关于刀具磨损监测的分析

关于刀具磨损监测的分析
关于刀具磨损监测的分析

1.信号的相关性

2.刀具监测信号的处理:时频,频域,以及小波变换

1)小波分析用于信号与图象压缩是小波分析应用的一个重要方面。它的特点是压缩比高,压缩速度快,压缩后能保持信号与图象的特征不变,且在传递中可以抗干扰。基于小波分析的压缩方法很多,比较成功的有小波包最好基方法,小波域纹理模型方法,小波变换零树压缩,小波变换向量压缩等。

2)小波在信号分析中的应用也十分广泛。它可以用于边界的处理与滤波、时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺

度边缘检测等。

3)在工程技术等方面的应用。包括计算机视觉、计算机图形学、曲线设计、湍流、远程宇宙的研究与生物医学方面。

刀具磨损过程可以大致分为三个阶段:初期磨损阶段,正常磨损阶段,剧烈磨损阶段。1,初期磨损阶段:该阶段刀具磨损较快,主要是因为新刀刃的表面粗糙不平,接触应力较大,以及新刀刃表面可能出现的脱碳层,氧化层等表面缺陷。

2,正常磨损阶段:经初期磨损阶段后,切削刃仍比较锋利,刀具的切削刃和刀面已比较平整,所以这一阶段中,磨损速度相对减慢,切削过程比较平稳。

3,剧烈磨损阶段:在刀具正常磨损达到一定程度,刀具与工件的接触情况显著恶化,刀刃钝化,摩擦力急剧增大,刀具磨损发生质的变化,同时刀具的切削性能迅速下降,刀具与工件之间由于摩擦应力增大而产生高温将可能烧损刀刃或者失刀刃破损,此时刀具完全丧失切削能力。

刀具磨损的在线监控是柔性制造系统研究工程的一个重要课题,其工作状态直接影响着机械加工效率,效益及精度。刀具磨损检测方法:直接检测方法和间接检测方法。

1)直接检测方法中常用的主要有接触法,放射线法,光学检测方法。其中光学检测方法只能在停车时进行检测,不能用于实时监测;放射线检测方法虽有一定的检测精度,但不能进行实时监控,又具有实时性污染所以未能推广使用;光学检测法通过光学传感器获得刀具磨损区域的图形,并利用图像处理技术全面了解刀具的磨损状态,但其致命的缺点是:容易受加工方式及工况条件的影响,是许多加工过程无法无法采用光学法检测刀具磨损状态。

2)间接检测方法:切削力监测技术,基于声发射监测技术,基于振动加速度的监测技术,基于电流和功率的监测技术,表面光洁度监测法,超声波监测法,基于温度的监测法等。

切削力监测方法在刀具磨损监测研究领域应用最为广泛,是最具优势的一种方法。声发射信号反映的是金属材料内部晶格的变化,因此包含于刀具密切相关的信息,对刀具磨损与破损有较好的预报特性,声发射监测技术也成为目前应用最为广泛的方法之一。与其他检测方法相比,声发射信号的频率很高,一般在50KHZ以上,能够避开加工过程中振动和噪声污染严重的低频段,并能抵御一定范围内由于切削用量变化而引起的信号干扰,因此具有灵敏度高,信息量丰富等优点。切削过程中的振动信号包含丰富的与刀具状态密切相关的信息,它主要有切削力中的动态分量引起,且与刀具—工件—机床构成的切削系统本身的动态系统相关。通常采用加速度传感器测量振动信号,传感器通过磁座吸附于工件表面,安装简便,但安装方位不同将会对刀具状态监测的效果产生较大影响。刀具磨损时由于切削力增大,使得机床电流增大,负载功率也随之增大,因此因此可采用监测电流或功率的方法识别刀具磨损状态的变化。电流检测方法和功率监测方法具有安装测量简便,成本低,不受加工条件限

制,不干扰加工过程等优点,因此成为广泛采用的一种简易的检测方法。但限制该技术发展的关键问题在于识别精度低和响应速度慢。此外,导轨的误差和传动系统的精度也会造成电机电流和功率的改变。

傅立叶变换的缺点:

a.用傅立叶变换提取信号的频谱需要利用信号的全部时域信息。

b. 傅立叶变换没有反映出随着时间的变化信号频率成分的变化情况。

c.傅立叶变换的积分作用平滑了非平稳信号的突变成分。

(1)时频,频域以及小波变换

国内外学者对刀具磨损的研究采用传感器主要是振动传感器,声发射传感器,力传感器以及功率传感器,而对刀具监测信号的处理可以应用时域分析,频域分析或者小波分析理论,而对刀具进行磨损分类时应用较多的是人工智能技术,神经网络,模糊神经网络,模糊诊断等等。

1 基于小波分析的切削力信号奇异性检测摘要:利用小波变换模的极大值和信号奇异点的关系,分析了用Lip指数来描述的切削力信号局部奇异性。通过观察奇异点的位置等信息得到切削刀具的磨损情况。

原理:在切削过程中,随着刀具磨损量的增加,切削力的增大,引起切削力信号的变化。而切削力信号的变化将有效的判别刀具磨损所处的不同阶段。一旦切削力信号突然发生急剧变化,刀具有可能发生崩刃或折断等后果。刀具磨损时切削力信号存在奇异性。

正常的机械信号一般为低频,突变信号有很宽的频率信号,尤其在高频段频率丰富。利用小波分析滤除低频信息,突出故障信息达到检测故障的目的。采用小波变换的方法对信号进行奇异性检测的算法大致分为几个步骤:小波基的选取然后对信号进行多尺度分析得到小波变换后的系数矩阵wf(s,x);在不同尺度上找到信号突变点相应的小波变换系数模极大值,从而得到模极大值线;求出奇异点的Lip指数。

注意:小波基的选择:在小波分析中,选择合适的小波基是非常重要的。采用不同的小波基函数对信号进行分析,会得到不同效果。如何选择小波基函数,才能更好地刻画信号的特征,目前还没有一个统一的标准。实际运用中,采用定性分析与实验比较的相结合的方法,采用多种小波进行多次模仿实验进行比较。dbN小波系是工程上应用较多的小波函数,这一小波系的特点是随着序号N的增加,时域支撑长度变长,时间局域性变差,滤波器长度变长,消失矩系数增加,正则性增加,频域局部性变好。因此,在选择小波函数时需要综合以上各种因素,并通过采用多种小波进行多次仿真实验进行比较。

2 基于小波分析的声发射刀具状态判析

摘要:提出了基于小波分析的声发射刀具状态判析方法,改方法通过多层小波分解对信号主能量所处频段进行局部特性刻画,利用小波分解系数2—范数表征信号的奇异性,在统计量与刀具状态间建立物理联系。

奇异性信号是指信号本身或它的某阶导数在某一时刻存在突变的信号,而奇异性检测就是要将信号的奇异点识别出来,并判断其奇异性程度。

通过小波分解,可以提取目标分解层的分解系数模极大值,但由于声发射信号容易受到外界

干扰等特殊性,分解系数模极大值并不能准确的反应刀具状态。以往实验表明:声发射信号的小波分解系数模极大值除了受到刀具状态的影响外,还受到加工参数影响,因此,给有效区分小波分解模极大值变化的原因带来很大的困难。为解决这一问题,并进一步降低外界干扰对分析所引起的误差,引入向量范数∣∣.∣∣代替极大值,利用向量2—范数表征小波分解系数模。最后利用统计原理对不同切削状态下的各层小波分解系数2—范数进行特征值提取,通过该特征值对刀具状态进行判断。

结论:在介绍声发射信号的产生和常用声发射信号分析方法的基础上,提出了一种基于小波分解系数2-范数的刀具状态判别方法,从传感器接收的信号入手,判断出所关注的某一信号频段,利用小波理论分解出改频段的详细信息,求出小波分解系数的2—范数,并提出多组实验中的系数2—范数的方差,从而可以对刀具工作状态做出有效判断。

(1)国外刀具监控技术的研究现状

在国外,以江田弘为首的一些日本研究者通过采用监测声发射的方法对磨削裂纹发现:其声发射信号的频率在100KHZ以上,他们通过滤波的方式把由于磨削裂纹形成而产生的声发射信号提取出来,从而实现对磨削裂纹的产生进行在线监测。(Dae Kyun Bake ,Tae JO Ko,Hee Sool Kim.Real time monitoring of tool breakage in a millingoperation using a digital signal processor.Materials Processing Technology,2003,100:266-272. )

美国研究者Dirmels的研究发现通过测量切削力信号和振动信号,并将这两种常用的信号融合,比较分析等分析方法可以得到比较精准的检测结果,使之能正确的反应刀具的磨损状态情况。(Dirmela A.D.Hope and G.A.King.A neuro fuzzy pattern recognition algorithmaanditsapplication. USA ,proceeding of IEEE conferenceon Systems,Man,and Cybe rentics,2004,4234-4239 )

同样美国学者Benhard Seck ,他利用多种传感器采集多种信号,如:振动信号,声发射信号以及刀具磨损信号等反应刀具状态的典型信号。这种采用多传感器信号融合的技术,并采用人工智能的识别方法,如:人工神经网络,支持向量机等模型,使之成为在线刀具监测系统的关键技术之一。

欧洲的一些研究人员Transeal 等人的研究表明:通过测量切削力的平均值,得到的结果与下一个将要测量的实际值进行比较,采用这种预测值的方法可以用来选择一个阈值,并通过这个阈值来预测刀具的磨损情况,也可以得到比较好的检测结果。

德国的一些研究团队Maunman D.A 通过采用特殊设备如摄像机彩机加工刀具的表面图像,并利用精度较高的微型话筒喜爱现场采集刀具所发出的切削力声音信号,采集现在数学处理方法小波分析进行反应刀具磨损的特征信号进行提取,分析。最终将采集的处理后特征信号,输入神经网络进行信号的识别,最终确定刀具的磨损状态。

(2)国内刀具监控技术的研究现状

在国内,由于数控技术和一些先进的制造技术相对于世界制造业强国来说,起步较晚,所以和他们相比还有一定差距,但是通过近30年的研究和发展,经过国内人员的不断研究和创新,已经在道具监测的技术和理论方面取得较大成就,有些技术和理论已接近国际水平。(翁德玮,邵华,王海丽。多传感器刀具状态监控系统。机械制造,2004,42(6):11—14)在国内,南京航空航天大学的一些研究学者对磨削加工中的声发射信号也进行的研究,他们通过智能识别的方法,实现对磨削加工的在线监测和预报。实验表明:系统具有较强的对环境噪音的抵抗能力,实验也受到了很好的预报效果。(黄茂正基于磨削加工过程中的声发射信号的研究【硕士学位论文】。南京航空航天大学,2008.2)

华中科技大学秦勇等通过采用测力计和测加速度仪器采集的反应刀具特征的信号,输入基于模糊数据分析模型的神经网络系统,利用这种智能识别技术,已达到识别刀具状态的目的。(秦勇刀具磨破损实时监测系统的开发与研究,华中科技大学学报,Vol。302,No。

4,2006,:32—37)

大连理工大学刘敦临,李建复等人已加工刀具的切削力和切屑功率为研究对象,建立起在线研究系统,研究了基于各种切削参数与加工刀具状态的车削模型,得到较实用的实时监控方法。(刘敦临,李建复现在制造环境中的刀具状态监控方法实验研究:【硕士学位论文】大连:大连理工大学,2004)

兰州理工大学李小军等研究人员针对刀具在加工过程中声发射信号和振动信号的特点,利用小波分析技术提取采集次年好的特征信号。建立其基于智能识别技术的神经网络模型,(李小军基于声发射信号和振动信号的刀具状态监控方法实验研究。兰州理工大学学报,Vol。26,No。5,2003,:59—74)采用该技术的优点是能融合声发射信号和振动信号的特征与刀具状态之间的非线性关系,以实现刀具状态的智能识别。(李小军基于声发射信号和振动信号的刀具状态监控方法实验研究。兰州理工大学学报Vol。26,No.5,2003,:59—74.)(3)基于小波分析和集成神经网络的刀具

磨损监测技术研究

摘要:本文以测力仪,宽带声发生传感器及振动传感器为信号检测元件,利用多传感器融合技术对铣削加工过程中刀具磨损监测的一系列相关问题进行详细的分析。

文中对切削力及振动信号的处理主要采用小波分析。小波分析是处理非平稳信号非常有效的方法,而其中的小波包变换不仅分析低频信号,而且也对高频信号也进行了细分分析。可以讲包括正弦信号在内的任意信号无冗余,无疏漏,正交的分解到独立的,任意精细的频带上。正因为如此,采用小波包分解频带能量检测法对切削力和振动信号惊喜频带能量统计,并得到了与刀具磨损敏感的频段特征。通过相应频段内能量的变化,就可以对刀具磨损状态进行有效的监测。

正文:本文主要对刀具的切削力信号和振动信号分别进行了时域,频域和小波分析,找到了与刀具磨损敏感特征。

1,对切削力,在时域波形上看出其幅值会随着刀具磨损增加而增大,可以提取动态切削力的均方根值作为监测刀具磨损的特征,通过功率谱发现:切削力频谱能量主要在低频段,集中在几个倍数于基频的频段;而在经过小波包分析,提取的低频段能量与刀具磨损非常敏感,可以取而代之为监测特征。

2,对振动信号来讲,不易从时域波形上看出刀具不同的磨损状态,但在器功率谱上可以清晰地看到存在几个特征频段,这几个频段的信号能量对应与刀具磨损状态的加剧明显增加。用小波包分解能量监测法提取出了这几个与刀具磨损密切相关的频段能量特征。(注意:对频域分析时一般对功率谱分析)

心得:多分辨率分析只是对信号的低频部分进行进一步分解,是频率分辨率变得越来越高,而信号的高频部分则不予考虑。而小波包分析就是为此提供了有利的工具,它能将频带进行多层次划分,对多分辨率分析没有细分的高频部分进一步分解,并能够根据被分析信号的特征,自适应的选择相应的频带,使之与信号频谱相匹配。(其中低频部分是近似部分,高频部分是细节部分)

刀具磨损声发射信号中小波基选取:

根据切削加工中刀具磨损的特点和小波基的性质可得如下结论:

(1),由于大局磨损是个渐变的过程,需对声发射信号进行较长时间的采集,因此信号的数据量较为庞大,从处理速度上考虑,应该选择计算量小的小波基。由于离散小波变换比连续小波变换的计算量小,所以刀具磨损声发射信号的处理应该选取可进行离散小波变换的小波基。

(2),小波基与信号的相关性越好,小波变换对信号的特征提取量就越多,小波变换对信号的特征就越准确。声发射信号在时域通常表现为一类具有一定的冲击特性和近似指数衰减性质的波形信号,且具有一定持续能力。因此,选择的小波基应该具有类似的性质才能对声发射信号的特征提供较好的分析效果。

(3),对声发射信号小波分析时,为保证声发射信号特征的准确性,应该最大限度的降低信号的失真。选择具有线性相位的小波基对信号进行分解和重构时能避免或减少信号的失真,而对称或者反对称的函数具有线性相位,因此,声发射信号应该尽量选择具有对称性的小波基。

(4)刀具在切削过程中,有时会突然出现破损或者崩刃等情况。为了获取正确的声发射源信息,必须要能够准确拾取突发的声发射信号。所以应该优先考虑选择在时域具有紧支性的小波基,同时,为了保证小波基在频域的局部分析能力,必须要求小波基在频域具有快速衰减性。

(5)刀具在切削加工时,声发射信号中不可避免的混有干扰噪声。在对其进行小波变换后如何从干扰噪声中提取出声发射信号是个关键问题。由小波基的性质可知,具有一定阶次消失矩的小波基能有效地突现。

刀具为什么会磨损

刀具为什么会磨损 刀具磨损是指刀具摩擦面上的刀具材料逐渐损失的现象。刀具磨损的形态一般有以下两种情况,有时是两种磨损兼有: 刀具磨损 前刀面磨损 当切削塑性材料时,切削厚度和切削速度都比较大时,切屑在前刀面会磨损出洼凹,这个洼凹称“月牙洼”。“月牙洼”产生的地方是切削温度最高的地方。 后刀面磨损 由于切削刃的刃口钝圆半径对加工表面的挤压与摩擦,在切削刃的下方会磨损出一条后角等于零的沟痕,这就是后刀面磨损。在切削速度较低、切削厚度较小的情况下,切削脆性材料时,将会发生后刀面的磨损。 影响刀具磨损的几种原因 1、刀具材料 刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。刀具材料越硬,其耐磨性越好,硬度越高,冲击韧性越低https://www.360docs.net/doc/8b71959.html,版权所有,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。对于石墨刀具,普通的TiAlN涂层可在选材上适当选择韧性相对较好一点的,也就是钴含量稍高一点的;对于金刚石涂层石墨刀具,可在选材上适当选择硬度相对较好一点的,也就是钴含量稍低一点的; 2、刀具的几何角度 石墨刀具选择合适的几何角度,有助于减小刀具的振动,反过来,石墨工件也不容易崩缺; (1)前角,采用负前角加工石墨时,刀具刃口强度较好,耐冲击和摩擦的性能好,随着负前角绝对值的减小,后刀面磨损面积变化不大,但总体呈减小趋势,采用正前角加工时,随着前角的增大,刀具刃口强度被削弱,反而导致后刀面磨损加剧。负前角加工时,切削阻力大,增大了切削振动,采用大正前角加工时,刀具磨损严重,切削振动也较大。 (2)后角,如果后角的增大,则刀具刃口强度降低https://www.360docs.net/doc/8b71959.html,版权所有,后刀面磨损面积逐渐增大。刀具后角过大后,切削振动加强。 (3)螺旋角,螺旋角较小时,同一切削刃上同时切入石墨工件的刃长最长,切削阻力最

检测刀具磨损和破损的方法

检测刀具磨损和破损的方法 单台机床的加工,对刀具磨损和破损的监测,凭工人的经验,尚能进行正常的生产,而对FMS、CIMS、无人化工厂,必须解决刀 具磨损与破损的在线实时监测及控制问题。因为及时确定刀具磨损和破损的程度并进行在线实时控制,是提高生产过程自动化程 度及保证产品质量,避免损坏机床、刀具、工件的关键要素之一。 监测原理监测参量的选取监测原理监测原理框图监测刀具磨损和破损的方法很多,可分为直接测量法和间接测量法两大类。 直接测量法主要有:光学法、接触电阻法、放射性法等。间接测量法主要有:切削力或功率测量法,刀具和工件测量法,温度测 量法,振动分析法,AE法,电机电流或功率测量法等。 比较现有的刀具磨损和破损的监测方法,各有优缺点,我们选取声发射(AE)和电机电流信号作为监测参量。这是因为AE信 号能避开机加工中噪声影响最严重的低频区,受振动和声频噪声影响小,在感兴趣区信噪比较高,便于对信号进行处理。响应速 度快,灵敏度高;但重负荷时,易受干扰。而电机电流信号易于提取,能适应所有的机加工过程,对正常的切削加工没有影响, 但易受干扰,时间响应慢,轻负荷时,灵敏度低。这样,同时选AE和电机电流为监测信号,就能利用这2个监测量的各自长处,互 补不足,拓宽监测范围,提高监测精度和判别成功率。 切削过程中,当刀具发生磨损和破损时,切削力相应发生变化,切削力的变化引起电机输出转矩发生变化,进而导致电机电 流发生相应的变化,电流法正是通过监测电机电流的变化,实现间接在线实时判断刀具的磨损和破损。AE 是材料或结构受外力或 内力作用产生变形或断裂时,以弹性波形的形式释放出应变能的现象。它具有幅值低,频率范围宽的特点。试验及频谱分析发现 :正常切削产生的AE信号主要是工件材料的塑性变形,其功率谱分布,100kHz以下数值很大,100kHz 以上较小。 当刀具磨损和破损时,100kHz以上频率成分的AE信号要比正常切削时大得多,特别是100-300kHz 之间的频率成分更大些。 为此,应通过带通滤波器,监测100-300kHz频率成分AE信号的变化,对刀具磨损和破损进行监测。 利用AE、电机电流信号综合对刀具磨损和破损进行判别的原理是:轻负荷区,依靠AE包络信号,用阈值的方法进行判别;在 中负荷区,这时电机电流和AE信号都起作用,用两者结合的方法进行判别,提高判别的成功率,具体方法是:如果AE信号超过AE 阈值,则置延时常数为ds(d的数值依赖于系统构成),如果在ds时间内,电流信号也超过电流信号的阈值,则判刀具极限磨损或 破损。如果在ds时间内,电流信号未超过电流信号的阈值,则不报警,由延时常数继续监测。这种以AE

数控机床状态监控系统(文献综述)

文献综述 ——机床状态监控系统的设计 1.前言 为了使数控机床加工过程安全、可靠、高效、高质量地进行,对加工设备进行状态监测就变得非常重要。本文分析了数控机床状态监测的主要内容,论述了设备状态监测系统的基本组成和状态监测系统实现的关键技术,并针对数控机床的加工过程,总结数控机床状态监测系统的工作流程和系统实现的具体结构。 2.主题 目前,国内大多数机床监控系统属于专用系统,其开放性较差,已不能满足当今制造业的发展需求,属于工厂内部典型的“自动化孤岛”。而计算机软件技术及工业控制网络技术的发展,使得工厂自动化设备的互联成为可能。机床信息采集与监测技术研究已经得到许多科技工作者的高度重视。 数控机床多用PLC控制,同时计算机网络是快捷、高效、广普的信息传递媒介。PC—PLC网络因而成为数控机床数据采集与监控的主要研究方向。但是一方面由于数控机床的封闭性,实际应用中很难直接从PLC读取机床的各种信息;另一方面,一些数控机床厂商如SIEMENS,FANUC等开发有针对自己机床数据采集与监测的软件,但是大多价格昂贵[1~5]。 随着技术的进步,制造业设备的复杂程度和智能化程度不断提高,然而复杂设备因其结构的复杂性,而使其在提高功能或性能时,给系统的可靠性、安全性、可用性、经济性等方面带来了一系列难题,系统发生故障或失效的潜在可能性也越来越大[6]。对设备自动化加工过程进行状态监测的主要目的就是要保证加工系统的安全运行,合理并优化使用自动化设备,避免设备故障,保证加工工件质量,减少额外的辅助工作时间,提高生产效率和设备利用率。同时,设备的状态监测也是对设备进行故障诊断的基础[7]。 数控机床状态监测是指对数控机床加工过程中的某些工作状态数据进行数据采集和处理,通过将实际特征参数与正常值进行比较,从而掌握数控机床的实际工作状态,了解设备工作是否正常合理,同时为故障诊断和预测提供依据。主要包括机床状态监测、刀具状态监测、加工过程监测和加工工件质量监测等4个方面。数控机床的加工过程是一个复杂的物理化学过程,对其进行状态监测涉及很多相关技术。一般的设备状态监测与故障诊断系统主要包括信息获取、特征提取和状态识别3个主要方面。其实无论是状态监测还是故障诊断与预测,数据采集、传输与处理是基础。设计一个状态监测系统,其关键是要设计一个合理的数据采集与处理系统来实现状态监测。

切削具常见的磨损因素

车床上切削时刀具的磨损一般是在高温高压条件下产生的,因此,形成刀具磨损的原因就非常复杂.它涉及到机械、物理、化学和金相等的作用。 现将其中主要的原因简述如下: 1.磨拉磨损切削过程中,切屑底层、工件加一表面上的一些硬度极高的微小硬质点,可在刀具的表面上刻出沟痕。这些硬质点对刀具的作用相当于砂轮中的磨粒的作用,所以称其为磨粒磨损。硬质点有碳化物(如FeC,TL,VC等)、氮化物(如TIN,SiM等)、氧化物(如SD,A里Oe等)和金属问化合物等。磨粒磨损在各种切削速度下都存在,但对低速切削的刀具(如拉刀、板牙等磨粒磨损是刀具磨损的主要原因。高速钢刀具的硬度和耐磨性低于硬质合金、陶瓷等,故其磨粒磨损所占的比贡较大。 2.粘结磨损切屑与刀具前刀面、工件加下表面与刀具后刀面之问在高温高压作用下接触.接触面问吸附膜被挤破,形成了新鲜表面接触,当接触面问隙达到原子问距离时就产生粘结。粘结磨损就是由于接触面滑动时在粘结处产生剪切破坏造成的。通常剪切破坏在强度较低的切屑一方.但刀而在摩擦、压力和温度连续作用下强度降低,也会破坏。此外,当前刀面上粘结的积屑瘤脱落后,会带走刀具材料.从而形成粘结磨损。粘结磨损的程度与压力、温度和材料问亲合程度有关。如在低速切削时,由于切削温度低,故粘结是在正压力作用下由接触点处产生的M性变形所造成,亦称为冷焊。在中速切削时,由于切削a度较高,促使材料软化和分子问的热运动,更易造成粘结。用T类硬质合金加工铁合金或含铁不锈钢时,在高温作用下伙元素之问会产生亲合作用.从而也会产生枯结磨损。所以低、中速切削时,粘结磨损是硬质合金刀具的主要磨损因素。 3.扩散磨损扩一散磨损是在高温下产生的。在切削金属时,金属与刀具接触,双方的化学元素在固态下相互扩散,改变了原材料的成分与性能,使刀具材料变脆,从而加剧了刀具的磨损。例如,用硬质合金切削钢材时,从800℃左右开始,硬质合金中的W,Co和C原子向钢中扩散,同时钢中的Fe原子向刀具中扩一散,使刀具表面形成新的低硬度、高脆性的复合碳化物,且由于Co含量的降低.刀具材料的粘结强度降低.从而降低了刀具表面的强度和硬度,加剧了刀具磨损。 4..相变磨损当刀具上最高温度超过材料相变盆度时,刀具表面金相组织会发生变化,如马氏体会转变为奥氏体.使硬度下降,磨损加剧。下具钢刀具在高温时易产生相变磨损。它们的相变沮度是:合金钢为300-3501C,高速钢为550-6001C.相变磨损严重时会造成刀面的塌陷和切削刃卷曲。 本文由斗式提升机https://www.360docs.net/doc/8b71959.html, XSX提供转载请注明

数控机床刀具磨损监测方法研究

数控机床刀具磨损监测方法研究 马旭1,陈捷2 (1.南京工业大学金工实习中心,江苏南京 211800; 2.南京工业大学工业装备数字制造及控制技术重点实验室,江苏南京 210009) 摘要:数控机床刀具磨损监测对于提高数控机床利用率,减小由于刀具破损而造成的经济损失具有重要意义。文章有针对性地回顾了国内外各种刀具磨损监测方法的研究工作,详细叙述了切削力监测法、切削噪声监测法、功率监测法、声发射监测法、电流监测法以及基于多传感器监测法等六种刀具磨损监测方法。本文通过比较各种监测方法的优缺点,提出基于多传感器监测法是数控机床刀具磨损监测方法的未来发展的主要方向。 关键词:数控机床;刀具磨损;监测方法 中图分类号:TH16 文献标识码:A 文章编号:1006-0316 (2009) 06-0070-04 Study of monitoring method for CNC tool wear MA Xu,CHEN Jie (1.Center of Metalworking Practice,Nanjing University of Technology,Nanjing 211800, China; 2.School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009, China)Abstract:CNC tool wear monitoring has great importance in improving the utilization of CNC machine tools and in reducing the economic lossos due to the tool breakage. This article is well targeted in reviewing several researches on the study of various tool wear monitoring method at home and abroad. Six tool wear monitoring methods are described in detail, which are the cutting force monitoring, the cutting noise monitoring, the power monitoring, the sound launch monitoring, the electric current monitoring as well as the monitoring method based on the multi-sensor monitor. Comparing with the merits and demerits of each monitoring methods, the article suggests that the monitoring method based on the multi-sensor monitor would be the main direction of the development of CNC tool wear monitoring in the future. Key words:CNC;tool wear monitoring;Monitoring method 刀具磨损在机械加工中是一种普遍存在的现象,刀具的磨损与磨损状态直接影响着机械加工的精度、效率及经济效益,研究刀具磨损可以大大提高机械加工效率,降低加工成本,具有较大的经济效应。刀具磨损的在线监测是柔性制造系统研究工程的一个重要课题。 近年来,随着高性能CNC机床、FMS以及CIMS 的广泛应用,机械加工的效率、加工质量有了明显的提高,同时对全自动化生产也提出了更高的要求,操作人机比由原来的一对一发展到现在的一名操作人员操控多台设备的局面。这样,数控机床系统能否自动监测刀具状态,及时了解正在使用的刀具磨损情况,从而根据刀具寿命、磨损量、刀具破裂等形式的刀具故障对刀具工作状态进行监控,并在刀具磨损达到设定磨损量时报警,就显得非常重要。工业统计表明,刀具失效是引起机床故障的首要因素,由此引起的停机时间占数控机床总停机时间的1/5~1/3[1]。切削加工中,如果刀具磨损不能及时发现,将导致整个加工过程的中断,引起工件报废,甚至整个系统的停止。研究表明,数控机床配备刀具监测系统后可减少75%的故障停机时间,提高生产率10%~60%,提高机床利用率50%以上。美国Kennamtal公司的研究表明,配备刀具监控系统的数控系统,能够节约加工费用达30%[2]。因此研究开发智能监测技术,防止因刀具失效而引起的工件报废、设备损坏并保证机床无故障运行是很重要的[3]。

教你如何检测数控铣床中刀具的磨损问题

教你如何检测数控铣床中刀具的磨损问题机床结构部件 1。主轴采用原装意大利进口电主轴2。采用日本伺服电机,日本高精度直线导轨3。铸造工作台4。大功率吸尘装置。 现在,数控铣床在我们的生活中有着广泛的用途,尤其是在工业中更是得到了很好的使用,然而对于数控铣床的刀具磨损程度的检测记录却是一直是一个难题,下面我们就请有关专家来为我们介绍关于如何记录数控铣床的刀具磨损。 以前人们主要借助于集成了丈量尺的放大镜进行万能铣床检查,固然能够进步丈量的灵活性,但是因为操纵职员的差异会导致不一致的丈量结果。类似的结果可以展示另外一种被测系统:一方面,尽管固定式丈量系统具有较好的经济性,但是便携机能较差;另一方面,简易移动式丈量系统的丈量精度较低,成像质量较差,丈量深度不足。现在万能铣床主要使用图形来显示加工刀具的出产效率,以及磨损划痕深度(VB)跟着使用寿命的增长而逐渐加深的过程。 加工过程进行优化,可以将整套系统放入便携式容器,并配备必要的备用电池、充电器或者清洁用具。丈量系统的构造:直接在铣床的转盘铣刀前布置配备有磁性三脚架的数码相机上海维宏电子说:“图片的高质量、丈量系统和评价软件的便捷操纵是我们的一大上风。而且我们在用户和刀具制造商进行丈量的过程中反复询问,是否需要为他们提供带有软件的集成式丈量系统包。” 迄今为止,万能摇臂铣床系列来自航空产业、刀具制造业和科研仪器行业的工艺员已经开始在切削加工中应用这套系统。在对丈量系统进行检查和优化,功能紧凑且实用: 1)便于用户操纵的丈量软件:磨损丈量包中包含的评价软件Abrascan可以丈量间隔(D)、角度(A)和半径。点击”间隔“图标就可以用毫米显示出相关尺寸。在单独的图片中还可以显示更多的间隔和角度丈量值。单击鼠标右键可以复制相关数据并且另存为Excel表格文件。这样可以大幅度简化磨损划痕宽度的形成过程。其他的辅助功能,好比亮度、对比度、灰度等也一应俱全。因为万能铣床这套系统基于Office软件,因此用户无需参加额外的培训即可快速上手使用。 2)输出丈量值:在X5036A立式铣床表格计算软件中存储丈量值就可以天生磨损的形成过程。利用磨损丈量系统Abrascan可以识别出极其微小的磨损痕迹并进行丈量。因此可以对刀具的优化过。Abrascan的图像可以显示磨损的形成过程横轴为刀具的切屑间隔,单位米;纵轴为磨损划痕宽度VB,单位毫米;三根曲线分别为刀具A、B、C。 3)转盘:磨损划痕宽度VB=0.136mm:丈量流程如下:将数码相机固定在磁性三脚架上,利 用磁性三脚架还能够直接在铣床长进行丈量,而无需从支架或者主轴上拆下刀具。X6132A卧式 铣床带有能够任意旋转的显示屏,可以在任意位置进行拍摄。所以,用户只需要打开数码相机就可以随时进行拍摄。摄影兴趣者当然还可以根据不同的场合进行微调。转子泵通过USB数据线可以将储存的图片传输到笔记本电脑并利用软件进行评价。

常用的刀具磨损检测方法比较

常用的刀具磨损检测方法比较 篇一:刀具的磨损和耐用度浅谈 刀具磨损和耐用度浅谈 刀具在切削金属的同时,本身也逐渐被磨损。当磨损到一定程度时,就需要更换刀具,否则会产生降低加工表面质量等不良后果。让我们先来看看刀具的磨损过程:常用的高速钢和硬质合金钢刀具的磨损过程如图所示,它反映了切削时间和刀具磨损之间的关系。正常磨损 后刀面磨损初期磨损 切削时间/ 1.初期磨损阶段 在该阶段中,由于是新刃磨的刀具,刀后面粗糙不平,后面与工件过渡表面间的实际接触面很小,压力大,磨损速度很快。初期磨损量与刀具刃磨质量有关,经过研磨的刀具初期磨损量小。 2.正常磨损阶段 刀后面经过初期的磨损后,粗糙度值降低,与工件过渡表面实际接触面积增大,压力减小,刀刃仍然比较锋利,磨损速度比较缓慢。该阶段切削过程平稳,持续时间长,是刀具的有效工作阶段。 3.急剧磨损阶段 当刀具磨损到一定程度后,刃口变钝,摩擦力增大,切削力和切削温度迅速上升,刀具材料的性能下降,引起刀具迅速磨损,直至完

全丧失切削性能。所以在切削过程中应避免刀具发生急剧磨损。 刀具的磨损过程又可看为刀具的钝化过程 从上述磨损过程可以看出,刀具在正常磨损阶段即将结束前,刀具必须及时重磨或可转位刀片转换刀刃。否则不仅会损坏刀具,而且会使工件的加工质量变坏。此时的刀具磨损量称为刀具的磨损限度。国家标准规定,把刀具磨损达到正常磨损阶段结束前的某一后面磨损量VB值作为刀具的磨损限度,即磨钝标准。因为刀具磨损后,切削力将增大,在柔性加工系统中,经常用切削力的某一数值作为刀具磨钝标准,以实现对刀具磨损状态的自动控制。 在实际生产中,采用与磨钝标准队赢得切削时间,即刀具耐用度来表示刀具已经磨钝,到了该换刀具的时候。所谓刀具耐用度,是指新磨好的刀具,由开始切削直到磨损量达到磨钝标准的总切削时间,用字母t表示,单位为min。刀具耐用度有时也可用加工同样零件的数量或切削路程长度来表示。 粗加工时,多为切削时间表示耐用度。例如,目前高速钢镗刀的耐用度为30~60min;硬质合金铣刀的耐用度为120~180min。高速钢钻头的耐用度为80~120min;成形刀具耐用度为200~300min。精加工时,常以走刀次数或加工零件个数表示刀具耐用度。 用刀具耐用度衡量磨损量的大小,比直接测量磨损量方便的多,因而在生产中广泛采用。刀具寿命则是指一把新刀从使用到报废为止的总的切削时间,它是刀具耐用度与磨刀次数的乘积。 篇二:刀具磨损原理及耐磨设计

刀具的磨损过程及磨损钝标准

磨损过程及磨损钝标准 损标准加工磨损量测量粗糙度阶段变化难加工材料自动化生产切削性能国际标准 磨损到一定的限度就不应再继续使用,这个磨损限度称为磨钝标准。典型的刀具磨损过程曲线如图2-5所示,AB是 段,BC是正常磨损阶段,CD是急剧磨损阶段。使用刀具时,应在急剧磨损阶段之间、前即使更换。刀具磨损的检测 两大类:一类是直接测量法,它是在非切削时间内直接测量(或通过工件尺寸的变化来测量)刀具的磨耗量;另一类 法,它是在切削时测定与刀具有关的物理量(如切削力、振动与嗓声、切削温度、已加工表面粗糙度)的变化来判断 。在实际生产中,不允许经常卸下刀具来测量磨损量,因 09-11-24 15:26:27 刀具磨损到一定的限度就不应再继续使用,这个磨损限度称为磨钝标准。 典型的刀具磨损过程曲线如图2-5所示,AB是初期磨损阶段,BC是正常磨损阶段,CD是急剧磨损阶段。 使用刀具时,应在急剧磨损阶段之间、前即使更换。 刀具磨损的检测方法可分为两大类。 一类是直接测量法,它是在非切削时间内直接测量(或通过工件尺寸的变化来测量)刀具的磨耗量。 另一类为间接测量法,它是在切削时测定与刀具有关的物理量(如切削力、振动与嗓声、切削温度、已加工表面粗糙度)的变化来判断刀具的磨损。 在实际生产中,不允许经常卸下刀具来测量磨损量,因而总是根据切削过程中发生的一些现象来判断刀具是否已经磨钝。 例如粗加工时,可以观察已加工表面是否出现亮带,切屑颜色和形状是否变化,以及是否出现振动和不正常的声音等。 精加工可观察已加工表面粗糙度的变化以及测量加工零件的形状和尺寸精度等。 在用实验评定刀具材料的切削性能时,常与后刀面的磨损量作为衡量刀具磨钝的标准。 国际标准ISO统一规定以1/2切削深度处后刀面上测定的磨损带宽度VB(见图2-4)作为刀具磨钝标准。 但对自动化生产用的刀具及预调刀具等,则长以沿工件径向的刀具磨损尺寸(称为刀具的径向磨损量NB)作为衡量刀具的磨钝标准。 -5 典型的刀具磨损过程曲线加工条件不同时所规定的磨钝标准也不同,例如精加工的磨钝标准较小,粗加工较大。 工艺系统的刚度较低时,应考虑在磨钝标准内是否会振动,所以规定的磨钝标准较小。 切削难加工材料时,磨钝标准较小。 各种刀具磨钝标准的具体数值可参考有关专业手册。 [评论] 好文章烂文章 [原文] http://www.jd37.c om/tec h/200811/40857.html

常见切削刀具材料的磨损现象及原因分析

常见切削刀具材料的磨损现象及原因分析 1引言 从20世纪80年代开始,由于数控机床的主轴、进给系统等功能部件设计制造技术的突破,数控机床的主轴转速和进给速度均大幅度提高,在现代制造技术全面进步的推动下,切削加工技术开始进入高速切削的新阶段。目前,高速切削已在模具、航空、汽车等制造业领域得到了大量应用,产生了显著的经济效益,并正向其它应用领域拓展。高速切削加工对刀具提出了一系列新的要求。研究表明,高速切削时,造成刀具损坏的主要原因是在切削力和切削温度作用下因机械摩擦、粘结、化学磨损、崩刃、破碎以及塑性变形等的引起的磨损和破损。因此,对高速切削刀具材料最主要的性能要求是耐热性、耐磨性、化学稳定性、抗热震性以及抗涂层破裂性能等。陶瓷、CBN、PCD、金属陶瓷等刀具材料具有良好的耐热性和耐磨性,当其韧性得到改善后,非常适合用于高速切削。先进涂层技术的发展进一步改善了刀具材料的性能。目前,新型涂层材料和涂层工艺的开发方兴未艾,预示着涂层刀具在高速切削领域将有巨大发展潜力和广阔应用前景。 本文对高速切削加工时陶瓷刀具、立方氮化硼刀具、金刚石刀具、金属陶瓷刀具和涂层刀具的磨损机理进行了综合评述,对刀具的磨损形态和磨损寿命进行了分析,这些研究将有益于实际生产加工中对高速切削刀具的合理选用与磨损控制。 2高速切削刀具的磨损形态 高速切削时,刀具的主要磨损形态为后刀面磨损、微崩刃、边界磨损、片状剥落、前刀面月牙洼磨损、塑性变形等。 后刀面磨损是高速切削刀具最经常发生的磨损形式,可看作是刀具的正常磨损。后刀面磨损带宽度的加大会使刀具丧失切削性能,在高速切削时常采用后刀面上均匀磨损区宽度VB值作为刀具的磨损极限。 微崩刃是在刀具切削刃上产生的微小缺口,常发生在断续高速切削时,通过选用韧性好的刀具材料、减小进给量、改变刀具主偏角以增加稳定性等措施,均可减小微崩刃的发生概率。通常只要将刀具微崩刃的大小控制在磨损限度以内,刀具仍可继续切削。

刀具磨损在线监测技术研究的探讨 (1)

刀具磨损在线监测技术研究的探讨-工程论文 刀具磨损在线监测技术研究的探讨 贾娜JIA Na;马雪亭MA Xue-ting (东北林业大学机电工程学院,哈尔滨150040) (Mechanical and Electrical Engineering College of Northeast Forestry University,Harbin 150040,China) 摘要:本文对近几年刀具磨损在线技术的研究进行探讨,得出间接测量方法较直接测量方法灵活,但直接测量方法敏感性更强。 Abstract: This paper discusses the research of the tool wear on-line monitoring technology. It is concluded that the method of the indirect measurement is more flexible than the direct measurement, and the method of the direct measurement is more sensitive than the indirect measurement. 关键词:刀具磨损;监测信号;间接测量 Key words: tool wear;check signature;indirect measurement 中图分类号:TH161 文献标识码:A 文章编号:1006-4311(2014)34-0057-02 基金项目:黑龙江省青年科学基金项目资助(QC06C002)。 作者简介:贾娜(1975-),女,黑龙江齐齐哈尔人,副教授,硕士研究生导师,研究方向为机械设计、木质材料加工、木材加工刀具;马雪亭(1990-),男,山东滨州人,研究生,研究方向为现代林业与木工机械设计及理论。 1 间接测量刀具磨损的研究

基于切削力的刀具状态在线监控之欧阳家百创编

基于刀具状态的切削力模型研究 欧阳家百(2021.03.07) (常州铁道高等职业技术学校、常州昌成铁路机械厂江苏常州 213011) 张宝金 摘要:建立适用于变工况加工的切削力模型,将切削力信号用于切削过程监控。建立基于切削参数(切削速度、进给量、切削深度)与刀具状态(主要考虑后刀面磨损量)的切削力模型,通过试验值与模型的预测值之间的比较,进一步验证模型的准确性。 关键词:切削力;刀具状态监控;金属切削;模型 1 引言 目前,加工中心(MC)、柔性制造单位(FMC)、柔性制造系统(FMS)及计算机集成制造系统(CIMS)逐渐成为现代机械制造业的主流,为实现制造系统的高度自动化提供了先决条件。自动化生产的实现,依赖于加工过程中切削刀具状态的自动监控,国内外学者在切削力模型方面进行了年夜量的研究工作。其中,切削力法被认为是一种具有实际应用前景的监控办法[1]。但以往基于切削力信号的研究年夜多是通过单因素试验[2]确定特定情况下切削力的阈值,从而对刀具状态进行识别。这类办法存在监控阈值难以确定以及监控参数特征信息不克不及适应切削参数的变更即监控的柔性差等问题,仅适用于不修改或较少修改切削参数的刚性加工生产线。随着计算机技术的成长,建立可适应变工况加工的刀具状态

监控系统十分需要。 影响切削力的因素有很多,其中切削用量三要素:切削速度、进给量、切削深度对切削力的影响最为显著[3]。本文以外圆车削为例,建立了基于切削参数(切削速 度、进给量、切削深度)与刀具状 态(主要考虑后刀面磨损量)的切 削力简化模型,并通过试验值与模 型的预测值之间的比较,进一步验 证模型的准确性。 2 切削试验系统及计划 (1)试验装置 本试验在一台型号为CA6140的普通车床上进行,切削力信号由Kistler测力仪(传感器)检测,测出的力信号经电荷放年夜器放年夜、经过数据收集卡后可直接将信号传送到计算机。再用Kistler测力仪的配套软件Dynoware对测得的力信号进行阐发和处理。试验系统组成如图11 所示。试验中刀面磨损状况及磨损值随时刻进行丈量,使用Keyence的VH8000系列数码显微镜对车刀后刀面的磨损状况拍照,通过丈量软件丈量车刀后刀面的磨损量以及刀具的破损情况。 (2)试验计划 切削力试验分为三部分进行:使用新刀片(磨损量为零)进行切削试验;使用不合状态的刀片(变更的磨损量)进行切削试验;使用不合状态的刀片(变更的磨损量)验证已建立的刀具磨损状态

刀具破损的主要形式及其产生的原因有以下几个方面

刀具破损的主要形式及其产生的原因有以下几个方面 (1)后刀面磨损后刀面磨损是由机械交变应力引起的出现在刀具后刀面上的摩擦磨损。如果刀具材料较软,刀具的后角偏小,加工过程中的切削速度偏高,进给量太小,都会造成刃具后刀面的磨损过量,并由此使得加工表面的尺寸和精度降低,增大切削中的摩擦阻力。因此应该选择耐磨性较高的刀具材料,同时降低切削速度,加大进给量,增大刀具后角。如此才能避免或减少刀具后刀面磨损现象的产生。(2)边界磨损主切削刃上的边界磨损常发生于与工件的接触面处。 主要原因是工件表面硬化、微信公众号:hcsteel锯齿状切屑造成的摩擦。解决措施是降低切削速度和进给速度,同时选择耐磨刀具材料,并增大刀具的前角,使切削刃锋利, (3)前刀面磨损前刀面磨损是在刀具的前刀面上由摩擦和扩散导致的磨损。 前刀面磨损主要由切屑和工件材料的接触,以及对发热区域的扩散引起。另外刀具材料过软,加工过程中切削速度较高,进给量较大,也是前刀面磨损产生的原因。前刀面磨损会使刀具产生变形、干扰排屑、降低切削刃的强度。应该采用降低切削速度和进速度,同时选择涂层硬质合金材料,来达到减小前刀面磨损的目的。 (4)塑性变形塑性变形是切削刃在高温或高应力作用下F产生的变形。 切削速度和进给速度太高以及工件材料中硬点的作用,刀具具材料太

软和切削刃温度较高等现象,都是产生塑性变形的主要原因。塑性变形的产生会影响切屑的形成质量,并导致刀具崩刃。可以通过采取降低切削速度和进给速度,选择耐磨性高和导热性能好的刀具材料等措施,达到减少塑性变形的目的。 (5)积屑瘤积屑瘤是指工件材料在刀具上的黏附物质 积屑瘤的产生会大大降低工件表面的加工质量,会改变切削刃的形状并最终导致切削刃崩刃。采取的对策是提高切削速度,选择涂层硬质合金或金属陶瓷等刀具材料,并在加工过程中使用冷却液。 (6)刃口剥落刃口剥落是指切削刃口上出现一些很小的缺口,非均匀的磨损。 主要由断续切削、切屑排除不畅等原因造成。应该在加工时降,低进给速度、选择韧性好的刀具材料和切削刃强度高的刀片,来避免刃口剥落现象的产生。 (7)崩刃崩刃将损坏刀具和工件。 主要原因有刀具刃口的过度磨损和较高的加工应力,也可能由于刀具材料过硬、切削刃强度不足以及进给量太大造成。刀具应该选择韧性较好的合金材料,加工时应减小进给量和切削深度,另外还可选择高强度或刀尖圆角较大的刀片。 (8)热裂纹由于断续切削时的温度变化而产生的垂直于切削刃的裂纹。 热裂纹会降低工件表面的加工质量,并导致刃口剥落。刀具应该选择韧性好的合金材料,同时在加工中减小进给量和切削深度,并进行干

刀具磨损监测技术的研究现状及发展趋势

76 研究与探索Research and Exploration ·监测与诊断 中国设备工程 2019.01 (下) 在制造业中,数控机床发挥着举足轻重的作用。近年来,随着零件品质要求不断提高,越来越多的零部件需要进行高精密的加工,尤其是在航空航天、汽车、手机等领域,数控机床的发展已成为提高产品质量的关键性因素。对于数控机床来讲,刀具系统是其最重要的组成部分,它与加工工件的质量有着紧密联系,而刀具的磨损是导致工件质量差,废品率高的直接原因。有研究指出,五分之一的机床停机是由于刀具系统破损造成的,采用准确可靠的刀具磨损在线监测技术可使机床利用率提高1.5倍,最高提升切削速度50%,并节约30%左右的总加工成本。因此,对刀具磨损状态的实时监测有助于提高加工环境的稳定性和工件的质量,保障机床及加工人员安全,同时还能提高企业的生产效率、降低企业的生产成本。因此,发展刀具磨损监测技术有重要的作用。 1?刀具磨损状态监测技术的研究现状 现阶段的刀具磨损监测方法主要分为直接法和间接法。直接法主要是通过监测刀具磨损面反光强度、刀刃位移情况、切削面放射性、接触电阻及工件尺寸的变化来判断刀具的磨损情况。而间接法主要是通过监测切削过程中某些与刀具磨损构成映射关系的参数,例如工件温度、超声信号、切削过程的振动信号、切削力、扭矩、电机功率或电流的变化来间接反映刀具的磨损情况。以下是几种主要的监测方法。1.1?直接法 (1)光学图谱法:光学图谱法是通过利用光学仪器记录刀具后刀面磨损处的反光强度变化或进行图像处理得到刀具磨损信息的方法。这类方法的优点是其结果较为明确直观,方便技术人员分析;缺点是在实际生产过程中伴有切削液等切削条件的干扰,很难实现实时监测。 (2)接触法:接触法是通过探头磁间隙传感器检测切削刃的位置参数来得到刀具磨损信息的方法。这类方法的优点是简便易操作,缺点是其易受切削温度影响。 (3)放电性技术:放电性技术是通过在刀具原材料中加入放射性物质,随着磨损程度的加大,刀具放射 性逐渐加大,从而达到监测目的。这类方法的优点是其不受加工环境的影响,缺点是其实时性差,应用于实际生产还需考虑防护性问题。 (4)工件尺寸测量法:这类方法通过传感器检测工件的尺寸,根据检测结果与实际工件尺寸误差的大小来判断刀具磨损情况。但工件的尺寸受机床运动精度和热膨胀的影响,可靠性较低。1.2?间接测量法 (1)切削温度测量法:切削温度与刀具磨损有着直接联系,因此可通过监测工件与刀具之间的热电偶或用红外检测仪监测切削部位温度变化来实现磨损状态的识别,但这种方法不适用于添加冷却液的加工过程。 (2)声发射监测法:声发射是刀具或被加工器件在加工过程中因裂缝扩展、塑性变形、相变等引起应变能快速释放而产生应力波的现象。这种方法能在不影响刀具和工件的情况下检测到刀具磨损的特征信号,这些信号频率较高,受环境干扰较小,其缺点是传播过程中信号衰减很快,传感器需安置在接近切削处的位置,且信号处理方式复杂,效率低下。 (3)振动监测法:其通常用加速度计来监测切削过程中振动信号的变化来判断刀具磨损情况,对刀具磨损敏感度高,但其信号易受到机床的自激振动和噪声干扰,给后期判断增加了难度。 (4)切削力监测法:切削力对刀具磨损灵敏度高且作为加工过程中刀具状态变化最直接的表现之一,其信号特征能准确反应刀具的磨损情况。其缺点是传感器需要与工件有特定的安装位置,信号采集困难,设备昂贵。 2?研究难点及可能的解决方案 从现有刀具磨损监测技术来看,直接法操作性强,能够得到直观数据,避免了复杂的数据分析,但采集数据时容易受到环境干扰,采集数据不可靠,测量精度不高。而间接法虽然可以采集相对准确的数据,但它并不能直观反映刀具的磨损状态,需建立复杂的数学模型对磨损特征进行提取,过程复杂。 刀具磨损监测技术的研究现状及发展趋势 任泽宇 (浙江?杭州?311200) 摘要:刀具磨损的在线监测有助于提升刀具系统的稳定性和提高工件的加工质量,降低数控机床的故障率,减少故障时间,提高生产效率,对高精度的机械自动化加工有着重要意义。本文综述了现有的研究现状,并分析了现有技术的研究难点,提出了可能的解决方案,并展望了未来的发展趋势,为刀具磨损监测技术的发展提供了方向和拓展性思路。 关键词:刀具磨损;数控机床;在线监测 中图分类号:TG54;TP311.13 文献标识码:A 文章编号:1671-0711(2019)01(下)-0076-02

刀具状态检测方法.

刀具状态检测方法 1. 1直接测量法 直接测量法能够识别刀刃外观、表面品质或几何形状变化 , 一般只能在不切削时进行。它有两个明显的缺点 : 一是要求停机检测 , 占用生产工时 ; 二是不能检测加工过程中出现的刀具突然损坏 , 使其应用受到限制。 主要方法有 : 电阻测量法、刀具工件间距测量法、射线测量法、微结构镀层法、光学测量法、放电电流测量法、计算机图像处理法等。 a 电阻测量法 该方法利用待测切削刃与传感器接触产生的电信号脉冲 , 来测量待测刀具的实际磨损状态。该方法的优点是传感器价格低 , 缺点是传感器的选材必须十分注意 , 既要有良好的可切削性 , 又要对刀具寿命无明显的影响。该方法的另一个缺点是工作不太可靠 , 这是因为切屑和刀具上的积屑可能引起传感器接触部分短路 , 从而影响精度。 b 刀具工件间距测量法 切削过程中随着刀具的磨损 , 刀具与工件间的距离减小 , 此距离可用电子千分尺、超声波测量仪、气动测量仪、电感位移传感器等进行测量。但是这种方法的灵敏度易受工件表面温度、表面品质、冷却液及工件尺寸等因素的影响 , 使其应用受到一定限制。 c 射线测量法 将有放射性的物质掺入刀具材料内 , 当刀具磨损时 , 放射性的物质微粒就会随切屑一起通过一个预先设计好的射线测量器。射线测量器中所测得的量是同刀具磨损量密切相关的 , 射线剂量的大小就反映了刀具磨损量的大小。该法的最大弱点是 , 放射性物质对环境的污染大 , 对人体健康非常不利。此外 , 尽管此法可以测

量刀具的磨损量 , 并不能准确地测定刀具切削刃的状态。因此 , 该法仅适用于某些特殊场合 , 不宜广泛采用。 d 微结构镀层法 将微结构导电镀层同刀具的耐磨保护层结合在一起。微结构导电镀层的电阻随着刀具磨损状态的变化而变化 , 磨损量越大 , 电阻就越小。当刀具出现崩齿、折断及过度磨损等现象时 , 电阻趋于零。该方法的优点是检测电路简单 , 检测精度高 , 可以实现在线检测。缺点是对微结构导电镀层的要求很高 : 要具有良好的耐磨性、耐高温性和抗冲击性能 . e 光学测量法 光学测量法的原理是磨损区比未磨损区有更强的光反射能力 , 刀具磨损越大 , 刀刃反光面积就越大 , 传感器检测的光通量就越大。由于热应力引起的变形及切削力引起的刀具位移都影响检测结果 , 所以该方法所测得的结果井非真实的磨损量 , 而是包含了上述因素在内的一个相对值 , 此法在刀具直径较大时效果较好。 f 放电电流测量法 将切削刀具与传感器之间加上高压电 , 在测量回路中流过的 (弧光放电电流大小就取决于刀刃的儿何形状 ( 即刀尖到放电电极间的距离。该方法的优点是可以进行在线检测 , 检测崩齿、断刀等刀具几何尺寸的变化 , 但不 能精确地测量刀刃的几何尺寸。 g 计算机图像处理法 计算机图像处理法是一种快捷、无接触、无磨损的检测力法 , 它可以精确地检测每个刀刃上不同形式的磨损状态。这种检测系统通常由 CCD 摄像机、光源和计算机构成。但由于光学设备对环境的要求很高 , 而实际生产中刀具的工作环境非常恶劣 (如冷却介质、切屑等 , 故该方法目前仅适用于实验室自动检测。

刀具磨损早期故障智能诊断研究

刀具磨损早期故障智能诊断研究 曹伟青 傅 攀 李晓晖 西南交通大学,成都,610031 摘要:针对刀具的早期故障监测中因存在强烈的背景噪声而难以提取故障特征的问题,提出了基于 二次采样随机共振消噪和B样条神经网络智能识别的故障诊断方法。首先利用在随机共振过程中,噪声增强振动信号的信噪比特性,将刀具振动信号进行随机共振输出,提取有效特征,再输入到B样条神经网络进行智能识别,进而获得刀具的磨损值。同时,为了得到与输入信号最佳匹配的随机共振参数,提出了基于遗传算法的多参数同步优化的自适应随机共振算法,克服了传统随机共振系统只实现单参数优化的缺点。实验结果表明,该方法能实现弱信号检测,能有效地应用于刀具磨损故障诊断中。 关键词:随机共振;遗传算法;信噪比;B样条神经网络中图分类号:TP164 DOI:10.3969/j.issn.1004-132X.2014.18.011EarlyFaultIntelligentDiagnosisofToolWear CaoWeiqing FuPan LiXiaohuiSouthwestJiaotongUniversity,Chengdu,610031 Abstract:Inviewofthedifficultiesoffaultfeatureextractionfromstrongbackgroundnoiseintoolwearearlyfaultdiagnosis,amethodwasproposedbasedontwicesamplingSRandB桘splineneuralnet‐work.First,SRwasemployedtoremovenoiseintoolwearvibrationsignalsbecauseofitsbenefitsforenhancingthesignal桘to桘noiseratio,then,toolwearswiththegoodfaultfeatureswereidentifiedbyB桘splineneuralnetwork.Inordertoimprovethedeficiencyofasingleparameterbeoptimizedinthetra‐ditionalSRandachievethebestSRparameters,anadaptiveSRwasproposedbasedongeneticalgo‐rithm,whichrealizedmulti桘parametersynchronousoptimization.Theexperimentalresultsshowthatthismethodcanrealizetheweaksignaldetectionandapplytotoolfaultdiagnosiseffectively. Keywords:stochasticresonance(SR);geneticalgorithm;signal桘to桘noiseratio;B桘splineneuralnet‐work 收稿日期:2013—05—02 基金项目:中央高校基本科研业务费专项资金资助项目(SWJ‐TU12CX039) 0 引言 刀具的磨损监测是实现自动化和无人化加工的关键技术之一。在实际的刀具磨损故障诊断过程中,所采集的振动信号除了有用的特征信息外,还存在大量的干扰噪声,尤其在早期的故障诊断中,特性信息比较微弱,提取这种微弱信号的特征是刀具磨损早期故障诊断的关键。现有的方法多数是从消噪的角度来检测故障特征的,如小波消噪[1]、经验模式分解降噪[2]、局部均值分解降噪[3]、形态滤波[4]等方法。然而这些方法在抑制噪声的同时,也使得被测信号被不同程度地削弱。 随机共振[5] 与传统的方法不同,它利用噪声和信号之间的能量转换来增强弱信号,在微弱信号检测中具有突出的优势,受到广泛关注[6桘11]。 文献[7]通过二次采样频率变换,实现了大参数信 号的随机共振;文献[8桘9]利用级联随机共振去除高频噪声,达到降噪目的;文献[10]利用信号调制原理实现高频微弱信号的检测。这些研究为随机共振理论在微弱信号检测方面的应用提供了方法。本文根据遗传算法优良的全局寻优能力,以双稳态系统输出的信噪比为适应度函数,对随机共振系统中的多个参数进行同步优化,实现了刀具磨损过程中的微弱信号检测。最后利用B样条神经网络对提取的信号特征进行融合,网络的输出为刀具的磨损值,实现了刀具磨损的智能识别。 本文中,刀具磨损弱特征提取及智能诊断分以下几步进行:①建立实验系统,采集刀具各磨损阶段的数据;②根据估计的噪声强度D设置二次采样频率fsr,进行二次采样,使信号满足小参数随机共振分析的需要;③用遗传算法优化随机共振系统参数;④系统输出增强信号;⑤计算输出信 ? 3742?刀具磨损早期故障智能诊断研究———曹伟青 傅 攀 李晓晖

相关文档
最新文档