是实际情况确是违禁广告屡禁不止。之所以造成这种情况的原因很多,但是有一个重要原因就是科学素质低,不知道应该从生理机理,特别是从数学模型的角度来考虑和认识问题。 二、模型分析

地震紧急撤离问题数学建模

辽宁工业大学2012年数学建模(论文) 题目:火灾紧急撤离问题 院(系):机械工程及自动化 专业班级:机械1106班 学生姓名:王哲、郭爽、吴建彬 起止时间:2012.5.21—2012.5.27

本文借用流体动力学中的微分关系,通过将离散的人员转化为连续的人流,以人流密度为研究主体,建立了人员撤离的动态微分方程优化模型,分析了地震发生时人员紧急撤离的问题。并根据我们所在教学楼的楼层建筑的数据分别估算了混乱状况下与有组织时人员撤离的时间,为人员的紧急撤离提供了参考方案。 第一,本文分析了在无组织的状态下,人员撤离的一般情形。一方面,无组织下人员的运动具有随机性,故此引入人流密度作为基本研究对象。另一方面,流量的变化率是人流密度对距离积分后对时间的导数,人流量对时间的积分即为撤离人员的数量。由此几方面关系,可以列出整个动态过程的微分方程。经分析发现,单位时间的人流量与密度和速度成正比关系,而整体的人流速度与密度之间又是成一次线性关系,恰好符合流体力学中的流量、流速与密度之间的关系。根据实际情况对整求解过程做了简化,以楼道中的平均人流量为研究主体,最终以数值解求得全部人员逃离所需时间大约为420s. 第二,利用得出的人流量随时间变化的图像可知,由于人员无组织的涌出教室,导致人流密度很大,人群得不到有效的移动,从而使流量达到最大值后又迅速减小。故最好的撤离方式是在达到流量最大的时候,保持住一定的人流密度从而来维持最大的流量。结合数据后可知,在撤离开始一分钟的时候应该有人组织撤离,这样可以避免由于人员的过多涌入楼道而导致的拥堵现象。这样子调控后最佳的撤离时间可以降到240秒左右。 第三,除去人为堵塞的因素对撤离时间影响较大外,改变楼层的设计同样可以缩短撤离所用时间。于是,文章讨论了实际楼层中的参数,如楼层中疏散通道的宽度、教室门的宽度以及疏散口的数量等,对紧急撤离时间的影响。并得出结论疏散口的增加与疏散通道的加宽对撤离时间的缩短有明显的提高。 最后,由于不同的楼层人员速度不一样会导致在楼道中的互相推挤现象,此举对人员在楼道中人员的有效流动有较大影响。故我们引入混乱时间的概念,用来具体量化由此导致的时间的浪费情况。分析后可知混乱时间主要决定于相临两层人员的速度差,由于混乱时间与速度差成正比关系,而且在速度差为正值的时候时间较大,而为负值时时间较小,故利用指数函数来表示两者的关系。由此建立了以总的混乱时间最小为目标的优化模型。利用atlab 对各种指派情形进行比较,得出最了优解。 关键词:人流量动态微分方程最佳撤离混乱时间

数学建模减肥

数学建模论文 学院:理学院 专业:物理10-1 题目:运动与摄食减肥问题班级:10-1 姓名:黄首亚 2012年03月29日

1.题目:运动与摄食减肥问题 2.摘要 随着社会的进步和发展,人们的生活水平不断提高。由于饮食营养摄入量的不断改善和提高,“肥胖”已经成为全社会关注的一个重要的问题。减肥的方法也有很多。如何正确对待减肥是我们必须考虑的问题。于是了解减肥的机理成为关键。背景材料: 根据中国生理科学会修订并建议的我国人民的每日膳食指南可知: (1)每日膳食中,营养素的供给量是作为保证正常人身体健康而提出的膳食质量标准。如果人们在饮食中摄入营养素的数量低于这个数量,将对身体产生不利的影响。 (2)人体的体重是评定膳食能量摄入适当与否的重要标志。 (3)人们热能需要量的多少,主要决定于三个方面:维持人体基本代谢所需的能量、从事劳动和其它活动所消耗的能量以及食物的特殊动力作用(将食物转化为人体所需的能量)所消耗的能量。 (4)一般情况下,成年男子每一千克体重每小时平均消耗热量为4200焦耳。 (5)一般情况下,食用普通的混合膳食,食物的特殊动力作用所需要的额外的能量消耗相当于基础代谢的10%。 3.问题重述 随着人们的生活水平的日渐提高,饮食营养摄入的不断改善和提高“,

肥胖”已成为全社会关注的一个重要问题,肥胖无论从审美或健康的角度,都严重地威胁到人们,各种减肥食品、药物或是健美中心如雨后春笋般出现,现在我们也利用减肥的基本原理以及在减肥过程中应注意的问题利用科学的原理,组建一个减肥的数学模型,从数学的角度对有关的规律做进一步的探讨和分析。所以我们可以通过引入人的体重与时间的函数关系,建立了一个微分方程模型,采用离散化方法,以天为单位,从数学的角度解决了每天的饮食摄入量、运动强度与体重的关系,以探索减肥的科学方法。 4.模型假设 (1) 人体的脂肪是存储和提供能量的主要方式,而且也是减肥的主要目标。对于一个成年人来说体重主要由三部分组成:骨骼、水和脂肪。骨骼和水大体上可以认为是不变的,我们不妨以人体脂肪的重量作为体重的标志。已知脂肪的能量转换率为100%,每千克脂肪可以转换为4.2×107焦耳的能量。记D=4.2×107焦耳/千克,称为脂肪的能量转换系数。 (2)人体的体重仅仅看成是时间t的函数w(t),而与其他因素无关,这意味着在研究减肥的过程中,我们忽略了个体间的差异(年龄、性别、健康状况等)对减肥的影响。 (3)体重随时间是连续变化的,即w(t)是连续函数且充分光滑,因此可以认为能量的摄取和消耗是随时发生的。 (4)不同的活动对能量的消耗是不同的,例如:体重分别为50千克和100千克的人都跑1000米,所消耗的能量显然是不同的。可见,活

相关文档
最新文档