霍尔器件应用于无刷电机的注意事项

霍尔器件应用于无刷电机的注意事项
霍尔器件应用于无刷电机的注意事项

霍尔器件应用于无刷电机的注意事项

霍尔器件是一种敏感器件,除了对磁敏感外,对光、

热、机械应力均有不同程度的敏感,由于在电机内霍尔器

件是最敏感,也是最脆弱的器件,所以,很多客户会碰到

霍尔器件烧毁的问题。因此,为避免霍尔器件损坏,在使

用过程中请注意以下几个方面:

采用合理的外围电路:

适宜的电源电压和负载电路是霍尔器件正常工作的

先决条件。霍尔器件的供电电压不得超过说明书规定的

Vcc,大部分霍尔器件开关均为OC输出。因此,输出应

接负载电阻R L,R L的值取决于负载电流I OL的大小,不得超负载使用。

在电机工作时,由于霍尔器件的周围存在有很强的电磁场,相关导线会将空间的电磁场能量耦合下来转换为电路中的电压值并作用于霍尔器件;由于负载电路中的导线存在分布电感,当霍尔器件中的三极管导通及关断时,电路中也会由于电流瞬变而产生过冲电压。因此,必须在霍尔器件周边配有稳压及高频吸收等保护电路,见下图:

避免机械应力:

由于机械应力会造成霍尔器件磁敏感度的漂移,在使用安装中应尽量减少施加到器件外壳和引线上的机械应力。

避免热应力:

当环境温度过高时,会损坏霍尔器件内部的半导体材料,造成性能偏差或器件失效。因此,必须严格规范焊接温度和时间;霍尔器件的使用环境温度也必须符合说明书的要求。

测量范围及温度的计算:

由于霍尔器件是一种敏感器件,因此,它的磁感度在高、低温下的一定漂移是正常的。一般情况下温度变化±60℃,温漂应不大于30GS(高温器件不大于15GS)。因此,在磁路设计时,应放出一定的磁灵敏度余量,即作用于器件表面的磁场强度应高于实际B H-L50GS 左右。

建议安装流程如下:

安装槽的准备:

1.冲片要晾干后再安装霍尔器件,避免内部积水。

2.安装槽的底部要平,不能歪斜,否则会导致霍尔器件倾斜放置,电机产生噪音。

3.用铲子等工具清理安装槽的底部和侧部,去除可能会刮伤霍尔器件器件的毛刺。

霍尔器件的固定:

1.粘接霍尔器件要使用AB胶。粘接时只能涂敷于霍尔器件的底面和侧面,不能粘接

表面,否则会降低灵敏度。其步骤是:首先是在背面涂敷一点胶,用手指压平霍尔器件即可。

2.为防止腐蚀,不可使用502胶,。

3.AB胶发热时,不可粘接霍尔器件,否则会导致霍尔器件受热。

4.粘胶必须完全干燥后方可通电检测。

5.三个霍尔器件位置要平放,顶部要对齐(处于一条线上),否则,不同的位置会导致霍

尔器件的输出不同。

霍尔器件的焊接:

1.霍尔器件的引脚要平直,尽量避免弯曲。若必须弯曲时则应选择在距引线根部3mm

以外,方法是必须用工具将引线根部3mm以内部分固定住,再弯曲其余部分,以防对器件内引线造成影响,降低可靠性。

2.将导线平行焊接在霍尔器件的引脚上,注意:焊接时不能掰动霍尔器件引脚。

3.焊点不得有毛刺,以避免将热缩管刺破而导致短路烧坏霍尔器件。

4.热缩管必须套到霍尔器件的引脚根部,保证器件充分绝缘。

5.最好在热缩管及引线的下面再垫一层绝缘纸。

6.防止静电损坏霍尔器件,焊接时所用电烙铁必须接地,在干燥季节操作人员要带防

静电环。

7.焊接时要采用温度低于260℃的低温电鉻铁(<35W)及焊锡丝,焊接时间应少于3

秒,焊接点距离霍尔器件引脚根部3mm以上。

8.采用热风收缩热缩管时要避免吹霍尔器件,可用手将霍尔器件盖住以避免其受热。

9.导线要扎平行,不能有弯曲;因为霍尔器件的引脚很脆弱,易掰断,故扎线时不得

撬动霍尔器件。

检验:

1.安装完成后,使用放大镜再检查一下霍尔器件的外表是否破损。

2.在霍尔器件电源与0V间加5VDC电压,轻轻转动电机时,若在霍尔器件输出端可

测到0-5V脉冲信号,即可对霍尔器件进行检测。

绝缘检测:

1.将5根霍尔器件导线短路作为一极,测量其与壳体间的绝缘。

其它事项:

1.转子线圈与导线的焊接点要平,不能有毛刺,否则高温时线会软,外面的里层热缩

管和外层绝缘纸会被毛刺扎破,导致线圈打铁,缺项运行。

2.安装结束后放置转子时最好有架子放置,不能紧靠放置,导致易霍尔器件损伤。

3.转子线圈绕线时,相线之间不能交叉,而且松紧度要一致,否则电机有噪声。

4.霍尔器件供电电压必须≥4.5V。

5.在最后工序的电机检测中,所有设备都要接地,避免漏电。

电动自行车中霍尔器件的故障分析与排除:

正规的无刷电机设计一般均需要在非热源区设置光

电或磁性(霍尔元件)传感器,用于检测电机转动位置,

发出控制换向的信号。而现在市售的绝大多数电动自行车

专用的无刷电机轮毂,由于受到设计尺寸和安装方式的限

制,无法将传感器与热源隔离,几乎都采用了在铁芯定子

上定位开槽并用胶水固定的方法来安装霍尔器件。众所周

知,电机的热源是一个客观存在,它来自电机的铜损和铁损。特别是当电机工作在较低效率区时,热量聚集的速度很快,于是铁芯就会发热,直接设置在热源区的传感元件会出现性能漂移,导致换向误差;一旦换向错误,则会导致电机效率的大辐度下降,温度进一步升高,以致进入恶性循环,直接导致电子换向器烧毁,一般表现为“短路"。一旦“短路",无刷电机就有一种被“卡死"的感觉,转动十分困难,使用者甚至不能脚踩骑行,只好请三轮车或出租车运回将其运回。有经验的用户会自备一把剪刀,一旦电机“短路”卡死,就将电机输入线剪断,使之“开路”,这样,失去动力的电动自行车,就可以蹬骑到维修部了。

霍尔元件分类及其特性

二:霍尔传感器 由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如下图所示,是其中一种型号的 外形图 三:霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种: 1.线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组 成,它输出模拟量。 2.开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

配合差分放大器使用霍尔元件产生的电势差很小,一般在毫伏量级,所以在使用时要进行一定的放大处理(如下图) 配合触发器用在上述电路的基础上,再添加一个施密特触发器用作阈值检测,则可以使霍尔器件输出数字信号,结构图如下: 集成场效应管在上述电路的基础上添加一个场效应管,可以

增强霍尔开关的驱动能力(可以直接驱动LED、继电器等) 四:霍尔传感器的特性 1.线性型霍尔传感器的特性 2.开关型霍尔传感器的特性 如图4所示,其中BOP为工 作点“开”的磁感应强度,BRP 为释放点“关”的磁感应强度当 外加的磁感应强度。超过动作点 Bop时,传感器输出低电平,当磁感应强度降到动作点Bop以下时,传感器输出电平不变,一直要降到释放点BRP时,传感器才由低电平跃变为高电平。Bop 与BRP之间的滞后使开关动作更为可靠。

A3144是开关霍尔传感器 五:开关型霍尔传感器 开关型霍尔传感器主要用于测转数、转速、风速、流速、接近开关、关门告知器、报警器、自动控制电路等。 1.测转速或转数 如图所示,在非磁性材料的圆盘边上粘一块磁钢,霍尔传感器放在靠近圆盘边缘处,圆盘旋转一周,霍尔传感器就输出一个脉冲,从而可测出转数(计数器),若接入频率计,便可测出转速。

霍尔元件应用及与磁钢的配合使用

霍尔元件应用及与磁钢的配合使用 1 霍尔器件的应用 1.1 应用的一般问题 1.1.1 测量磁场 使用霍尔器件检测磁场的方法极为简单,将霍尔器件作成各种形式的探头,放在被测磁场中,因霍尔器件只对垂直于霍尔片的表面的磁感应强度敏感,因而必须令磁力线和器件表面垂直,通电后即可由输出电压得到被测磁场的磁感应强度。若不垂直,则应求出其垂直分量来计算被测磁场的磁感应强度值。而且,因霍尔元件的尺寸极小,可以进行多点检测,由计算机进行数据处理,可以得到场的分布状态,并可对狭缝,小孔中的磁场进行检测。 1.1.2 工作磁体的设置 用磁场作为被传感物体的运动和位置信息载体时,一般采用永久磁钢来产生工作磁场。例如,用一个5×4×2.5(mm3)的钕铁硼Ⅱ号磁钢,就可在它的磁极表面上得到约2300高斯的磁感应强度。在空气隙中,磁感应强度会随距离增加而迅速下降。为保证霍尔器件,尤其是霍尔开关器件的可靠工作,在应用中要考虑有效工作气隙的长度。在计算总有效工作气隙时,应从霍尔片表面算起。在封装好的霍尔电路中,霍尔片的深度在产品手册中会给出。 因为霍尔器件需要工作电源,在作运动或位置传感时,一般令磁体随被检测物体运动,将霍尔器件固定在工作系统的适当位置,用它去检测工作磁场,再从检测结果中提取被检信息。工作磁体和霍尔器件间的运动方式有:(a)对移;(b)侧移;(c)旋转;(d)遮断。如图7所示,图中的TEAG即为总有效工作气隙。 图7 霍尔器件和工作磁体间的运动方式 在遮断方式中,工作磁体和霍尔器件以适当的间隙相对固定,用一软磁(例如软铁)翼片作

为运动工作部件,当翼片进入间隙时,作用到霍尔器件上的磁力线被部分或全部遮断,以此来调节工作磁场。被传感的运动信息加在翼片上。这种方法的检测精度很高,在125℃的温度范围内,翼片的位置重复精度可达50μm。 图8 在霍尔器件背面放置磁体 也可将工作磁体固定在霍尔器件背面(外壳上没打标志的一面),让被检的铁磁物体(例如钢齿轮)从它们近旁通过,检测出物体上的特殊标志(如齿、凸缘、缺口等),得出物体的运动参数。 1.1.3 与外电路的接口 霍尔开关电路的输出级一般是一个集电极开路的NPN晶体管,其使用规则和任何一种相似的NPN开关管相同。输出管截止时,输漏电流很小,一般只有几nA,可以忽略,输出电压和其电源电压相近,但电源电压最高不得超过输出管的击穿电压(即规范表中规定的极限电压)。输出管导通时,它的输出端和线路的公共端短路。因此,必须外接一个电阻器(即负载电阻器)来限制流过管子的电流,使它不超过最大允许值(一般为20mA),以免损坏输出管。输出电流较大时,管子的饱和压降也会随之增大,使用者应当特别注意,仅这个电压和你要控制的电路的截止电压(或逻辑“零”)是兼容的。 以与发光二极管的接口为例,对负载电阻器的选择作一估计。若在Io为20mA(霍尔电路输出管允许吸入的最大电流),发光二极管的正向压降VLED=1.4V,当电源电压VCC=12V 时,所需的负载电阻器的阻值(4) 和这个阻值最接近的标准电阻为560?,因此,可取560?的电阻器作为负载电阻器。 用图9表示简化了的霍尔开关电路,图10表示与各种电路的接口:(a)与TTL电路;(b)与CMOS电路;(c)与LED;(d)与晶闸管。

霍尔元件技术指标参考

霍尔元件技术指标 1相关参数 1.1封装形式 TO-92(三脚插片),SOT-23(三脚贴片)。还有SIP-4(四脚插片),SOT-143 (四脚贴片)和SOT-89(四脚贴片) 1.2电源 有3.5~24V ,2.5~3.5V ,2.5~5V 1.3灵敏度Kh 数量级在C m /103 3 ,且数值越大灵敏度越高 1.4霍尔电势温度α α越小,设备精确度越大(必要时可以增加温度补偿电路) 1.5额定控制电流 c I 一般在几mA~几十mA ,尺寸越大其值越大(尺寸大的可达几百mA ) 1.6型号 开关型的、线性的、单极性的、双极性的。双极开关霍尔元件:177A 、177B 、 177C 单极霍尔开关元件:AH175、732、1881、S41、SH12AF 、3144、44E 、3021、137、AH137、AH284线性霍尔元件:3503、S496B 、49E 锁定霍尔元件:ATS175、AH173、SS413A 、3172、3075互补双输出开关霍尔元件:276A 、276B 、276C 、277A 、277B 、277C 信号霍尔元件:211A 、211B 、211C 微功耗霍尔元件:TEL4913、TP4913、A3212、A3211。(具体霍尔开关元件见附录) 1.7输入电阻和输出电阻 一般在几Ω到几百Ω,且输入电阻要大于输出电阻 1.8外接上拉电阻 一般大于1K Ω。对一般TTL 电路,由于其高电平电压较低,用于 驱动CMOS 电路时,增加上拉电阻,可以提高其高电平的电压。常用的阻值是4.7k 或10k 。上拉电阻的是接在1脚电源Vcc 和3脚信号输出Vout 之间。 1.9功能分类 按照霍尔器件的功能可将它们分为: 霍尔线性器件 和 霍尔开关器件 。前者 输出模拟量,后者输出数字量。都是输出高电平脉冲信号,不同的是开关型相当于到GS 设定值时电平反转;线性的可能是电压逐渐变化,到一定时使后处理电路输出反电平。一般建议用线性的,开关型常因为温度等原因使得设定值漂移,导致灵敏度下降。 1.10霍尔工作点 霍尔的工作点一般在:单极开关60到200,双极锁定在100内(单位GS )。 1.11霍尔工作频率 一般霍尔的工作频率在100KHZ 以上

霍尔器件在电机中的原理及作用介绍

霍尔器件在电机中的原理及作用介绍 霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 原理: 有霍尔型是通过电机的霍尔型号来判断当前电机运动的状态,然后控制器根据霍尔所采集的信号再控制控制器的三相输出来给电机供电,让电机持续正常的工作。 无霍尔型的是电机无霍尔传感器,控制器通过电流采集来判断电机当前的运动状态,然后控制控制器输出来给电机供电,让电机争产工作。 作用: 有霍尔型电机和控制器在使用时稳定,启动时扭矩大,无异响。 无霍尔型电机和控制器在使用时因技术问题,目前还不是很稳定,特别是在起步阶段,稳定性差,动力不够。 在电动自行车中有多处利用了霍尔传感器,如调速转把,刹把,以及无刷电机中等。 电动车调速转把:调速转把顾名思义是电动车的调速部件,这是一种线性调速部件,样式很多但工作原理是一样的。它一般位于电动车的右边,既骑行时右手的方向,电动车转把的转动角度范围在0—30度制之间。 电动车刹把:转把信号是电动车电机旋转的驱动信号,刹信号是电机停止转动的制动信号。电动车标准要求电动车在刹车制动时,控制器应能自动切断对电机的供电。因此电动车闸把上应该有闸把位置传感元件,在有捏刹车把动作时,将刹车信号传给控制器,控制器接受到刹车信号后,立即停止对电机的供电。 无刷电机:现在的电动助力车,一般都采用如下三种电机:高效低速稀土永磁直流无刷电机、高效低速永磁直流有刷电机、高效高速稀土永磁直流有刷电机。直流电机在转动过程中,绕组中的电流要不断地改变方向,以使转子向一个方向转动。其中,有刷

霍尔传感器的分类、霍尔效应与霍尔传感器的应用

霍尔传感器的分类、霍尔效应与霍尔传感器的应用 霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,18551938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。 霍尔效应如图1所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压, 它们之间的关系为。 式中d 为薄片的厚度,k称为霍尔系数,它的大小与薄片的材料有关。上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。 霍尔传感器由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如图2所示,是其中一种型号的外形图。霍尔传感器的分类霍尔传感器分为线型霍尔传感器和开关型霍尔传感器两种。 (一)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。开关型霍尔传感器还有一种特殊的形式,称为锁键型霍尔传感器。 (二)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。 线性霍尔传感器又可分为开环式和闭环式。闭环式霍尔传感器又称零磁通霍尔传感器。线

霍尔传感器用法

一、霍尔电流电压传感器、变送器的基本原理与使用方法 1.霍尔器件 霍尔器件是一种采用半导体材料制成的磁电转换器件。如果在输入端通入控 制电流I C ,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V H 。 如图1-1所示。 霍尔电势V H 的大小与控制电流I C 和磁通密度B的乘积成正比,即:V H =K H I C Bsin Θ 霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。因此,使电流的非接触测量成为可能。 通过测量霍尔电势的大小间接测量载流导体电流的大小。因此,电流传感器经过了电-磁-电的绝缘隔离转换。 2.霍尔直流检测原理 如图1-2所示。由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔 器件输出的电压讯号U 0可以间接反映出被测电流I 1 的大小,即:I 1 ∝B 1 ∝U 我们把U 0定标为当被测电流I 1 为额定值时,U 等于50mV或100mV。这就制成 霍尔直接检测(无放大)电流传感器。

3.霍尔磁补偿原理 原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。所以称为霍尔磁补偿电流传感器。这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。霍尔磁补偿原理如图1-3所示。 从图1-3知道:Φ 1=Φ 2 I 1N 1 =I 2 N 2 I 2=N I /N 2 ·I 1 当补偿电流I 2流过测量电阻R M 时,在R M 两端转换成电压。做为传感器测量电 压U 0即:U =I 2 R M 按照霍尔磁补偿原理制成了额定输入从0.01A~500A系列规格的电流传感器。 由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。 4.磁补偿式电压传感器 为了测量mA级的小电流,根据Φ 1=I 1 N 1 ,增加N 1 的匝数,同样可以获得高磁 通Φ 1 。采用这种方法制成的小电流传感器不但可以测mA级电流,而且可以测电压。 与电流传感器所不同的是在测量电压时,电压传感器的原边多匝绕组通过串 联一个限流电阻R 1,然后并联连接在被测电压U 1 上,得到与被测电压U 1 成比 例的电流I 1 ,如图1-4所示。

实验十三 霍尔效应测磁场---注意事项及操作步骤(姜黎霞)

实验十三 霍耳效应测磁场 一、注意事项 1. 双刀双掷开关上的连线已经固定连接好,请不要擅自拆卸。 2. 双刀双掷开关引出的导线红“+”、黑“-”,各表头对应的接线柱也是红“+”、黑“-”,连线时双刀双掷开关引出的导线并联到接线柱上,即“红接红,黑接黑”。导线连好后经老师检查,然后开电源。 3. 双刀双掷开关向上合闸规定为“+”,向下合闸规定为“-”。在整个实验过程中,霍耳电压H U 对应的双刀双掷开关向上合闸,固定不变,只有工作电流H S ()I I 和励磁电流M I 对应的双刀双掷开关会要求上、下换向合闸,其中励磁电流M I 对应的双刀双掷开关在合闸时动作要快,否则会产生电火花。 4. 实验结束后,先断电,后拆线。只拆自己连接的部分,其它线路保留。 5. 本实验有两种型号的仪器,工作电流分别表示为H I 或S I ,灵敏度分别表示为 H K 或H S 。 6. 每套仪器的灵敏度不同,具体数值标在仪器箱内的面板上,注意:有一种型号的仪器灵敏度单位不是国际单位制,要化为国际单位制,具体换算是: 1mV /mA KG 10V /A T ?=?( G :高斯,T :特斯拉) 二、操作步骤 1. 将三个双刀双掷开关引出的导线分别并联到与开关名目相同的接线柱上,经老师检查后,打开电源。 2. 将三个双刀双掷开关全部向上合闸,然后调节工作电流H S () 2.00mA I I =,励磁电流M 0.6A I =。注意:(1)励磁电流调节好后就固定了,直到实验结束都不需再调节。(2)有一种型号的仪器工作电流和励磁电流用同一个表头显示,需要用旁边的红色按钮转换。 3. 调节霍耳元件移动螺杆旋钮,测量霍耳元件在电磁铁两极间隙中5个不同任选位置的霍耳电压H U ,并将数据填入表13-1的草表中。

霍尔效应和霍尔元件特性测定数据处理范例

霍尔效应和霍尔元件特性测定数据处理范例 1.霍尔元件的不等位电势差测定 0M I =(2)在坐标纸上作出不等位电势差与工作电流的关系曲线。 V /m V I s /mA 图1:不等位电势差与工作电流的关系曲线 2.励磁电流一定,霍尔元件灵敏度测定(仪器公差取数字仪表显示数据末位的5倍,如霍尔工作电流示值误差: 0.05S I m mA ?=;霍尔电压示值误差: 0.05H V m mV ?=; 励磁电流示值误差:0.005M I m A ?=) ⑴ 霍尔电压与霍尔电流关系测试数据表: H S V I -500M I mA =0.25 0.28 -0.23 0.22 -0.29 0.26 0.50 0.56 -0.44 0.44 -0.56 0.50 0.75 0.85 -0.67 0.67 -0.85 0.76 1.00 1.12 -0.88 0.88 -1.12 1.00 1.25 1.41 -1.10 1.11 -1.41 1.26 1.50 1.69 -1.32 1.32 -1.68 1.50 1.75 1.97 -1.54 1.54 -1.96 1.75

2.00 2.25 -1.76 1.77 -2.24 2.01 2.25 2.54 -1.97 1.99 -2.52 2.26 2.50 2.82 -2.19 2.21 -2.80 2.51 2.75 3.10 -2.41 2.44 -3.08 2.76 3.00 3.39 -2.63 2.66 -3.36 3.01 ⑵ 利用逐差法计算霍尔元件灵敏度及其不确定度(0.683p =)。 H H H S S V V K I B I B ?= = ?? a )利用逐差法计算H V ?的平均值及不确定度估算(该部分逐差法计算可用数据处理软 件的逐差法进行计算) 7182931041151261.750.26 1.49, 2.010.50 1.51,2.260.76 1.50, 2.51 1.00 1.51, 2.76 1.26 1.50, 3.01 1.50 1.51H H H H H H H H H H H H V V mV V V mV V V mV V V mV V V mV V V mV -=-=-=-=-=-=-=-=-=-=-=-= 1.50H V mV ?= 某次测量的标准偏差:0.0082H V S mV ?=,平均值的标准偏差: 0.0033H V S mV ?= 肖维涅系数 6 1.73n c c ==, 1.730.00820.014186H n V c S mV ?*=*= 根据肖维涅准则(坏值条件: *i H H H n V V c S ?-?>)检验无坏值出现。(注:如坏值 超过两个, 请说明后用作图法处理) H V ?不确定度估算: 1.110.00330.0037H A vp V u t S mV ?==?=, (0.683p =) 0.041B p u mV ==== (0.683p =) 0.041H V u mV ?=== 0.041 0.0271.50 H H V V H u E V ??= = =? b )S I ?的不确定度估算(该部分计算也可用数据处理软件的逐差法进行计算) 1.50S I mA ?= 0.029S p u k mA I ?=== (0.683p =) 0.0290.0191.50 S S I I S u E I ===? (0.683p =) c )磁感应强度B 及其不确定度的计算 螺线管参数:线圈匝数N=1800匝,有效长度2L =181mm ,等效半径R =21mm 1800 2181 N n L = = 匝/mm

霍尔传感器基本原理

霍尔电流电压传感器、变送器的基本原理与使用方法 1.霍尔器件 霍尔器件是一种采用半导体材料制成的磁电转换器件。如果在输入端通入控制电流I C ,当有一磁场B 穿过该器件感磁面,则在输出端出现霍尔电势V H 。如图1-1所示。 霍尔电势V H 的大小与控制电流I C 和磁通密度B的乘积成正比,即:V H =K H I C BsinΘ 霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。因此,使电流的非接触测量成为可能。 通过测量霍尔电势的大小间接测量载流导体电流的大小。因此,电流传感器经过了电-磁-电的绝缘隔离转换。 2.霍尔直流检测原理 如图1-2所示。由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔器件输出的电压讯号U 可以间接反映出被测电流I 1的大小,即:I 1 ∝B 1 ∝U 我们把U 0定标为当被测电流I 1 为额定值时,U 等于50mV或100mV。这就制成霍尔直接检测(无放大) 电流传感器。 3.霍尔磁补偿原理 原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。所以称为霍尔磁补偿电流传感器。这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。霍尔磁补偿原理如图1-3所示。

从图1-3知道:Φ 1=Φ 2 I 1N 1 =I 2 N 2 I 2=N I /N 2 ·I 1 当补偿电流I 2流过测量电阻R M 时,在R M 两端转换成电压。做为传感器测量电压U 即:U =I 2 R M 按照霍尔磁补偿原理制成了额定输入从0.01A~500A系列规格的电流传感器。 由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。 4.磁补偿式电压传感器 为了测量mA级的小电流,根据Φ 1=I 1 N 1 ,增加N 1 的匝数,同样可以获得高磁通Φ 1 。采用这种方法 制成的小电流传感器不但可以测mA级电流,而且可以测电压。 与电流传感器所不同的是在测量电压时,电压传感器的原边多匝绕组通过串联一个限流电阻R 1 ,然 后并联连接在被测电压U 1上,得到与被测电压U 1 成比例的电流I 1 ,如图1-4所示。 副边原理同电流传感器一样。当补偿电流I 2流过测量电阻R M 时,在R M 两端转换成电压作为传感器的 测量电压U 0,即 U =I 2 R M 5.电流传感器的输出 直接检测式(无放大)电流传感器为高阻抗输出电压,在应用中,负载阻抗要大于10KΩ,通常都是将其±50mV或±100mV悬浮输出电压用差动输入比例放大器放大到±4V或±5V。图5-1是两个实用电路,供参考。

霍尔元件

当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U, 其表达式为 U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。我门销售的霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。 霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和接近开关类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近开关,压力开关,里程表等,作为一种新型的电器配件。 霍尔开关的功能类似干簧管磁控开关,但是比它寿命长,响应快无磨损,而且安装时要注意磁铁的极性,磁铁极性装反无法工作。

内部原理图及输入/输出的转移特性 产品3:M12霍尔式接近开关(NPN三极管驱动输出)15元一个检测距离:1~10毫米 工作电压:3~28V直流 工作电流:小于5毫安 响应频率:5000HZ 输出驱动电流:100毫安,感性负载50毫安 温度范围:-25~70度 安装方式:埋入式

霍尔元件及其应用

霍尔元件及其应用 霍尔元件及其应用 摘要: 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其 工作原理,产品特性及其典型应用。 1 引言 霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 2 霍尔效应和霍尔元件 2.1 霍尔效应 如图1所示,在一块通电的半导体薄片上,加上和片子表面垂直的磁场B,在薄片的横向两侧会出现一个电压,如图1中的VH,这种现象就是霍尔效应,是由科学家爱德文·霍尔在1879年发现的。VH称为霍尔电压。

(a)霍尔效应和霍尔元件 这种现象的产生,是因为通电半导体片中的载流子在磁场产生的洛仑兹力的作用下,分别向片子横向两侧偏转和积聚,因而形成一个电场,称作霍尔电场。霍尔电场产生的电场力和洛仑兹力相反,它阻碍载流子继续堆积,直到霍尔电场力和洛仑兹力相等。这时,片子两侧建立起一个稳定的电压,这就是霍尔电压。 在片子上作四个电极,其中C1、C2间通以工作电流I,C1、C2称为电流电极,C3、C4间取出霍尔电压VH,C3、C4称为敏感电极。将各个电极焊上引线,并将片子用塑料封装起来,就形成了一个完整的霍尔元件(又称霍尔片)。 (1) 或(2) 或(3) 在上述(1)、(2)、(3)式中VH是霍尔电压,ρ是用来制作霍尔元件的材料的电阻率,μn是材料的电子迁移率,RH 是霍尔系数,l、W、t分别是霍尔元件的长、宽和厚度,f(I/W)是几何修正因子,是由元件的几何形状和尺寸决定的,I是工作电流,V是两电流电极间的电压,P是元件耗散的功率。由(1)~(3)式可见,在霍尔元件中,ρ、RH、μn决定于元件所用的材料,I、W、t和f(I/W)决定于元件的设计和工艺,霍尔元件一旦制成,这些参数均为常数。因此,式(1)~(3)就代表了霍尔元件的三种工作方式所得的结果。(1)式表示电流驱动,(2)式表示电压驱动,(3)式可用来评估霍尔片能承受的最大功率。 为了精确地测量磁场,常用恒流源供电,令工作电流恒定,因而,被测磁场的磁感应强度B可用霍尔电压来量度。 在一些精密的测量仪表中,还采用恒温箱,将霍尔元件置于其中,令RH保持恒定。 若使用环境的温度变化,常采用恒压驱动,因和RH比较起来,μn随温度的变化比较平缓,因而VH受温度变化的影响较小。 为获得尽可能高的输出霍尔电压VH,可加大工作电流,同时元件的功耗也将增加。(3)式表达了VH能达到的极限——元件能承受的最大功耗。

霍尔传感器的工作原理、分类及应用

霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基 霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。 一、霍尔效应霍尔元件霍尔传感器 霍尔效应 如图1所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压, 它们之间的关系为。 式中d 为薄片的厚度,k称为霍尔系数,它的大小与薄片的材料有关。上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。 (二)霍尔元件 根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、

体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。 (三)霍尔传感器 由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如图2所示,是其中一种型号的外形图。 二、霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。 (一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

霍尔元件简介及应用

霍尔元件简介及应用 霍尔元件之作用原理也就是霍尔效应,所谓霍耳效应如图1所示,系指将电流I 通至一物质,并对与电流成正角之方向施加磁场B 时,在电流与磁场两者之直角方向所产生的电位差V 之现象。此电压是在下列情况下所产生的,有磁场B 时,由于弗莱铭(Fleming)左手定则,使洛仁子力(即可使流过物质中之电子或正孔向箭头符号所示之方向弯曲的力量:(Lorentz force)发生作用,而将电子或正孔挤向固定输出端子之一面时所产生。电位差V 之大小通常决定于洛仁子力与藉所发生之电位差而将电子或正孔推回之力(亦即前者之力等于后者之力),而且与电流I 乘以磁场B 之积成比例。比例常数为决定于物质之霍耳常数除以物质在磁场方向之厚度所得之值。 图1 霍尔组件之原理

在平板半导体介质中,电子移动(有电场)的方向,将因磁力的作用(有磁场),而改变电子行进的方向。若电场与磁场互相垂直时,其传导的载子(电子或电洞),将集中于平板的上下两边,因而形成电位差存在的现象。该电位差即霍尔电压(霍尔电压)在实际的霍尔组件中,一般使用物质中之电流载子为电子的N 型半导体材料。将一定之输入施加至霍尔组件时之输出电压,利用上述之关系予以分析时,可以获致下列的结论: (1) 材料性质与霍尔系数乘以电子移动度之积之平方根成正比。 (2) 材料之形状与厚度之平方根之倒数成正比。 由于上述关系,实际的霍尔组件中,可将霍尔系数及电子移动度大的材料加工成薄的十字形予以制成。 图2系表示3~5 端子之霍尔组件的使用方法,在三端子霍尔元件之输出可以产生输入端子电压之大致一半与输出信号电压之和的电压,而在四端子及五端子霍尔组件中,在原理上虽然可以免除输入端子电压的影响,但实际上即使在无磁场时,也有起因于组件形状之不平衡等因素之不平衡电压存在。

第八章霍尔传感器

教师授课方案(首页) 授课班级09D电气1、电气2 授课日期 课节 2 课堂类型讲授 课题第八章霍尔传感器第一节霍尔元件的结构及工作原理第二节霍尔元件的特性参数第三节霍尔集成电路 第四节霍尔传感器的应用 教学目的与要求【知识目标】 1、了解霍尔传感器的工作原理 2、理解霍尔集成电路的特性掌握开关型的接线。 3、掌握霍尔传感器的应用。 【能力目标】培养学生理论分析及理论联系实际的能力。【职业目标】培养学生爱岗敬业的情感目标。 重点难点重点:开关型霍尔集成电路难点:开关型霍尔集成电路 教具教学辅助活动教具:霍尔传感器实物、多媒体课件、习题册教学辅助活动:提问、学生讨论 一节教学过程安排复习 因期中考试,无复习内容 分钟讲课 1、霍尔传感器的工作原理 2、霍尔传感器的特性参数 3、霍尔集成电路的特性。 4、霍尔传感器的应用。 78分钟小结 小结见内页,之后利用10分钟时间与学生互 动答疑 10分钟作业习题册第八章霍尔传感器习题2分钟 任课教师:叶睿2011年1月28日审查教师签字:年月日

教案附页【复习提问】因期中考试无复习提问 第八章霍尔传感器 第一节霍尔元件的工作原理及特性 【本节内容设计】 通过课件与教师演示讲授霍尔效应及霍尔传感器的工作原理,为霍尔传感器的学习奠定基础 【授课内容】 一、霍尔效应 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应,该电动势称为霍尔电动势,上述半导体薄片称为霍尔元件。用霍尔元件做成的传感器称为霍尔传感器。 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通,蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 二、霍尔传感器的外形、结构、符号 三、霍尔传感器的工作原理 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2)

关于霍尔器件的使用说明

用户按照本说明去进行使用,将不会损坏器件,但不保证在任何情况下不损坏,因此本公司将保留增加新的保护措施及条例的权利。 Honeywell公司Si集成霍尔器件在使用中 几个注意事项 HONEYWELL公司生产的Si集成霍尔器件是一种半导体的磁敏器件,用于测量磁场的有无,大小及方向,由于它对磁敏感,本身又有放大电路集成在内部,因此,输出讯号较大,使用中不再加运放放大,用起来非常方便。 从应用来看,分成线性及开关两类,开关应用中又分为单极、双极及锁存三种工作模式。 在Si集成霍尔器件的应用中,要注意下列事项: 一、在测试及焊接过程中的注意事项——防止静电烧毁 静电对半导体器件的毁坏作用,日益显得突出,由于半导体器件是微功率器件,在集成电路中每一个晶体管的功率很小,耐压有一定的要求。如果受静电的冲击,很容易损坏。 静电在日常生活及实验室中处处存在。静电是由于两种或多种物品的摩擦而引起的,例如毛衣和尼龙衣服的摩擦,可以产生静电放电。在黑暗处可以看到火花,听到放电的声音,有时切割材料,也是产生摩擦,引起静电。 静电由摩擦产生,因此静电势的高低也是根据不同的物质及摩擦的情况而定的。HONEYWELL公司在对40PC压力传感器的说明中,按照静电的大小,分为三类: 1、第一类是所用的元器件,对静电损伤最敏感,其静电电压在0-1000伏之间,就会损坏器件。 2、第二类是所用的元器件,对静电放电敏感,其静电电压为1000-4000伏之间,在这一电压下,会损坏器件。 3、第三类是所用的元器件,对静电放电不敏感,其静电电压高到4000-15000伏,才损坏器件。 HONEYWELL的Si集成半导体霍尔开关及线性电路是属于第一类的元器件,因此很容易受静电的损坏。HONEYWELL公司的Si 集成HALL器件在出厂时用金属纸袋包封,或是用去静电的塑料袋包封,以防止静电的损伤。但在运输过程中,由于摩擦,包装表面也会产生静电,为了防止静电损坏器件,要求在启封以后,严格导循下列程序: (一)防止静电烧毁 1、对测试人员,最好穿无静电的棉布衣服。如果穿毛衣或尼龙衣服,则会产生静电。因此要求在手腕上或脚上带一只金属环,该环与地线相接,如果身上出现静电,则能很快消除。 2、所用测试工具台及其它金属部分也应接地。如果不采取措施而身上带有高压静电,则:一种情况是霍尔器件处于与地绝缘的状态,则在取霍尔器件时,霍尔器件与操作人员同电位,在测试时由于测试系统接地,会造成对地短路的情况,则在接触霍尔器件时,即会通过霍尔器件对地放电而损坏器件。 前面说过静电的产生是由于物体的摩擦,因此静电电压的高低是不确定的,所带的电荷也是不确定的,这就意味着经过静电放电冲击的霍尔器件不是每一只一定损坏掉。它们在经过静电放电后,有不同程度的损坏,但是这种不同程度的损坏,在今后的使用中,会影响到它的寿命,有些严重损坏的,可能当时就不能用,已经失去逻辑作用,而轻微损伤的器件,则在今后的使用中,会慢慢呈现出来。 因此,静电损伤是应当严格防止的。

霍尔传感器及其应用

霍尔传感器及其应用 一、霍尔传感器介绍 (一)简介 霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。 (二)霍尔传感器的工作原理 磁场中有一个霍尔半导体片,恒定电流I从A到B通过该片。在洛仑兹力的作用下,I的电子流在通过霍尔半导体时向一侧偏移,使该片在CD方向上产生电位差,这就是所谓的霍尔电压。 霍尔电压随磁场强度的变化而变化,磁场越强,电压越高,磁场越弱,电压越低,霍尔电压值很小,通常只有几个毫伏,但经集成电路中的放大器放大,就能使该电压放大到足以输出较强的信号。若使霍尔集成电路起传感作用,需要用机械的方法来改变磁感应强度。下图所示的方法是用一个转动的叶轮作为控制磁通量的开关,当叶轮叶片处于磁铁和霍尔集成电路之间的气隙中时,磁场偏离集成片,霍尔电压消失。这样,霍尔集成电路的输出电压的变化,就能表示出叶轮驱动轴的某一位置,利用这一工作原理,可将霍尔集成电路片用作用点火正时传感器。霍尔效应传感器属于被动型传感器,它要有外加电源才能工作,这一特点使它能检测转速低的运转情况。

1-霍尔半导体元件2-永久磁铁3-挡隔磁力线的叶片 (三)霍尔元件 根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。 (四)优势和特点 1、霍尔传感器可以测量任意波形的电流和电压,如:直流、交流、脉冲波形等,甚至对瞬态峰值的测量。副边电流忠实地反应原边电流的波形。而普通互感器则是无法与其比拟的,它一般只适用于测量50Hz正弦波; 2、原边电路与副边电路之间有良好的电气隔离,隔离电压可达9600Vrms; 3、精度高:在工作温度区内精度优于1%,该精度适合于任何波形的测量; 4、线性度好:优于0.1%; 5、宽带宽:高带宽的电流传感器上升时间可小于1μs;但是,电压传感器带宽较窄,一般在15kHz以内,6400Vrms的高压电压传感器上升时间约500uS,带宽约700Hz。

霍尔线性器件SS3503使用手册

3 pin SIP (suffix UA) Description SS3503 Linear Hall-effect sensor is small, versatile linear Hall-effect device that is operated by the magnetic field from a permanent magnet or an electromagnet. The linear sourcing output voltage is set by the supply voltage and varies in proportion to the strength of the magnetic field. The integrated circuitry features low noise output, which makes it unnecessary to use external filtering. It also includes thin film resistors to provide increased temperature stability and accuracy. The linear Hall sensor has an operating temperature range of -40 °C to 150 °C appropriate for commercial, consumer and industrial environments. Typical Applications Motor control Magnetic code reading Ferrous metal detector Current sensing Position sensing Functional Block Diagram

霍尔传感器特性研究及其应用

实验十二 霍尔传感器特性研究及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场。这个现象是霍尔于1879年发现的,后被称为霍尔效应。霍尔效应不仅是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔传感器已被广泛应用于非电量电测、自动控制和信息处理。 【实验目的】 1. 了解霍尔效应原理及以及研究霍尔传感器的特性。 2. 学习用“对称测量法”消除霍尔传感器副效应的影响。 3. 学会测定霍尔传感器的导电类型,会计算载流子浓度和迁移率。 【实验原理】 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被束缚在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的积累。从而形成附加的横向电场。对于图12-1所示的霍尔传感器,若在x 方向通以电流,在Z 方向加磁感应强度为B 的磁场,则在Y 方向即A 、A /两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向决定于材料的导电类型。显然,该电场阻止载流子继续向侧面移动,当载流子所受的横向电场力eE H 和洛仑兹力evB 相等时,样品两侧电荷的积累就达到平衡,故有 e E H =e b V H = e v B (12-1) 其中E H 称为霍尔电场,v 是载流子在 电流方向上的平均漂移速度。 设霍尔传感器的宽度为b ,厚度为d ,载流子浓度为n ,则 I = n e v b d (12-2) 由(12-1).(12-2)两式可得 d IB R d IB ne b E V H h H == =1 ne I R H = (12-3)

霍尔传感元器件及其常见指导应用举例

课程设计 题目:霍尔器件及其应用 分院名称:环境与能源工程学院课程名称:传感器 学号: : 指导老师:

摘要 霍尔器件是一种磁传感器。用它们可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔器件以霍尔效应为其工作基础。霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度围宽,可达-55℃~150℃。按照霍尔器件的功能可将它们分为:霍尔线性器件和霍尔开关器件。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 关键词:霍尔线性器件;霍尔开关器件

summary Holzer device is a magnetic sensor. They can detect the magnetic field and its changes, and can be used in all kinds of situations related to magnetic field. Holzer device based on Holzer effect.Holzer devices have many advantages, they have a strong structure, small size, light weight, long life, easy installation, small power consumption, high frequency (up to 1MHZ), resistance to vibration, not afraid of dust, oil, water vapor and salt fog, etc..Holzer linear device of high precision, good linearity; Holzer switch device with no contact, no wear, no jitter, the output waveform is clear, no rebound, position of high repetition accuracy (up to m level). The operating temperature range of the Holzer device with various compensation and protection measures is 150, 55,.According to the functions of the Holzer device can be divided into: Holzer linear devices and Holzer switch device. The former output analog quantity, the latter output digital quantity.According to the nature of the detected objects can be divided into their applications: direct and indirect application. The former is directly detected by the detection of the object itself or the magnetic properties of magnetic field, the latter is artificially set and detected the object on the magnetic field, the magnetic field vector, to the detected information through it, many non electricity and non physical quantity such as magnetic force, torque, pressure, stress, and position the displacement, velocity, acceleration, angle, speed, speed, speed and working state change time, converted into electricity to detect and control. Key words: Holzer linear device; Holzer switch devic

相关文档
最新文档