水热法及其合成宝石的鉴定

水热法及其合成宝石的鉴定
水热法及其合成宝石的鉴定

早在1882年人们就开始了水热法合成晶体的研究。最早获得成功的是合成水晶。二十世纪上叶,由于军工产品的需要,水热法合成水晶投入了大批量的生产。随后,水热法合成红宝石于1943年由Laubengayer和Weitz首先获得成功,Ervin和Osborn进一步完善了这一技术。祖母绿的水热法合成是由澳大利亚的Johann Lechleitner在1960年研究成功的。到九十年代,原苏联新西伯利亚合成出了海蓝宝石。随后,红色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。

一、水热法的原理、合成装置和方法特点:

1、基本原理

水热法是利用高温高压的水溶液使那些在大气条件下不溶或难溶的的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。

自然界热液成矿就是在一定的温度和压力下,成矿热液中成矿物质从溶液中析出的过程。水热法合成宝石就是模拟自然界热液成矿过程中晶体的生长。

2、合成装置

水热法合成宝石采用的主要装置为高压釜,在高压釜内悬挂种晶,并充填矿化剂。

高压釜为可承高温高压的钢制釜体。水热法采用的高压釜一般可承受11000C的温度和109Pa 的压力,具有可靠的密封系统和防爆装置。因为具潜在的爆炸危险,故又名“炸弹”(bomb)。高压釜的直径与高度比有一定的要求,对内径为100-120mm的高压釜来说,内径与高度比以1:16为宜。高度太小或太大都不便控制温度的分布。由于内部要装酸、碱性的强腐蚀性溶液,当温度和压力较高时,在高压釜内要装有耐腐蚀的贵金属内衬,如铂金或黄金内衬,以防矿化剂与釜体材料发生反应。也可利用在晶体生长过程中釜壁上自然形成的保护层来防止进一步的腐蚀和污染。如合成水晶时,由于溶液中的SiO2与Na2O和釜体中的铁能反应生成一种在该体系内稳定的化合物,即硅酸铁钠(锥辉石NaFeSi2O6 acmite)附着于容器内壁,从而起到保护层的作用。矿化剂指的是水热法生长晶体时采用的溶剂。

矿化剂通常可分为以下五类:

1) 碱金属及铵的卤化物,

2) 碱金属的氢氧化物,

3)弱酸与碱金属形成的盐类,

4)强酸,

5)酸类(一般为无机酸)。

其中碱金属的卤化物及氢氧化物是最为有效且广泛应用的矿化剂。矿化剂的化学性质和浓度影响物质在其中的溶解度与生长速率。合成红宝石时可采用的矿化剂有NaOH,Na2CO3,NaHCO3+KHCO3,K2CO3等多种。Al2O3在NaOH中溶解度很小,而在Na2CO3中生长较慢,采用NaHCO3+KHCO3混合液则效果较好。

3、水热法的特点:

1)合成的晶体具有晶面,热应力较小,内部缺陷少。其包裹体与天然宝石的十分相近。

2)密闭的容器中进行,无法观察生长过程,不直观;

3)设备要求高(耐高温高压的钢材,耐腐蚀的内衬)、技术难度大(温压控制严格)、成本高;

4)安全性能差;

二、合成品种及工艺:

1.合成绿柱石

A、合成祖母绿

1946年奥地利的N.Lechleitner用水热法成功地在实验室合成出了祖母绿;1965年美国的Linde公司实现了水热法合成祖母绿的商业生产。1988年我国有色金属工业总公司广西桂林宝石研究所曾骥良等用水热法合成出质量较好的宝石级祖母绿,最大的一颗达到6.42ct。各个厂家采用的具体的生产工艺不完全相同,商家对此严加保密。而合成产品的变化也较多,Lechleitner先后有A、B、C、D、E等类型的合成祖母绿。其相应的宝石学特性有细微的差异。目前,合成祖母绿的国家或公司主要有:澳大利亚的莱切雷特纳(Lechleitner)、美国的林德(Linde)、中国桂林。

将培养料分放在顶、底部(图7-1),两处的物质被溶解、扩散,在中部相遇并发生反应,生成祖母绿的溶液,当祖母绿溶液达到过饱和时便会析出,在中部的种晶上生长。

原料:氧化铬、氧化铝和氧化铍粉末的烧结块,水晶碎块做为二氧化硅的来源;

图7-1 水热法合成祖母绿装置图

(点击可进入多媒体演示)

矿化剂:国内采用HCl,充填度(充满高压釜内部空间的百分比)80%

种晶:可用天然或合成的无色绿柱石或祖母绿为原料,种晶沿与柱面斜交角度为350方向切取,生长后的晶体为厚板状或柱状,切磨利用率较高。也可平行柱面和底轴面切取,生长成板状晶体。种晶用铂金丝挂于高压釜中部。

温度:6000C,

工作压力:1000X105Pa

高压釜内衬铂金(或黄金)衬里;

水热法合成祖母绿的基本过程是:石英碎块用铂金网桶挂于高压釜顶部,氧化铬、氧化铝和氧化铍烧结块放在高压釜底部,高压釜内充填矿化剂(通常含碱金属或铵的卤化物)。电炉在高压釜的底部加热,溶解的原料在溶液中对流扩散,相遇并发生反应,形成祖母绿溶液。当祖母绿溶液达到过饱和时,便在种晶上析出结晶成祖母绿晶体。

生长速度:每天0.5-0.8mm。

B、其它颜色绿柱石:

图7-2 板状合成红色绿柱石晶体

水热法红色绿柱石早在二十世纪九十年代中期就由俄罗斯合成出。由于有限的市场需求,使得产量不大。合成红色绿柱石由钴致色。

合成红色绿柱石晶体为平行种晶板延长方向的板状(图7-2)。

种晶板厚度为0.7-1mm,通常为无色的,也有绿色或紫红色的。

折射率:非常光 1.569-1.573,常光 1.576-1.580;

DR:0.006-0.008;

SG:2.67-2.70

多色性:中到很强,紫红到橘红或褐红色;

内部特征:垂直种晶面方向可见V形臂章状生长条带;在某些方向上显示近于平行的波状生长纹理;针状包体;单相流体或气液两相包体;黑色不透明的六方板状赤铁矿包体;

此外,还有合成海蓝宝石。

2.合成石英

合成水晶已经有近百年的历史。合成彩色水晶主要出现于二十世纪七十年代。目前全世界每年生产约20吨彩色水晶用于珠宝业。

原料:去皮的水晶碎块;

矿化剂:一般采用NaOH、Na2CO3、K2CO3或KCl,NaCl,充填度为80%。合成彩色石英时,一般采用矿化剂碳酸钾,或碳酸钾与氢氧化钠的混合液,有利于色素离子进入晶体结构。尤其是在加入了色素离子铁时,不采用碳酸钠,以避免在溶液中形成硅酸铁钠(锥辉石晶体),影响铁进入晶体。

种晶:对合成不同颜色的石英要选用不同方向的种晶片。合成紫晶时种晶板通常平行于菱面体面方向;合成黄水晶的种晶板平行于底轴面。还有的与光轴夹角700切向的种晶等。种晶用铂金丝挂在高压釜中部。

温度:3600C左右,底部溶解区温度略高360-380,上部生长区略低,约为330-3500C。

压力:(1100-1600)X105Pa。

高压釜内部不必衬贵金属衬里,因为反应温度和压力条件不很高。

生长过程:原料放在高压釜内温度较高的下部,种晶悬挂在温度较低的上部。釜内填以一定容量和浓度的矿化剂作溶剂。当容器内的溶液由于上下部之间的温差产生对流时,高温区的饱和溶液饱和溶液被输送到低温区,变成过饱和状态,从而在种晶上生长。

为了获得彩色水晶,有时除了加入适当的致色元素外,还要对合成后的晶体进行热处理或辐照处理。

表7-1 合成彩色水晶添加的致色元素及随后的处理

3.合成刚玉:

水热法合成红宝石是二十世纪中叶成功合成的,但直到1992年才由前苏联的Tairvs

公司真正实现商业化生产。

?

原料:合成无色刚玉碎块,或Al(OH)3;另加致色元素;

?

矿化剂:通常采用NaHCO3和KHCO3,或NaOH、Na2CO3等,充填度为80%;

?

温度:500-5600C,底部溶解区温度略高,上部生长区略低,约为470-4800C;?

工作压力:750X105Pa

?

高压釜要采用贵金属衬里。

?种晶:通常选用焰熔法合成刚玉作种晶,按Z轴方向切成圆棒或条片。

合成不同颜色的品种采用的致色元素与天然的对应品种并非完全一致。

合成品中致色元素:红色---Cr3+,黄色---Ni3+,蓝色---Ni2+

图7-3 合成刚玉的颜色与致色元素

黄色和蓝色天然蓝宝石的致色元素:黄色---Fe3+,蓝色---Fe2+ +Ti4+ ,如图所示:

图7-4 天然刚玉的颜色与致色元素

图7-5 水热法合成红宝石的晶体

三、主要鉴定特征

1.特征性包裹体有来自坩埚的贵金属的包体,如铂金片或枝。

图7-6 水热法合成宝石中的铂金片或枝

2.合成绿柱石中钉状包裹体和硅铍石晶体包体;

天然绿柱石常常含有大量各种矿物的晶体包体和三相包体。

图7-7 合成祖母绿中的钉子形包体及硅铍石晶体包体3.合成水晶中常见面包渣状包裹体

合成水晶中的面包渣状包裹体实际是锥辉石的细小雏晶。

图7-8 合成祖母绿中的锯齿状纹理

4.合成绿柱石及刚玉常常显示锯齿状纹理、波状纹理等;

图7-9 合成红宝石中的波状纹理

图7-10 水热增生祖母绿的表面增生裂纹

5.表面增生裂纹

以切磨好的天然浅色绿柱石为种晶生长一层薄的合成祖母绿的来改善宝石颜色外观的方法称为水热表面增生或水热镀层。在这种表面增生的祖母绿表面可见明显的龟裂纹(图7-9)。

6.种晶片及多层结构

图 7-11 水热法合成祖母绿的种晶及多层结构

图7-12 水热法合成蓝宝石中的焰熔法合成红宝石种晶

7.合成彩色石英的色带:

合成彩色水晶常常显示不同与天然品种的色带。合成彩色水晶的色带总是平行种晶板,而合成紫晶时种晶板通常平行于菱面体面方向;合成黄水晶的种晶板平行于底轴面。所以利用偏光镜可以帮助确定。

8.干涉图:

合成水晶中一般没有复杂的双晶结构,所以通常在正交偏光下显示“牛眼干涉图”(即中空黑十字),看不到“螺旋浆状干涉图。而天然的水晶常常出现巴西双晶,所以常常见到“螺旋浆状干涉图”。

9.吸收光谱:

合成红色绿柱石与天然红色绿柱石明显不同,为典型的钴(Co2+)谱,即530-590

之间几个模糊到清晰的吸收带(400nm以下宽的吸收,以530nm为中心的中等强度的较窄的吸收带。545nm和560处2个强的窄带,570nm和590nm处2个弱的窄带)。而天然红色绿柱石450以下和540-580之间的宽的吸收。

10.红外光谱

红外光谱自1967年起就开始用于天然及合成祖母绿的鉴别了,尤其对那些内部十分干净、找不到特征生长痕迹的宝石是十分有效且无损的鉴定手段。一般说来这种方法是基于祖母绿中两种类型水分子( I 型水, II 型水)的有无来进行鉴别的。

祖母绿的内部为硅氧四面体组成的六方环垂直c轴平行排列,上下两个环错动25o,环与环之间由Al-O6八面体及Be-O4四面体连结,铝配位体数为6,铍配位体为4,均分布在环的外侧,所以在环中心平行于C轴有宽阔的孔道,通道内允许容纳钾离子(K+),钠离子(Na+),铯离子(Se+)和水分子等大半径离子。当占优势的水的对称轴垂直结构的C轴,具有平行与C 轴的H-H向量时,我们称之为 I 型水,当通道内有碱金属离子的进入时,那么水分子将受到碱金属离子的静电作用旋转90o,使对称轴平行C轴,而形成 II 型水(图7-11)。

图7-13 祖母绿中水的类型

祖母绿中水的类型不同导致不同的红外吸收峰。I型水、 II 型水的伸缩振动引起3500—3800CM-1左右吸收峰,弯曲振动引起1500—1650C M-1吸收峰,而水的合频振动所致的吸收峰位于5000---5600CM-1。详见下表。

表7-2 祖母绿中水的振动谱学特征

基团类型

振动类型伸缩振动弯曲振动CM-1合频振动CM-1

对称CM-1反对称CM-1

I 型水355536701543,15955450,5200

II 型水36003655 1630 5270

水热法合成祖母绿的早期产品主要含 I 型水,不含II型水,后来通过改进工艺使新的产品既含I型水又含I I型水,但仍以 I 型水偏多,证明一般碱含量较低。而天然祖母绿中的较高。不同产地的天然及不同厂家的合成祖母绿 I 型水、II型水分子的吸收峰相对强度差异也很明显。近几年的水热法合成祖母绿产品的红外光谱一般都可见 I 型水和II型水的吸收峰,而天然祖母绿既含 I 型水又含II型水,但 II 型水较多。

图 7-14 水热法合成祖母绿的红外光谱图

(点击链接放大图片)

图 7-15 天然祖母绿的红外光谱图

(点击链接放大图片)

水晶中含有水,H2O在红外光谱中3200cm-1—3600cm-1的区间内显示伸缩振动谱带,在1500cm-1—1700cm-1的区间内显示弯曲振动的谱带,以及在5200cm-1的伸缩振动与弯曲振动的合频谱带。天然无色水晶以3595 cm-1和3484 cm-1为特征吸收,而合成水晶则缺失这两个吸收带,而以3585 cm-1或5200 cm-1为特征吸收。合成紫晶具有明显的3545谱带,而天然紫晶中这一谱大明显较弱。与天然烟晶相比,合成烟晶缺失3595 cm-1和3484 cm-1的吸收。

水热法制备纳米材料

实验名称:水热法制备纳米TiO2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度(100-240℃);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1.了解水热法的基本概念及特点。 2.掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3.熟悉XRD操作及纳米材料表征。 4.通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4;蒸馏水;无水乙醇。 四.实验过程 1.取10mL量筒, 50mL的烧杯洗净并彻底干燥。 2.取适量冰块放入烧杯中,并加入一定的蒸馏水形成20mL的冰水混合物,用恒温磁力搅拌器搅拌,速度适中。

第三章 提拉法合成宝石及其鉴定方法

第三章提拉法及其合成宝石的鉴定 要点: ?晶体提拉法的原理方法 ?提拉法合成宝石的鉴定 提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。这种方法能够生长无色蓝宝石、红宝石、钇铝榴石、钆镓榴石、变石和尖晶石等重要的宝石晶体。2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。 第一节提拉法 一、提拉法的基本原理 提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。 图 3-1 提拉法合成装置 (点击可进入多媒体演示) 二、提拉法的生长工艺

首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。 1.晶体提拉法的装置 晶体提拉法的装置由五部分组成: (1)加热系统 加热系统由加热、保温、控温三部分构成。最常用的加热装置分为电阻加热和高频线圈加热两大类。采用电阻加热,方法简单,容易控制。保温装置通常采用金属材料以及耐高温材料等做成的热屏蔽罩和保温隔热层,如用电阻炉生长钇铝榴石、刚玉时就采用该保温装置。控温装置主要由传感器、控制器等精密仪器进行操作和控制。 (2)坩埚和籽晶夹 作坩埚的材料要求化学性质稳定、纯度高,高温下机械强度高,熔点要高于原料的熔点200℃左右。常用的坩埚材料为铂、铱、钼、石墨、二氧化硅或其它高熔点氧化物。其中铂、铱和钼主要用于生长氧化物类晶体。 籽晶用籽晶夹来装夹。籽晶要求选用无位错或位错密度低的相应宝石单晶。 (3)传动系统 为了获得稳定的旋转和升降,传动系统由籽晶杆、坩埚轴和升降系统组成。 (4)气氛控制系统 不同晶体常需要在各种不同的气氛里进行生长。如钇铝榴石和刚玉晶体需要在氩气气氛中进行生长。该系统由真空装置和充气装置组成。 (5)后加热器 后热器可用高熔点氧化物如氧化铝、陶瓷或多层金属反射器如钼片、铂片等制成。通常放在坩埚的上部,生长的晶体逐渐进入后热器,生长完毕后就在后热器中冷却至室温。后热器的主要作用是调节晶体和熔体之间的温度梯度,控制晶体的直径,避免组分过冷现象引起晶体破裂。 2.晶体提拉法生长要点 (1)温度控制 在晶体提拉法生长过程中,熔体的温度控制是关键。要求熔体中温度的分布在固液界面处保持熔点温度,保证籽晶周围的熔体有一定的过冷度,熔体的其余部分保持过热。这样,才可保证熔体中不产生其它晶核,在界面上原子或分子按籽晶的结构排列成单晶。为了保持一定的过冷度,

水热法合成二氧化钛及研究进展

水热法合成二氧化钛及研究进展 摘要:水热法合成了不同晶型、形貌、大小和研定形貌的二氧化钛。究了pH值、水热反应温度和水热反应时间对纳米二氧化钛晶型、形貌和晶粒尺寸的影响,对TiO2晶形影响光催化活性的原因进行了探讨。同时从二氧化钛水解制氢、废水处理、空气净化、抗菌、除臭方面介绍了纳米二氧化钛在环境治理方面的应用和发展趋势,并对纳米二氧化钛的制备方法与应用作出展望。 关键词:二氧化钛;晶型;水热法;光催化;制备;应用 纳米二氧化钛(TiO2)具有比表面积大、磁性强、光吸收性好、表面活性大、热导性好、分散性好等性能。纳米TiO2是一种重要的无机功能材料, 可应用于随角异色涂料、屏蔽紫外线、光电转换、光催化等领域,在光催化领域环境治理方面具有举足轻重的地位,可应用在环保中的各个领域,它在环境污染治理中将日益受到人们的重视,具有广阔的应用前景,因此制备高光催化性能的纳米TiO2,拓展纳米二氧化钛的应用也是学者研究的重点。水热法合成纳米TiO2粉体具有晶粒发育完整、粒径分布均匀、不需作高温煅烧处理、颗粒团聚程度较轻的特点。 1.TiO2的制备方法、材料的性能 1.1不同晶型纳米二氧化钛的水热合成 1.1.1实验方法 边搅拌边将2mol·L- 1的四氯化钛水溶液缓慢滴加到115mol·L- 1的氢氧化钠水溶液中,保持30℃反应,生成纳米TiO2前驱体,反应终点的pH值分别控制为110、310、510、810、1110、1210。把纳米TiO2前驱体装入内衬聚四氟乙烯的不锈钢反应釜中进行水热反应,120℃~200℃反应1h~48h,反应结束后,冷却至室温,产物经过滤和蒸馏水洗至滤液中无Cl-,在100℃下鼓风干燥10h,粉碎后得到不同结构的纳米TiO2 粉体。选择不同的特征峰(金红石型选110面、锐钛矿型选101面,板钛矿型选121面),根据特征衍射峰的半高宽,利用Scherrer 公式展宽法估算出其晶粒尺寸。 1.1.2研究与开发 1.1. 2.1pH值对纳米TiO2晶型和形貌的影响 在水热反应温度为200 ℃和水热反应时间24 h的条件下。当pH = 1.0时,产

合成宝石

宝石的合成、仿制品及优化处理 要求: 1.合成品、仿制品的有关概念 2.★合成宝石的方法:合成方法和原理,合成材料名称、性质及特征 3.★优化处理:各种优化处理方法、原理和名称 一、基本概念 ?人工宝石artificial products ?定义:完全或部分由人工生产或制造用作首饰及装饰品的材料统称为人工宝石。包括合成宝石、 人造宝石、拼合宝石和再造宝石。 ?合成宝石synthetic stones ?定义:完全或部分由人工制造且自然界有已知对应物的晶质或非晶质体,其物理性质,化学成分 和晶体结构与所对应的天然珠宝玉石基本相同。 ?例如,合成红宝石具有与天然红宝石基本相似的物理性质(颜色、RI、DR等)、化学成分(Al2O3) 及晶体结构。 二、发展简史 ?1902 维尔纳叶法合成红宝石的商业生产 ?1920 维尔纳叶法合成尖晶石 ?1928 助熔剂法合成祖母绿 ?1943 水热法合成水晶 ?1955 合成工业级钻石出现 ?1960 水热法合成祖母绿 ?1970 合成宝石级钻石 ?1976 合成立方氧化锆 ?1995 合成SiC(莫伊桑石) (一)、焰熔法合成宝石及鉴定 ?焰熔法(flame fusion technique)——19世纪(1877)由E.弗雷米发明,19世纪末(1890)由 其助手维尔纳叶推向市场,故又称维尔纳叶法(V erneuil furnace)。 ?该方法可以生产各种品种的刚玉、尖晶石、金红石、钛酸锶、白钨矿等宝石晶体。 ?基本原理: 从熔体中生长单晶体的方法。原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落的过程中冷却并在籽晶上固结逐渐生长形成晶体。 合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉 中进行的

宝石合成方法及原理汇总

宝石合成原理与方法(汇总) 第一章绪论 要点 人造宝石材料的重要性 人造宝石材料的发展 基本概念 晶体生长基本理论 一、人造宝石材料的重要性 随着科学技术的发展,人民生活水平不断提高,人类对宝石的需求也逐渐增加。然而天然宝石材料的资源毕竟是有限的,而人工宝石材料能够大批量生产,且价格低廉,故人工宝石材料在市场上占有较大的份额。随着科学技术的发展,人工宝石材料的品种日益繁多,合成宝石的特性也越来越接近天然品种。宝石学家不断面临鉴别新的人造宝石材料的挑战。 某些人工的晶体材料也用于工业产品及设备的制造及生产中。例如,人造钇铝榴石被广泛用于激光工业,合成水晶是用作控制和稳定无线电频率的振荡片和有线电话多路通讯滤波元件及雷达、声纳发射元件等最理想的材料。 二、人造宝石材料的发展 人工制造宝石的历史可追溯到1500年埃及人用玻璃模仿祖母绿、青金石和绿松石等。人工合成宝石始于18世纪中期和19世纪,由于矿物学研究的发展以及化学分析方法取得的进展,使人们逐渐掌握了宝石的化学成分及性质,加上化学工业的发展以及对结晶过程的认识,人工合成宝石才变为现实。1892年出现了闻名的“日内瓦红宝石”,这是用氢氧火焰使品质差的红宝石粉末及添加的致色剂铬熔融,再重结晶形成优质红宝石的方法。随后,这种方法经改进并得以商业化。1890年,助熔剂法合成红宝石获得成功;1900年助熔剂法合成祖母绿成功。从此,宝石合成业飞速地发展起来。合成尖晶石、蓝宝石、金红石、钛酸锶等逐渐面市。1953年合成工业级钻石、1960年水热法合成祖母绿及1970年宝石级合成钻石也相继获得成功。我国的人工宝石材料的生产起步较晚。五十年代末,为了发展我国的精密仪器仪表工业,从原苏联引进了焰熔法合成刚玉的设备和技术,六十年代投产后,主要用于手表轴承材料的生产。后来发展到有20多家焰熔法合成宝石的工厂,能生长出各种品种的刚玉宝石、尖晶石、金红石和钛酸锶等。我国进行水热法生长水晶的研究工作,始于1958年。目前几乎全国各省都建立了合成水晶厂。我国的彩色石英从1992年开始生产,现在市场上能见到的各种颜色品种的合成石英。 七十年代,由于工业和军事的需要,尤其是激光研究的需要,我国先后用提拉法生产了人造钇铝榴石(YAG)和钆镓榴石(GGG)晶体,它们曾一度被用于仿钻石。 1982年,我国开始研究合成立方氧化锆的生产技术,1983年投产。由于合成立方氧化锆的折射率高、硬度高、产量大、成本低,很快取代了其它仿钻石的晶体材料。广西宝石研究所1993年成功生产水热法合成祖母绿,现已能生产水热法合成其它颜色的绿柱石及红、蓝宝石。合成工业用钻石在我国是l963年投

一步水热法合成SiO2纳米棒

Studies in Synthetic Chemistry 合成化学研究, 2018, 6(2), 23-28 Published Online June in Hans. https://www.360docs.net/doc/8b9809323.html,/journal/ssc https://https://www.360docs.net/doc/8b9809323.html,/10.12677/ssc.2018.62004 Synthesis of SiO2 Nanorodes by One-Step Hydrothermal Process Shuhong Sun, Yin He, Yongmao Hu, Yan Zhu* Kunming University of Science and Technology, Kunming Yunnan Received: Mar. 20th, 2018; accepted: May 2nd, 2018; published: May 10th, 2018 Abstract SiO2 nanorodes were successfully synthesized by a simple low-cost one-step alkaline hydrother-mal process using commercial silicate glass at 170?C. The SEM results show that ammonia concen-tration and holding time play an important role in the formation of SiO2nanorods. XRD results confirmed that the synthesized SiO2nanorods were amorphous. Photoluminescence results showed that the synthesized nanorodes exhibited a strong, sharp photoluminescence emission peak, centered at 410 nm. Keywords SiO2 Nanorode, Hydrothermal Process, Silicate Glass 一步水热法合成SiO2纳米棒 孙淑红,贺胤,胡永茂,朱艳* 昆明理工大学,云南昆明 收稿日期:2018年3月20日;录用日期:2018年5月2日;发布日期:2018年5月10日 摘要 以商业硅酸盐玻璃为原材料,在170?C下,通过简单的低成本一步水热法成功制备了SiO2纳米棒。SEM 结果显示,氨水浓度和保温时间在SiO2纳米棒的形成中都起着重要的作用。XRD结果证实了合成的SiO2纳米棒为非晶结构。光致发光结果表明合成的纳米棒在410 nm表现出强烈尖锐的发射峰。 *通讯作者。

合成宝石

班级姓名成绩 一、名词解释。(3×5=15分) 人造宝石助熔剂法临界晶核装满度籽晶 二、填空题。(0.5×30=15分) 1、合成宝石指其加工的全部或部分工艺过程是由人工控制进行的它们的、和 与它们所对应的天然宝石基本相同。 2、紫晶用法合成后,还需要经处理。 3、合成蓝宝石的主要方法有、、。 4、CZ的中文名称应当是。 5、助熔剂法合成祖母绿的特征包裹体常为、、。 6、冷坩埚法合成立方氧化锆所需的热来自。 7、焰熔法合成尖晶石的密度常为,折射率值常为,往往比天然的宝石级尖晶石的 密度及折射率。 8、红、蓝、黄色、变色合成刚玉中的致色元素分别是、、、。 9、水热法合成宝石晶体的四个阶段、、、。 10、水热法合成水晶的温度,压力。 11、焰熔法合成宝石的主要设备有、、、。 三、判断改错题。(2×5=10分,对者打“√”,错者打“×”并改正) 1、助熔剂法合成宝石中的水滴状包裹体是捕掳来的原生液体。() 2、用气相沉淀法合成的镀膜钻石,外观常显云雾状、粉状等特征。() 3、由于刚玉的熔点很高,焰熔法合成红宝石是采用铂坩埚。() 4、白色的合成立方氧化锆在贸易中作为钻石的代用品使用时,应称为仿钻石。() 5、区分祖母绿与合成祖母绿时,有无弧形生长纹是一项重要判别依据。() 四、简述题。(简明扼要,重点突出。6×5=30分) 1、绘图说明熔体中晶核形成与晶体生长的关系。 2、水热法合成的宝石通常具有什么特征? 3、人工宝石中不参与定名的因素有哪些? 4、高温高压合成钻石的鉴定特征。 5、简述冷坩埚法生长宝石晶体的原理。 五、论述题。(详细论述,全面分析。2×15=30分) 1、玻璃作为宝石仿制品的鉴定特征。 2、如何鉴别合成红宝石。

合成宝石毕业论文

百度文库- 让每个人平等地提升自我 2013—2014学年第二学期 《合成宝石》课程期末大作业(论文) 班级:11工商(珠宝鉴定)本 学号: 姓名:李晶 任课教师:张晓晖 分数:____________________ 评语:____________________ __________________________ __________________________ __________________________ __________________________

教师签名:_______________ 批阅日期:__________ 我看合成红宝石工艺及鉴别 摘要:合成红宝石的方法多种多样,常见的有助溶剂法、水热法和提拉法,但在生产中广泛采用的是焰熔法。 关键词:合成红宝石助溶剂生长法水热法焰熔法提拉法 前言合成红宝石(Synthetic ruby)通常呈现鲜亮的红色,与天然红宝石区别甚小,物理性质也相同。除像天然红宝石一样被加工成椭圆形、圆形或梨形的混合刻面琢型以及腰圆型外,有时还被加工成—些特殊琢型,如上部为中凸的弧形面,而下部为刻面的长方形或椭圆形混合琢型;或者上部为中凸的弧形面和刻面,而下部为刻面的长方形混合琢型。这些特殊琢型是合成红宝石特有的,其粒重多在5~15克拉。也有用合成红宝石加工珠形项链和手镯的。合成红宝石是按工业规模生产的第一种合成宝石。 一、合成红宝石的技术与方法 (一)助溶剂生长法合成红宝石 助溶剂生长法合成红宝石晶体[1]是在自发成核缓冷法合成无色蓝宝石晶体的基础上发展而来。无色合成蓝宝石晶体的助溶剂生长法首次由德国人实现于1837年,方法较简单,是用PbF?-PbO作助溶剂,Al?O?作原料,将其混合后放入铂金坩埚中,加热至1350℃,经数小时后,使Al?O?完全熔融,之后按照1℃/h的冷却速度冷却至900-1000℃,倒出残余助溶剂熔融液,冷却至室温后,用硝酸溶液溶去助溶剂,由此得到无色蓝宝石晶体位错密度较低。1969年,市场上出现了“卡善”助溶剂法合成的红宝石,该合成的红宝石内部不但添加了铬元素,而且还添加了铁元素作为致色元素,使其与天然红宝石难以辨别。另外,美国的C·卡塔姆也用助溶剂法合成了红宝石和蓝宝石晶体,而拉马拉(Ramaura)公司在用助溶剂法合成的红宝石中添加了一种可以发荧光的成分,使得这种合成红宝石很容易被鉴别。而我国在1990年后由国家建材局人工晶体研究所采用助溶剂法成功合成出红宝石晶体。此次晶体生长使用了籽晶,但合成的红宝石晶体没有进行商业化生产。助溶剂法合成红宝石晶体的具体工艺步骤如下:

水热法

高质量氧化锌晶体的水热法合成及其光电性能研究 目前尺寸较大的ZnO单晶的生长方法主要有助溶剂法、水热法、气相生长法和柑锅下降法。 1、助溶剂法 助溶剂法是利用助溶剂使晶体形成温度较低的饱和熔体,通过缓慢冷却或在恒定温度下通过蒸发溶剂,使熔体过饱和而结晶的方法。 2、气相法 气相法是利用蒸汽压较大的材料,在适当的条件下,使蒸汽凝结成晶体的方法,气相法适合于生长板状晶体。 3、坩埚下降法 坩埚下降法是让熔体在柑锅中冷却而凝固,凝固过程从钳锅的一端开始逐渐扩散到整个熔体。 4、水热法 水热法又称高温溶液法,其中包括温差法、降温法(或升温法)及等温法。为了提高晶体的生长速度,水热法一般采用双温区高压反应釜,主要依靠容器内的溶液维持温差对流形成过饱和状态(通过隔板和加热来调整温差)。 水热法需要选择合适的矿化剂,并控制好矿化剂浓度,溶解区和生长区的温度和温度差、填充度(控制生长压力)、生长区的预饱和、合理的元素掺杂、升温恒温程序、籽晶的质量以及营养料的纯度等工艺要素,优化各个工艺条件。 微波辅助加热法制备纳米材料研究进展 一、微波及其特征 与常规加热不同,微波加热是以体加热的方式进行,反应物对微波能量的吸收与分子的极性有关。微波加热是通过微波与物质相互作用而转变的。在电磁场的作用下,物质中微观粒子能产生极化。极性介质在微波场作用下随其高速旋转从而被均匀地加热;对于许多不能直接明显地吸收微波的物质,可选用适当的能强烈吸收微波的催化剂,通过在其表面形成比周围温度更高的“热点”(hotsPot)而加速反应。利用微波加热,许多反应的速度往往是常规加热的数十倍,甚至数千倍。微波能在很短的时间内均匀加热,大大消除了温度梯度,使沉淀相瞬间成核,从而获得均匀的超细粉体。微波辅助加热对化学反应非常复杂的,除了具有热效应外(tharmal effects),还存在一种不是由温度引起的非热效应(加nontharmal effects),它能改变反应的动力学性质,降低反应的活化能,即微波对化学反应存在着选择性加热的影响(物质分子结构与微波频率的匹配关系),存在着某些特定的非热效应的影响。不同的材料对微波的吸收能力不同,目前的一些实验研究也揭示了这一现象,即微波选择性加热。大家普遍认为,微波辅助加热存在两种效应:热效应和非热效应。正是这些效应导致不同形态和尺寸的纳米结构的合成。 微波辅助加热法又可以分为微波水溶液法、微波辅助多元醇法、微波辅助离子液体法、微波层状前驱物转化法制备纳米片、微波液相同步法制备聚合物基无机纳米复合材料、微波一水热/溶剂热法。

水热法及其合成宝石的鉴定

早在1882年人们就开始了水热法合成晶体的研究。最早获得成功的是合成水晶。二十世纪上叶,由于军工产品的需要,水热法合成水晶投入了大批量的生产。随后,水热法合成红宝石于1943年由Laubengayer和Weitz首先获得成功,Ervin和Osborn进一步完善了这一技术。祖母绿的水热法合成是由澳大利亚的Johann Lechleitner在1960年研究成功的。到九十年代,原苏联新西伯利亚合成出了海蓝宝石。随后,红色绿柱石等其它颜色绿柱石及合成刚玉也纷纷面市。 一、水热法的原理、合成装置和方法特点: 1、基本原理 水热法是利用高温高压的水溶液使那些在大气条件下不溶或难溶的的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。 自然界热液成矿就是在一定的温度和压力下,成矿热液中成矿物质从溶液中析出的过程。水热法合成宝石就是模拟自然界热液成矿过程中晶体的生长。 2、合成装置 水热法合成宝石采用的主要装置为高压釜,在高压釜内悬挂种晶,并充填矿化剂。 高压釜为可承高温高压的钢制釜体。水热法采用的高压釜一般可承受11000C的温度和109Pa 的压力,具有可靠的密封系统和防爆装置。因为具潜在的爆炸危险,故又名“炸弹”(bomb)。高压釜的直径与高度比有一定的要求,对内径为100-120mm的高压釜来说,内径与高度比以1:16为宜。高度太小或太大都不便控制温度的分布。由于内部要装酸、碱性的强腐蚀性溶液,当温度和压力较高时,在高压釜内要装有耐腐蚀的贵金属内衬,如铂金或黄金内衬,以防矿化剂与釜体材料发生反应。也可利用在晶体生长过程中釜壁上自然形成的保护层来防止进一步的腐蚀和污染。如合成水晶时,由于溶液中的SiO2与Na2O和釜体中的铁能反应生成一种在该体系内稳定的化合物,即硅酸铁钠(锥辉石NaFeSi2O6 acmite)附着于容器内壁,从而起到保护层的作用。矿化剂指的是水热法生长晶体时采用的溶剂。 矿化剂通常可分为以下五类: 1) 碱金属及铵的卤化物, 2) 碱金属的氢氧化物, 3)弱酸与碱金属形成的盐类, 4)强酸, 5)酸类(一般为无机酸)。 其中碱金属的卤化物及氢氧化物是最为有效且广泛应用的矿化剂。矿化剂的化学性质和浓度影响物质在其中的溶解度与生长速率。合成红宝石时可采用的矿化剂有NaOH,Na2CO3,NaHCO3+KHCO3,K2CO3等多种。Al2O3在NaOH中溶解度很小,而在Na2CO3中生长较慢,采用NaHCO3+KHCO3混合液则效果较好。

宝石合成与优化

人工宝石指完全或部分由人工生产或制造的、用于制作首饰及装饰品的材料,分为合成宝石、人造宝石、拼合宝石、再造宝石。合成宝石指部分或完全由人工制造的晶质或非晶质材料,这些材料的物理性质、化学成分及晶体结构和与其对应的天然宝石基本相同。必须在其所对应天然珠宝玉石名称前加“合成”二字,禁止使用生产厂、制造商的名称直接定名,禁止使用易混淆或含混不清的名词定名。人造宝石指由人工制造的晶质或非晶质材料,然而这些材料没有天然对应物。定名必须在材料名称前加“人造”二字,禁止使用生产厂、制造商的名称直接定名。禁止使用易混淆或含混不清的名词定名,不允许用生产方法参与定名。拼合宝石指两种或两种以上材料经人工方法拼合在一起,在外形上给人以整体琢磨印象的宝石。逐层写出组成材料名称,在组成材料名称之后加“拼合石”三字或以顶层材料名称加“拼合石”三字,由同种材料组成的拼合石,在组成材料名称之后加“拼合石”三字,对于分别用天然珍珠、珍珠、欧泊或合成欧泊为主要材料组成的拼合石,分别用拼合天然珍珠、拼合珍珠、拼合欧泊或拼合合成欧泊的名称即可,不必逐层写出材料名称。再造宝石指将一些天然宝石的碎块、碎屑经人工熔结后制成。在所组成天然珠宝玉石名称前加“再造”二字。人工晶体的共性1、颜色均一、内部缺陷少;2、原料和成品均较大;3、常见单相气态包体(水热法产品除外),它们多呈圆形或拉长的水滴形; 4、常见未熔融之熔质包体(水热法产品除外),其常呈不透明的白色面包渣状;5、由Cr致色的任何品种,在紫外线下均呈鲜明的红色荧光;6、绿色品种在查尔斯镜下常呈红色。 合成宝石的研究思路(1)从熔体中结晶的主要有焰熔法、提拉法和冷坩埚法。(2)从溶液中结晶的主要有水热法和助熔剂法。(3)固相生长:高温高压法合成钻石·其它方法: 化学沉淀法合成欧泊、绿松石、孔雀石、青金岩等。 1.为什么焰熔法生长出的宝石晶体要进行退火处理?焰熔法生长宝石因为温度不很稳定,使晶体位错密度较高,为消除热应力带来的晶体缺陷,必须进行高温退火处理 2焰熔法晶体生长过程分哪几个阶段?(1) 接籽晶,用晶种法代替晶芽的自发生长。(2) 扩大放肩,扩大晶种的面积或称扩大晶种的直径。(3) 等径生长,其生长直径虽不完全相同,但基本上最后成为倒梨形,即梨晶。 2.如何鉴别焰熔法生长的刚玉类宝石?合成红、蓝宝石中常可见气泡和未熔粉末出现,一般气泡小而圆,或似蝌蚪状;可单独或成群出现;红宝石中常常为细密的弧形生长纹,类似唱片纹;蓝宝石中色带较粗而不连续;黄色蓝宝石很少含有气泡,也难见色带。天然红宝石和蓝宝石都显示直或角状或六方色带。合成蓝宝石的光谱见不到天然蓝宝石通常可以见到的蓝区的吸收,或450nm的吸收带十分模糊。合成蓝宝石有时显示蓝白色或绿白色荧光,天然的为惰性;合成红宝石通常比天然红宝石的红色荧光明显强。 3.如何鉴别焰熔法生长的尖晶石类宝石?合成尖晶石中气泡和未熔粉末较少出现,偶尔出现的气泡多为异形。合成尖晶石很少显示色带。合成蓝色尖晶石显示典型的钴谱(分别位于540、580、635nm的三条吸收带),天然蓝色尖晶石显示的是蓝区的吸收带,为铁谱。合成蓝色尖晶石为强的红色荧光,而天然的也为惰性 4.焰熔法生长星光宝石时,产生星光效应的关键步骤是什么?过多的氧化铝未熔形成无数细小针状包体导致月光效应,有时甚至形成星光。 水热法固有鉴定特征①生长条纹②特殊包体合成祖母绿中可能形成的硅铍石包体呈针状或钉状,且出现多个时呈平行排列。③晶种片 焰熔法①原始晶形,焰熔法合成的宝石原始晶形都是梨形。而天然宝石的晶体形态为一定的几何多面体。2包裹体3未熔粉末4色带5弧形生长纹(唱片纹)6吸收光谱7荧光 助熔剂法固有鉴定特征①贵金属碎片包体②助熔剂包体 助熔剂法是将组成宝石的原料在高温下溶解于低熔点的助熔剂中,使之形成饱和溶液,然后通过缓慢降温或在恒定温度下蒸发熔剂等方法,使熔融液处于过饱和熔法或熔剂法。

水热法法合成宝石

水热法宝石合成工艺 摘要: 宝石以其炫目美丽、坚硬、稀少而备受世人瞩目。随着社会的发展人们对宝石的喜爱和需求日益增大。宝石除了可以作为钻戒、耳坠、手链等饰品外,工业上是金刚石的最优替代品运用于彩电、手表等电子产品中,然而自然界里的宝石毕竟很有限,价格也昂贵,于是宝石的人工合成就开始兴起,人工合成宝石也开始商业化。怎么样才能找到合适的合成工艺,合成优质且低成本的宝石呢?这就成了人工宝石合成产业的关键所在。目前人们合成宝石的工艺主要有焰熔法、助熔剂法、水热法、提拉法等,以下我将主要介绍一下宝石的合成工艺及其特点、还有它的商业前景。 关键词:人工宝石、宝石合成工艺、水热法、商业前景 一、宝石种类以及人工宝石背景 宝石概念种类: 宝石是岩石中最美丽而贵重的一类石。它们颜色鲜艳,质地晶莹,光泽灿烂,坚硬耐久,同时赋存稀少,是可以制作首饰等用途的天然矿物晶体,如钻石、水晶、祖母绿、红宝石、蓝宝石和金绿宝石(变石、猫眼)等;也有少数是天然单矿物集合体,如冰彩玉髓、欧泊。 还有少数几种有机质材料,如琥珀、珍珠、珊瑚、煤精和象牙,也包括在广义的宝石之内。 广义的概念宝石和玉石不分,泛指宝石,指的是色彩瑰丽、坚硬耐久、稀少,并可琢磨、雕刻成首饰和工艺品的矿物或岩石,包括天然的和人工合成的,也包括部分有机材料。 狭义的概念有宝石和玉石之分,宝石指的是色彩瑰丽、晶莹剔透、坚硬耐久、稀少,并可琢磨成宝石首饰的单晶体或双晶,包括天然的和人工合成的,如钻石、蓝宝石等;而玉石是指色彩瑰丽、坚硬耐久、稀少,并可琢磨、雕刻成首饰和工艺品的矿物集合体或岩石,如翡翠、软玉、独山玉、岫玉等,同样既包括天然的,又包括人工合成的。 石的一些特性: 宝石均为单晶体、颜色具有均匀单一性、多呈透明体、有光泽、密度变化具有很小范围性、良好的导热性、体积相对要小,重量也轻、硬而脆。 人工宝石的合成背景 刚玉是最早合成并进行商业化生产的一类宝石,它发展的同时也带动了其他宝石的发展。 早在1837年Gandin就合成了红宝石,但由于粒度小而为得到真正的发展,直到1902年法国合成了红宝石,1909年合成了无色蓝宝石,到二十世纪初维尔纳叶炉诞生后,合成了红、蓝宝石才算真正成功。 苏联是合成宝石生产大国, 生产的刚玉主要采用水热法合成工艺和设备, 二十世纪五

水热法合成红色绿柱石的光谱特征研究及应用

第39卷,第2期 2 0 19年2月 光谱学与光谱分析 Spectroscopy and Spectral A nalysis V o l.39,No.2,pp517-521 F e b ru a ry,2019 水热法合成红色绿柱石的光谱特征研究及应用 董雪亓利剑2!周征宇2!孙对兄1 1西北师范大学物理与电子工程学院,甘肃兰州730070 2.同济大学海洋与地球科学学院,上海200092 摘要采用常规宝石学测试方法,配合紫外可见光谱技术(U V-V is)及傅里叶变换红外光谱技术(F T I R),对美国犹他州天然红色绿柱石及俄罗斯水热法合成红色绿柱石的宝石学特征、紫外可见吸收光谱特征、中 红外光谱(M I R)特征及近红外光谱(N I R)特征进行了综合对比研究。结果表明,常规宝石学测试方法很难将上述两类宝石区别开来(紫外可见光吸收光谱对鉴定天然和合成红色绿柱石的能力很有限(同时这两种宝石的中红外吸收光谱(M I R)没有明显的特征差异,其吸收位置和吸收强度基本一致)但在2 000!9 000 cm1红外波段,天然红色绿柱石与水热法合成红色绿柱石的吸收频率差异明显,因此具有独特的鉴别特征。进一步研究表明,天然红色绿柱石在3 500?4 000 cm1之间没有强吸收峰,几乎不含结构水,但在3 300? 3 600 cm1之间有非常弱的吸收带(峰值为3 418 cm”,因此有可能有其他形式的水。水热法合成红色绿柱石样品的近红外光谱特征表明,其在3 500?4 000 cm1之间及5 000! 5 800 cm1之间均显示有强烈的水的振动吸收:其在5 000?5 800 cm1有弱的I型水吸收峰和强$型水吸收峰,可以归属为分子水的弯曲和伸缩的合频振动(其在7 000?7 500 cm1之间显示的弱I型水的吸收峰和强的$型水的吸收峰可以归属为水的倍频振动。因此,水热法合成红色绿柱石中的结构水归属I型水与$型水的混合型,其在3 500?4 000及5 000! 5 800 cm1范围水的近红外吸收光谱特征可作为区别天然和水热法合成红色绿柱石的依据。通过紫外可见光光谱、中红外光谱以及近红外光谱等光谱分析手段可以初步判断红色绿柱石中是否含水、水的赋存状态、以及不同类型水的相对强度和频率,为区分天然与水热法合成红色绿柱石提供诊断性证据。 关键词合成红色绿柱石(近红外光谱(U V-V i s吸收光谱;结构水(综合鉴定 中图分类号:P619.2 文献标识码:A D O I:10. 3964/j.issn. 1000-0593(2019)02-0517-05 引言 绿柱石是一种典型的含有铍元素的六方环状铝硅酸盐矿 物。天然绿柱石的基本化学式为B e A l C S L d c"1"。绿柱石中常含有C r,F e,T4 V,M n等微量元素)不同的微量元素可以使绿柱石呈现不同的颜色。由此可以将其进一步细分为祖母绿、海蓝宝石及其他绿柱石类宝石,如金色绿柱石、金 黄色绿柱石、红色绿柱石等。天然红色绿柱石目前仅仅在美国犹他州地区有少量产出,因其稀有的颜色,成为绿柱石族中很珍贵的宝石品种之一。近年来,随着市场对彩色宝石的需求逐年增加,莫斯科晶体研究所与其相关企业T a i n s公司采用水热法合成出红色绿柱石,并批量投放市场[2],因此有必要对其做进一步的对比研究。 此前,已有文献报道了对天然红色绿柱石的颜色成因,并对绿柱石中通道水分子的构型及与钠离子的耦合关系进行 研究[34]。而对天然和水热法合成红色绿柱石的综合对比研究报道相对甚少,尤其是对其近红外光谱的研究相对薄弱!]) 本工作运用常规宝石学测试方法,结合紫外可见吸收光谱(U V-v is ib le a b s o rp tio n s p e c tru m,U V-V is)特征,中红外光谱(m id-in fra re d a b s o rp tio n s p e c tru m,M I R)特征,近红夕卜 光谱(n e a r-in fra re d s p e c tru m,N I R)特征测试方法,对美国犹他州的天然红色绿柱石及俄罗斯产的水热法合成红色绿柱石 进行了表征研究,探讨了水热法合成红色绿柱石中水的存在类型,以期为进一步的鉴定提供依据。 收稿日期:2018-06-15,修订日期:2018-10-25 基金项目:国家自然科学基金项目(11564037, 11364037),甘肃省自然科学研究基金计划项目(1308R;!Z A166)资助 作者筒介:董雪,女,1990年生,西北师范大学教师e-m ail:xzd008@https://www.360docs.net/doc/8b9809323.html, "通讯联系人e-m ail:sundx@https://www.360docs.net/doc/8b9809323.html,

对天然祖母绿的处理方法及对其的影响

大田山边宝石:https://www.360docs.net/doc/8b9809323.html, 对天然祖母绿的处理方法及对其的影响 与钻石和红、蓝宝石相比,祖母绿的优化处理品相对简单,迄今它没有采用热处理和辐射处理的品种。但祖母绿由于多裂纹,有碍它的外观,因此,人们广泛采取油浸处理的方法,让油渗入裂隙,以达到部分地掩盖裂隙的目的。有的更在浸油中加入绿色,使浸油不仅能掩盖裂隙,而且还达到为宝石增色的目的。我国国家标准规定,鉴于浸油处理是祖母绿惯用的传统手法,已被业内人士广为接受。因此,把浸无色油的处理法列为“优化”,若在浸油中加色则被视为是“处理”。也就是说前者可以等同于天然祖母绿出售和使用,并无须声明;后者则人秋经过处理的天然宝石来使用,在出售时必须声明为“处理”,否则应被视为是商业欺诈。 鉴别浸油处理祖母绿,一是注意其包装纸上有无油析出留下的油渍;地理观察这种宝石受热时有无“出汗…现象(油受热膨胀析出);三是在显微镜下观察裂纹处有无橘色彩光,这是油产生的反射光互相干涉的结果。若为有色油,则可见绿色油呈丝网状沿裂纹分布。 应该指出,经浸油处理的宝石,初时在浸油的作用下,宝石中的裂纹会较难发现;但随着时间的推移,或因镶嵌时的烘烤,浸油逐渐干涸,裂纹会重新变得明显起来;有的甚至因浸油干涸时留下有色的残渣,而使裂纹变得比不浸油时还要清晰得多。 除浸油处理外,也见有用树脂类有机物代替油进行裂隙充填处理的。其效果与浸油相似,且不会“发汗”,不会干涸。但在显微镜下它也会出现彩色的干涉光;一些充填物较厚处,

大田山边宝石:https://www.360docs.net/doc/8b9809323.html, 还可能见有树脂类有机物的流动痕迹或留有未充满的气泡,甚至有的充填区会呈云雾状,可资鉴别。 祖母绿还见有底衬处理,即在浅色绿柱石戒面底部衬上一层绿色的薄膜或绿色的锡箔,然后采用闷镶的方法把底部封死,使检测时不易发现。但这种“祖母绿”一般没有或只有极弱的二色性(因原石本身色很浅,底衬的颜色不会在二色性上反映出来)。此外,它还会因贫铬而在分光光谱上表现出与真正祖母绿不同的特征。 祖母绿的人工合成品出现于1940年,由查塔姆公司率先推出。早在1930年,15岁小查不用助熔剂法制造出小于1MMX1MM的祖母绿小晶体。后来经过10年的努力,他终于制成了可用于磨制戒面的大颗粒晶体。目前,采用此法生产合成祖母绿的还有法国的吉尔森公司,俄罗斯的一些机构,以及我国北京地质科学院等梦见。按现有的技术已能生产出大于1000克拉的大晶体。 1960年,人工合成祖母绿的技术又有了新的突破,出现了用水热法合成的更逼真于天然祖母绿的水热法合成祖母绿。目前,采用此法生产合成家主母绿有包括我国桂林宝石研究所在内的多家公司和机构。 不论是前者还是后者,合成祖母绿都有以下几个牲:(1)内部相对洁净,一般没有矿物包体;(2)包含有种晶;(3)折射率,重折率,还有密度均比平绿偏低;(4)紫外荧光大多较强等等。当然,这些特征是一般而言的,若具体到某一颗单独毒绿情况可能会有所不同。实际上合成祖母绿的鉴别不是有一定难度的,我们必须慎重对待。 合成祖母绿中还有一种被称为“菜切利特纳祖母绿”的品种。这种祖母绿是利用增生法生产的。即用一颗浅色绿柱石戒面为核,然后用水热法在其表面生长一层祖绿而成。这各皮之不存刺目于其主体是天然绿柱石,所以看上去会具有很多天然宝石的特征,但它的表面常可观察到许多纵横交错的裂纹,还常见有平行台面的色带可资鉴别。

合成宝石学总结

合成宝石学复习提纲 一、填空 第二章熔体法—焰熔法(维尔纳叶法) 1. 焰熔法基本原理:利用氢氧的高温,使疏松的粉料通过氢氧焰撒下、熔融,落在冷却的结晶杆上,结晶成单晶。 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。 2. 焰熔法生长宝石工艺: 1)原料的制备与提纯 2)粉料制备:高纯度,高分散性,均一性 3)晶体生长:引晶,放肩,等径生长 4)退火处理 3. 维尔纳叶法生长刚玉晶体 (1)原料的制备与提纯: ●AI2(SO4)3 :(NH4)2SO4 = 2.5 : 1; ●加1.5倍水,加热溶解,缓慢冷却结晶,得到铝铵矾晶体。 AI2(SO4)3 + (NH4)2SO4 + H2O —— (NH4)2AI2(SO4)4-24 H2O ●PH>3.5,重结晶,可去除钾离子; PH<3.5,重结晶,可去除铁、钛、铜、锰、镁等 离子。 ●去离子水重结晶3~5次,铝铵矾纯度达99.9%以上。 (2)粉料制备: ●铝铵矾脱水: (NH4)2AI2(SO4)4-24 H2O——— (NH4)2AI2(SO4)4 - H2O + 23 H2O ↑ (200 ℃) (NH4)2AI2(SO4)4 - H2O——— (NH4)2AI2(SO4)4 +H2O ↑(250~350 ℃) 脱水炉温 < 300℃,脱水率 < 60%,可以保证粉料较好的分散性和流动性。 ●无水硫酸铝铵分解: (NH4)2AI2(SO4)4 ——AI2(SO4)3 + NH3 ↑ + SO3 ↑ + H2O ↑ (450~550℃) ●硫酸铝分解: AI2(SO4)3 ——γ-Al2O3 + SO3 ↑ (650~850℃) (3)晶体生长:包括引晶、放肩、等径生长三个步骤。 (4)退火处理:晶体置于温度分布均匀的高温炉中,缓慢升温(5-10h)至退火温度,退火温度一般控制在晶体熔点的60%以上;恒温,通过分子热运动,消除原有弹性形变,使生长过程的热应力得以释放;再缓慢冷却至室温。 4. 焰熔法生长宝石的特点: (1)可见气相包体(气泡) (2)圆弧形生长纹及垂直长弧形纹的拉长气泡 (3)未熔粉料呈面包渣(碎屑)状包裹体 (4)晶体内应力大,易开裂 (5)晶体大,颜色均匀、鲜艳 5. 焰熔法生长宝石着色剂:多为过渡元素氧化物或稀土元素氧化物。原料中添加着色剂,再经脱水焙烧获得相应粉料。 焰熔法生长刚玉宝石星化剂: TiO2

水热法

水热法合成水晶工艺流程及工艺参数 课程名称:材料化学姓名:刘楠楠学号201250533 年级:2012级化学1班水热法始于1845 年,发展至今已经有近两百年的历史。它是指在特制的密闭反应器中,采用水溶液作为反应体系,通过对反应体系加热、加压(或自生蒸汽压),创造一个相对高温、高压的反应环境,使得通常难溶或不溶的物质溶解并重结晶而进行无机合成与材料处理的一种有效方法。同时,在高温高压溶液中,晶体生长处于非受迫状态,其生长习性可以充分的显露,更直接地反映了晶体的生长习性,最适合研究晶体的形貌特征,是研究晶体形貌与化学反应环境关系的有效手段,是晶体学发展的重要基础。 水热反应依据反应类型的不同可分为水热氧化、水热还原、水热沉淀、水热合成、水热水解、水热结晶等。其中水热结晶用得最多。 1.水热法合成水晶工艺原理 在这里简单介绍一下它的原理:水热结晶主要是溶解—再结晶机理。首先营养料在水热介质里溶解,以离子、分子团的形式进入溶液。利用强烈对流(釜内上下部分的温度差而在釜内溶液产生)将这些离子、分子或离子团被输运到放有籽晶的生长区(即低温区)形成过饱和溶液,继而结晶。水热法生产的特点是粒子纯度高、分散性好、晶形好且可控制,生产成本低。用水热法制备的粉体一般无需烧结,这就可以避免在烧结过程中晶粒会长大而且杂质容易混入等缺点。影响水热合成的因素有:温度的高低、升温速度、搅拌速度以及反应时间等。 2.水热法合成水晶工艺流程 水热法生长水晶的工艺过程可以简单的概括如下:主要有四个阶段。第一,准备阶段:需要准备培养体、溶液,籽晶:选择、定向切片,籽晶架。这一部分的参数为体积、充填度、温度、系统检查。第二,装釜阶段,培养体入釜、放架、加矿化剂、测液面、安密封环、高压釜入膛、盖保险罩、通电等。第三,生长阶段,升温调节、控温和温差,停炉、打开保险、冷却降温、高压釜出膛。第四,开釜阶段,温度降至室温、开釜、取晶体、倒余渣、清洗晶体和高压釜、检查。

水热法制备纳米材料

实验名称:水热法制备纳米TiO 2 水热法属于液相反应的范畴,是指在特定的密闭反应器中采用水溶液作为反应体系,通过对反应体系加热、加压而进行无机合成与材料处理的一种有效方法。在水热条件下可以使反应得以实现。在水热反应中,水既可以作为一种化学组分起反应并参与反应,又可以是溶剂和膨化促进剂,同时又是一种压力传递介质,通过加速渗透反应和控制其过程的物理化学因素,实现无机化合物的形成和改进。 水热法在合成无机纳米功能材料方面具有如下优势:明显降低反应温度( 100-240 C);能够以单一步骤完成产物的形成与晶化,流程简单;能够控制产物配比;制备单一相材料;成本相对较低;容易得到取向好、完美的晶体;在生长的晶体中,能均匀地掺杂;可调节晶体生成的环境气氛。 一.实验目的 1. 了解水热法的基本概念及特点。 2. 掌握高温高压下水热法合成纳米材料的方法和操作的注意事项。 3. 熟悉XRD操作及纳米材料表征。 4?通过实验方案设计,提高分析问题和解决问题的能力。 二.实验原理 水热法的原理是:水热法制备粉体的化学反应过程是在流体参与的高压容器中进行,高温时,密封容器中有一定填充度的溶媒膨胀,充满整个容器,从而产生很高的压力。为使反应较快和较充分的进行,通常还需要在高压釜中加入各种矿化物。 水热法一般以氧化物或氢氧化物(新配置的凝胶)作为前驱物,他们在加热过程中溶解 度随温度的升高而增加,最终导致溶液过饱和并逐步形成更稳定的氧化物新相。反应过程的驱动力是最后可溶的的前驱物或中间产物与稳定氧化物之间的溶解度差。 三.实验器材 实验仪器:10ml量筒;胶头滴管;50ml烧杯;高压反应釜;烘箱;恒温磁力搅拌器。 实验试剂:无水TiCl4 ;蒸馏水;无水乙醇。

相关文档
最新文档