死锁检测

死锁检测
死锁检测

实验四死锁检测实验

(一)实验目的

采用银行家算法来预防死锁是可靠的,但也是非常保守的,因为它限制了进程对资源的存取,从而降低了进程的并发运行程度。死锁检测并不限制进程对资源的申请,只要有,就分配,但这也可能造成死锁。但由于死锁并不是经常发生的,故大大提高了系统运行的效率。通过本实验,可使学生进一步加深理解和掌握死锁的检测算法。

(二)实验题目

两个题目任选其一:

1、编写对每种类型多个资源的死锁检测算法。

2、使用检测“进程—资源循环等待链”的方法,编写死锁检测算法(有参考代码)(三)实验要求

题目1:

(1)死锁检测算法的数据结构参考教材3.4.2节图3-6的现有资源矩阵E、可用资源矩阵A、当前分配矩阵C、进程请求资源矩阵R。

(2)完成对教材中图3-7的死锁检测算法例子的测试。

(3)完成在图3-7基础上,修改进程2的请求分别为2 1 0 1 下的死锁检测。

题目2:

(1)利用“进程—资源循环等待链”的方法,编写死锁检测算法的具体方法可参考教材

3.4.1节的算法,在了解此算法思想的基础上,也可参考给定代码;具体代码描述见

附件1。

(2)利用教材图3-5 a)中的资源分配图完成对该算法的测试。

(四)实验报告要求

?画出所实现算法的详细框图;

?说明所采用的数据结构;

?列出输入数据(进程和所申请的资源数据可用命令行或文件输入);

?列出运算的输出结果(输入结果包括是否死锁,死锁进程有哪些,也可包含中间结果);

?实验总结与心得。

?根据情况可以列出代码。

附件1:

模拟死锁检测算法描述

1.输入:

“资源分配表”文件,每一行包含资源编号、进程编号两项(均用整数表示,并用空格分隔开),记录资源分配给了哪个进程。

“进程等待表”文件,每一行包含进程编号、资源编号两项(均用整数表示,并用空格分隔开),记录进程正在等待哪个资源。

下面是一个示例:

资源分配表:

1 1

2 2

3 3

进程等待表:

1 2

2 3

3 1

2.处理要求:

程序运行时,首先提示“请输入资源分配表文件的文件名:”;再提示“请输入进程等待表文件的文件名:”。

输入两个文件名后,程序将读入两个文件中的有关数据,并按照死锁检测算法进行检测。3.输出要求:

第一行输出检测结果:有死锁或无死锁。

第二行输出进程循环等待队列,即进程编号(如果有死锁)。

4.死锁检测算法:检测算法通过反复查找进程等待表和资源分配表,来确定进程Pj对资源ri的请求是否导致形成环路,若是,便确定出现死锁。

5.源代码参考:

#include

#include

#include

const int MAXQUEUE=100; //定义表的最大行数

typedef struct node{

int resource;

int process;

}cell; //边的结构(一个资源节点、一个进程节点)

cell occupy[MAXQUEUE]; //分配边数组

int occupy_quantity; //分配边的数量

cell wait[MAXQUEUE]; //申请边数组

int wait_quantity; //申请边的数量

//初始化函数

void initial()

{

int i;

for(i=0;i

occupy[i].process=-1;

occupy[i].resource=-1;

wait[i].process=-1;

wait[i].resource=-1;

}

occupy_quantity=0;

wait_quantity=0;

}

//读数据文件

int readData()

{

FILE *fp;

char fname[20];

int i;

cout<<"请输入资源分配表文件的文件名:"<

//strcpy(fname,"d:\tmp\trouble1.txt ");

cin>>fname;

if((fp=fopen(fname,"r"))==NULL){

cout<<"错误,文件打不开,请检查文件名:)"<

return 0;

}

else{

while(!feof(fp)){

fscanf(fp,"%d %d",&occupy[occupy_quantity].resource,&occupy[occupy_quantity].process);

occupy_quantity++;

}

}

cout<<"请输入进程等待表文件的文件名:"<

//strcpy(fname,"d:\tmp\trouble2.txt");

cin>>fname;

if((fp=fopen(fname,"r"))==NULL){

cout<<"错误,文件打不开,请检查文件名:)"<

return 0;

}

else{

while(!feof(fp)){

fscanf(fp,"%d %d",&wait[wait_quantity].process,&wait[wait_quantity].resource);

wait_quantity++;

}

}

//输出所读入的数据

cout<

cout<<"━━━━━━━━━━━━━━━━━━━━━━━"<

cout<<"资源分配表"<

cout<<"资源编号进程编号"<

for(i=0;i

cout<<" "<

}

cout<<"───────────────────────"<

cout<<"进程等待表"<

cout<<"进程编号资源编号"<

for(i=0;i

cout<<" "<

}

return 1;

}

//检测

void check()

{

int table[MAXQUEUE][MAXQUEUE];

int table1[MAXQUEUE][MAXQUEUE];

int i,j,k;

int flag,t,p;

int max_process;

//初始化表格

for(i=1;i

for(j=1;j

table[i][j]=0;

table1[i][j]=0;

}

}

//先找到进程最大编号

max_process=-1;

for(i=0;i

if(occupy[i].process>max_process){

max_process=occupy[i].process;

}

}

for(i=0;i

if(wait[i].process>max_process){

max_process=wait[i].process;

}

}

for(i=0;i

for(j=0;j

if(wait[i].resource==occupy[j].resource){

table[wait[i].process][occupy[j].process]=1;

table1[wait[i].process][occupy[j].process]=1;

}

}

}

cout<<"初始等待占用表:"<

for(i=1;i

cout<

}

cout<

}

cout<

for(i=1;i

for(j=1;j

for(k=1;k

table[i][j]=table[i][j]||(table[i][k]&&table[k][j]); //&&与,||或

}

}

}

cout<<"检测后的等待占用表:"<

for(i=1;i

for(j=1;j

cout<

}

cout<

}

flag=-1;

for(i=1;i

if(table[i][i]==1){

flag=i;

break;

}

}

cout<

cout<<"───────────────────"<

if(flag!=-1){

cout<<"存在死锁"<

cout<<"进程循环等待队列:";

p=flag; //存在进程循环等待队列的那一进程

//进程循环等待队列中的所有进程是table表中的这一行是1的进程,只是顺序要再确定//即该进程无法运行,则其他它后面运行的进程也无法运行

t=1;

while(t){

cout<

for(j=1;j

if(table1[p][j]==1){

if(table[j][flag]==1){

p=j;

break;

}

}

}

if(p==flag)t=0; //出现节点的重复/即环,结束

}

cout<

}

else{

cout<<"不存在死锁"<

}

}

//显示版权信息函数

void version()

{

cout<

cout<<" ┏━━━━━━━━━━━━━━━━━━━━━━━┓"<

}

void main()

{

int flag;

version();

initial();

flag=readData();

if(flag)check();

}

第2章 调度与死锁自测题

4.4 调度与死锁自测题 4.4.1 基本题 一、判断题(正确的在括号中记√,错误的记×) 1.死锁就是循环等待。 ( ) 2.最适合分时系统的进程调度算法是优先数法。() 3.不存在只涉及一个进程的死锁。 ( ) 4. 在分时系统中当用户数一定时,影响响应时间的主要因素是调度算法。( ) 5.若系统中每一资源类只有一个,只要系统存在任何环路,系统状态就是不安全的。 ( ) 6.多级反馈调度算法属于抢占调度方式。() 7.死锁是多个进程为竞争系统资源或彼此间通信而引起的一种临时性的阻塞现象。 ( ) 8.在引入线程的系统中进程程调度负责CPU的分配工作。() 9.当进程数大于资源数时,进程竞争资源一定会产生死锁。() 10.实时调度的关键是保证满足实时任务对截止时间的要求。() 1. Χ 2. Χ 3.√ 4. Χ 5.√ 6. √ 7. Χ 8. Χ 9. Χ 10. √ 二、选择题 1.在三种基本类型的操作系统中,都设置了进程调度,在批处理系统中还应设置______调度。 A.作业 B.进程 C.中级 D.多处理机 2.下列算法中,_______只能采用非抢占调度方式。 A.高优先权优先法 B.时间片轮转法 C.FCFS调度算法 D.短作业优先算法 3.下面关于优先权大小的论述中,正确的论述是_____________。 A.计算型作业的优先权,应高于I/O型作业的优先权。 B.用户进程的优先权,应高于系统进程的优先权。 C.资源要求多的作业,其优先权应高于资源要求少的作业。 D.在动态优先权时,随着进程执行时间的增加,其优先权降低。 4.最适合分时系统的进程调度算法是______。 A、FCFS B、SSJF C、优先数法 D、轮转法 5.在分时系统中当用户数一定时,影响响应时间的主要因素是_____。 A、时间片 B、调度算法 C、存储分配方式 D、作业的大小 6.采用“按序分配”策略,可以破坏死锁产生的条件是______。 A、互斥 B、请求和保持 C、非剥夺 D、环路等待 7.下述解决死锁的方法中,属于死锁预防策略的是____________。 A.银行家算法 B.资源有序分配法 C.资源分配图化简法 D.撤消进程法 8.从下面关于安全状态和非安全状态的论述中,正确的论述是________。 A.安全状态是没有死锁的状态,非去全状态是有死锁的状态。 B.安全状态是可能有死锁的状态,非安全状态也是可能有死锁的状态。 C.安全状态是可能没有死锁的状态,非安全状态是有死锁的状态。 D.安全状态是没有死锁的状态,非安全状态是可能有死锁的状态。 9.关于产生死锁的现象,下面的描述最准确是__________。 A.每个进程共享某一个资源 B.每个进程竞争某一个资源 C.每个进程等待着某一个不能得到且不可释放的资源

操作系统死锁练习及答案

死锁练习题 (一)单项选择题 l系统出现死锁的根本原因是( )。 A.作业调度不当 B.系统中进程太多 C.资源的独占性 D.资源管理和进程推进顺序都不得当 2.死锁的防止是根据( )采取措施实现的。 A.配置足够的系统资源 B.使进程的推进顺序合理 C.破坏产生死锁的四个必要条件之一 D.防止系统进入不安全状态 3.采用按序分配资源的策略可以防止死锁.这是利用了使( )条件不成立。 A.互斥使用资源 B循环等待资源 c.不可抢夺资源 D.占有并等待资源 4.可抢夺的资源分配策略可预防死锁,但它只适用于( )。A.打印机 B.磁带机 c.绘图仪 D.主存空间和处理器 5.进程调度算法中的( )属于抢夺式的分配处理器的策略。A.时间片轮转算法 B.非抢占式优先数算法 c.先来先服务算法 D.分级调度算法 6.用银行家算法避免死锁时,检测到( )时才分配资源。 A.进程首次申请资源时对资源的最大需求量超过系统现存的资源量 B.进程己占用的资源数与本次申请资源数之和超过对资源的最大需求量 c.进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足尚需的最大资源量 D进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足本次申请量,但不能满足尚需的最大资源量 7.实际的操作系统要兼顾资源的使用效率和安全可靠,对资源的分配策略,往往采用 ( )策略。 A死锁的防止 B.死锁的避免 c.死锁的检测 D.死锁的防止、避免和检测的混合(一)单项选择题 1.D 2.C 3.B 4.D 5.A 6 C 7 D (二)填空题 l若系统中存在一种进程,它们中的每一个进程都占有了某种资源而又都在等待其中另一个进程所占用的资源。这种等待永远不能结束,则说明出现了______。 2.如果操作系统对 ______或没有顾及进程______可能出现的情况,则就可能形成死锁。3.系统出现死锁的四个必要条件是:互斥使用资源,______,不可抢夺资源和______。 4.如果进程申请一个某类资源时,可以把该类资源中的任意一个空闲资源分配给进程,则说该类资源中的所有资源是______。 5.如果资源分配图中无环路,则系统中______发生。 6.为了防止死锁的发生,只要采用分配策略使四个必要条件中的______。 7.使占有并等待资源的条件不成立而防止死锁常用两种方法:______和______. 8静态分配资源也称______,要求每—个进程在______就申请它需要的全部资源。 9.释放已占资源的分配策略是仅当进程______时才允许它去申请资源。 10抢夺式分配资源约定,如果一个进程已经占有了某些资源又要申请新资源,而新资源不能满足必须等待时、系统可以______该进程已占有的资源。 11.目前抢夺式的分配策略只适用于______和______。 12.对资源采用______的策略可以使循环等待资源的条件不成立。 13.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于______。 14.只要能保持系统处于安全状态就可______的发生。 15.______是一种古典的安全状态测试方法。 16.要实现______,只要当进程提出资源申请时,系统动态测试资源分配情况,仅当能确保系统安全时才把资源分配给进程。 17.可以证明,M个同类资源被n个进程共享时,只要不等式______成立,则系统一定不会发生死锁,其中x为每个进程申请该类资源的最大量。 18.______对资源的分配不加限制,只要有剩余的资源,就可把资源分配给申请者。 19.死锁检测方法要解决两个问题,一是______是否出现了死锁,二是当有死锁发生时怎样去______。 20.对每个资源类中只有一个资源的死锁检测程序根据______和______两张表中记录的资源情况,把进程等待资源的关系在矩阵中表示出

操作系统死锁习题集

死锁习题 一、填空题 2.死锁产生的原因是。 3.产生死锁的四个必要条件是、、、。 二、单项选择题 1.两个进程争夺同一个资源。 (A)一定死锁(B)不一定死锁 (C)不死锁(D)以上说法都不对 4.如果发现系统有的进程队

列就说明系统有可能发生死锁了。 (A)互斥(B)可剥夺 (C)循环等待(D)同步 5.预先静态分配法是通过破坏条件,来达到预防死锁目的的。 (A)互斥使用资源/循环等待资源 (B)非抢占式分配/互斥使用资源 (C) 占有且等待资源/循环等待资源 (D)循环等待资源/互斥使用资源 7.下列关于死锁的说法中,正确的是? 1)有环必死锁; 2)死锁必有环; 3)有环无死锁; 4)死锁也无环 8.资源有序分配法的目的是? 1)死锁预防; 2)死锁避免; 3)死锁检测; 4)死锁解除 8.死锁的预防方法中,不太可能的一种方法使()。

A 摈弃互斥条件 B 摈弃请求和保持条件 C 摈弃不剥夺条件 D 摈弃环路等待条件 10. 资源的按序分配策略可以破坏()条件。 A 互斥使用资源 B 占有且等待资源 C 不可剥夺资源 D 环路等待资源 三、多项选择题 1.造成死锁的原因是_________。 (A)内存容量太小(B)系统进程数量太多,系统资源分配不当 (C)CPU速度太慢(D)进程推进顺序不合适 (E)外存容量太小 2.下列叙述正确的是_________。 (A)对临界资源应采取互斥访问方式来实现共享 (B)进程的并发执行会破坏程序的“封

闭性” (C)进程的并发执行会破坏程序的“可再现性” (D)进程的并发执行就是多个进程同时占有CPU (E)系统死锁就是程序处于死循环3.通常不采用_________方法来解除死锁。 (A)终止一个死锁进程(B)终止所有死锁进程 (C)从死锁进程处抢夺资源(D)从非死锁进程处抢夺资源 (E)终止系统所有进程 5.通常使用的死锁防止策略有_________。 (A)动态分配资源(B)静态分配资源 (C)按序分配资源(D)非剥夺式分配资源 (E)剥夺式分配资源 四、名词解释 1死锁

《操作系统原理》5资源管理(死锁)习题

第五章死锁练习题 (一)单项选择题 1.系统出现死锁的根本原因是( )。 A.作业调度不当B.系统中进程太多C.资源的独占性D.资源管理和进程推进顺序都不得当 2.死锁的防止是根据( )采取措施实现的。 A.配置足够的系统资源B.使进程的推进顺序合理 C.破坏产生死锁的四个必要条件之一D.防止系统进入不安全状态 3.采用按序分配资源的策略可以防止死锁.这是利用了使( )条件不成立。 A.互斥使用资源B循环等待资源C.不可抢夺资源D.占有并等待资源 4.可抢夺的资源分配策略可预防死锁,但它只适用于( )。 A.打印机B.磁带机C.绘图仪D.主存空间和处理器 5.进程调度算法中的( )属于抢夺式的分配处理器的策略。 A.时间片轮转算法B.非抢占式优先数算法C.先来先服务算法D.分级调度算法 6.用银行家算法避免死锁时,检测到( )时才分配资源。 A.进程首次申请资源时对资源的最大需求量超过系统现存的资源量 B.进程己占用的资源数与本次申请资源数之和超过对资源的最大需求量 C.进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足尚需的最大资源量 D进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足本次申请量,但不能满足尚需的最大资源量 7.实际的操作系统要兼顾资源的使用效率和安全可靠,对资源的分配策略,往往采用( )策略。 A死锁的防止B.死锁的避免C.死锁的检测D.死锁的防止、避免和检测的混合 (二)填空题 1.若系统中存在一种进程,它们中的每一个进程都占有了某种资源而又都在等待其中另一个进程所占用的资源。这种等待永远不能结束,则说明出现了______。 2.如果操作系统对______或没有顾及进程______可能出现的情况,则就可能形成死锁。 3.系统出现死锁的四个必要条件是:互斥使用资源,______,不可抢夺资源和______。 4.如果进程申请一个某类资源时,可以把该类资源中的任意一个空闲资源分配给进程,则说该类资源中的所有资源是______。 5.如果资源分配图中无环路,则系统中______发生。 6.为了防止死锁的发生,只要采用分配策略使四个必要条件中的______。 7.使占有并等待资源的条件不成立而防止死锁常用两种方法:______和______. 8静态分配资源也称______,要求每—个进程在______就申请它需要的全部资源。 9.释放已占资源的分配策略是仅当进程______时才允许它去申请资源。 10.抢夺式分配资源约定,如果一个进程已经占有了某些资源又要申请新资源,而新资源不能满足必须等待时、系统可以______该进程已占有的资源。 11.目前抢夺式的分配策略只适用于______和______。 12.对资源采用______的策略可以使循环等待资源的条件不成立。 13.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于______。14.只要能保持系统处于安全状态就可______的发生。 15.______是一种古典的安全状态测试方法。 16.要实现______,只要当进程提出资源申请时,系统动态测试资源分配情况,仅当能确保系统安全时才把资源分配给进程。

第5章 死锁 练习题参考答案

第五章死锁练习题参考答案 (一)单项选择题 1.D 2.C 3.B 4.D 5.A 6.C 7.D (二)填空题 1.死锁2.资源管理不得当,并发执行时3.占有并等待资源,循环等待资源4.等价的5.没有死锁6.一个条件不成立7.静态分配资源,释放已占资源8.预分配资源.开始执行前9.没有占用资源10.抢夺11.主存空间,处理器12.按序分配13安全状态14.避免死锁15.银行家算法16.死锁的避免17.n(x- 1)+l<=m 18.死锁检测方法19判断系统,解除死锁20.占用表,等待表21.尚需量,剩余量22终止,抢夺资源23.校验点24.防止,检测 (三)简答题 1.若系统中存在一组进程、它们中的每—个进程都占用了某种资源而又都在等待其中另一个进程所占的资源,这种等待永远不能结束,则说明系统出现了死锁。产生死锁的原因有两个:一是操作系统对资源的管理不当,二是没有顾及进程并发执行时可能出现的情况。 2.采用某些资源分配策略使死锁的四个必要条件之一不成立,就能防止死锁。除第一个条件互斥使用资源没有对应策略外,对占有并等待资源、不可抢夺资源和循环等待资源这三个条件可采用静态分配资源,释放已占资源,抢夺式分配资源和按序分配资源等资源分配策略。 3.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于安全状态。常用银行家算法动态地检测系统中的资源分配情况和进程对资源的需求情况进行资源分配,确保系统处于安全状态。 4解决死锁问题有以下三种方法:(1)死锁的防止。系统按预定的策略为进程分配资源,这些分配策略能使死锁的四个必要条件之一不成立,从而使系统不产生死锁。(2)死锁的避免。系统动态地测试资源分配情况,仅当能确保系统安全时才给进程分配资源。(3)死锁的检测。对资源的申请和分配不加限制,只要有剩余的资源就可把资源分配给申请者,操作系统要定时判断系统是否出现了死锁,当有死锁发生时设法解除死锁。5.用抢夺资源的方式解除死锁时要注意三点:(1)抢夺进程资源时希望付出的代价最小。(2)为被抢夺者的恢复准备好条件,如返回某个安全状态,并记录有关信息。(3)防止被抢夺资源的进程“饿死”,一般总是从执行时间短的进程中抢夺资源。 (四)应用题 1.(1)根据表,P1,P2和P3三个进程尚需资源数分别是4,5和1,系统的资源剩余量为2,若把剩余的资源量全部分配给P2,系统产已无资源可分配,使三个进程都等待资源而无法完成,形成死锁。所以不能先满足进程P2的要求。 (2)可先为进程P3分配1个资源,当它归还3个资源后,这样共有4个可分配资源,可满足P1申请1个资源的要求,再分配3个资源给进程P1,待P1归还7个资源后,先满足P2申请2个资源的请求,分配给进程P2,再分配3个资源给P2,使它完成。 2.(1)系统目前尚余有的资源数为(2,6,2,1),五个进程尚需的资源数分别是A:(2,0,0,0) ; B:(0,0,0,0); C:(4,6,2,0) ; D:(5,7,0,0); E:(0,0,2,1);由于进程B己满足了全部资源需求,它在有限时间内会归还这些资源,因此可分配资源达到(3,6,4,1),这样就可分配给进程A;等A归还资源后,可分配资源达到(6,12,6,1),再分配给进程C;之后可分配资源会达到(7,12,10,1),分配给进程D并等待一段时间后,可分配资源将达到(7,12,10,2),最后,可分配给进程E,满足其全部请求。所以说目前系统处于安全状态。 (2)若此时给进程D分配(2,5,0,0)个资源,进程D尚需(3,2,0,0),则系统剩余的资源量为(0,

实验二死锁的检测与避免

实验二死锁的检测与避免—银行家算法 一、实验目的 1、了解进程产生死锁原因,了解为什么要避免死锁。 2、掌握银行家算法的数据结构,了解算法的执行过程,加深对银行家算法的理 解。 二、实验内容及步骤 采用银行家算法来实现一个n 个并发进程共享m 个系统资源的系统。进程可 以申请和释放资源,系统可以按照各进程的申请计算是否可以分配给其资源。 1、创建C语言工程项目,按照教材上的有关说明,定义相应的数据结构。 2、给各个数据结构设定合适的初始值。 注意:步骤1、2可同时进行,即利用C语言中的定义变量就可同时初始化的 方式进行数值初设。 3、依据银行家算法的描述依次进行资源的试探性分配,直至成功或失败,成功 则说明当前状态是安全的;失败后,还应该将资源回到初始状态,并进行另一 次试探;只有所有的试探都失败了,才能说明当前状态是不安全的。 通常,这种试探性算法采用递归的方法是很合适的,程序也是很简洁的。 三、实验原理 1、银行家算法的思路 先对用户提出的请求进行合法性检查,即检查请求的是不大于需要的,是否不大于可利用的。若请求合法,则进行试分配。最后对试分配后的状态调用安全性检查算法进行安全性检查。若安全,则分配,否则,不分配,恢复原来状态,拒绝申请。 2、银行家算法程序流程图(图2-1)

银行家算法(图2-1) 安全性算法(图2-2)

四、实验结果及分析 (一): 1、T0时刻安全性 2、P1发出请求向量Request 1(1,0,2) 3、P4发出请求向量Request 4(3,3,0) 4、P0发出请求向量Request 0(0,2,0) (二): 1、 该状态是否安全? 2、 P2发出请求向量Request (1,2,2 ,2)后,系统能否将资源分配给它? (三)、自行设计一组资源分配数据,要求资源数大于等于3,进程数大于等于3,有2次预分配。

死锁实验报告

操作系统实验二报告 一.实验名称:死锁的检测与解除 二.实验目的:观察死锁产生的条件,并使用适当的算法,有效的防止和避免死锁的发生。 三.实验内容: 死锁的检测算法: 1.找出不再申请资源的进程,将它们所占的资源与系统中还剩余的资源加在一起作为“可分配的资源”,同时对这些进程置标志; 2.检测所有无标志的进程,找出一个所需资源量不超过“可分配的资源”量的进程,将其所占用的资源添加到“可分配的资源”中,同时为该进程置标志;重复2)直到所有进程均有标志或无标志的进程的所需资源量均超过“可分配的资源”量; 3.若进程均有标志,说明系统当前不存在死锁;若存在无标志的进程,则表示系统当前已有死锁形成,这些无标志的进程就是一组处于死锁状态的进程。 死锁的解除: 当死锁检测程序检测到有死锁存在时,一般采用两种方式来解除死锁: 1.终止进程:终止一个或多个涉及死锁的进程的执行,收回它们所占的资源再分配。 2.抢夺资源:从涉及死锁的一个或几个进程中抢夺资源,把夺来的资源再分配给卷入死锁的其他进程,直到死锁解除。 四.实验代码: #include using namespace std; 其中系统可用资源数为 2 1 0 0

给进程3 分配资源数0 1 0 0 六.实验心得: 加深理解了有关资源申请分配、检测以及避免死锁等概念,了解死锁和避免死锁的具体实施方法。死锁的解除实质上就是如何让释放资源的进程能够继续运行.为了解除死锁就要剥夺资源,此时,需要考虑一下几个问题:选择一个牺牲进程,即要剥夺哪个进程的哪些资源剥夺的进程如何再次运行.怎样保证不发生”饿死”现象“最小代价”,即最经济合算的算法,使得进程回退带来的开销最小.但是,”最小开销”是很不精确的,进程重新运行的开销包括很多因素: 进程的优先级、该进程使用的资源种类和数量为完成任务,进程还需要多少资源有多少进程要被撤销、该进程被重新启动运行的次数.。只有综合考虑各个进程之间的关系,跟资源的关系,才能搞好的解除死锁。避免系统出错。

操作系统实验报告-死锁的检测与解除

操作系统实验报告 实验题目:死锁的检测与解除学生姓名:田凯飞 学生学号:1107300215 学生班级:计科111 指导老师:霍林

实验题目: 死锁的检测与解除。 实验目的: 在实验一中我们可以通过银行家算法和安全性检测来对系统对进程分配资源时进行安全性检测,这是避免系统发生死锁的有效方法,但是假如系统真的发生死锁的时候,系统也必须对此采取有效的措施,通过该实验我们可以深刻的认识系统对死锁的检测与解除的方法。 设计思想: 该程序是在银行家算法的基础上添加了死锁的解除模块得来的,死锁的解除采用的方法是:当系统发生死锁时,找到已分配资源最大的死锁进程,剥夺其已分配资源,再次检测是否发生死锁。 数据结构: 1)可用资源向量available: 这是一个含有m个元素的数组,其 中的每一个元素代表一类可利用资源数目。 2)最大需求矩阵max它是一个n m ?的矩阵,定义了系统中n个进程中得每一个进程对m类资源的最大需求。 3)可分配矩阵allocation: 这也一个n m ?的矩阵,定义了系统中每一类资源当前已分配给每一进程的资源数。 4)需求矩阵need: 这表示每一个进程尚需的各类资源数。 5)need[i][j]=max[i][j]-allocation[i][j]。 变量说明: 可用资源向量available[3]; 最大需求矩阵max[4][3]; 可分配矩阵allocation[4][3]; 需求矩阵need[4][3]; 进程状态标识finish[4]; 流程图:

否 是 否 是 运行结果: 无死锁: 算法开始 输入各进程的最大需求资源、 已分配资源和可利用资源数 显示各进程的最大需求资源、已分配资源和可利用资源数 选择进程并进行资源请求 请求是否合法 分配资源 是否死锁 输出进程序列以及该时刻的资源分配情况 解除占用资源最多的进程 算法结束

死锁避免算法设计报告

漳州师范学院 操作系统课程设计 死锁避免算法设计 姓名: 学号: 系别: 专业: 年级: 指导教师: 一、课程设计题目介绍(含设计目的)

死锁避免算法设计是通过模拟实现银行家算法实现死锁避免目的: 1、了解进程产生死锁的原因,了解为什么要进行死锁的避免。 2、掌握银行家算法的数据结构,了解算法的执行过程,加深对银行家算法的理解。 3、通过运用Dijkstra的银行家算法来避免多个进程运行中因争夺资源而造成僵局,即死锁 要求: 本课程设计可以实现教材3.6.3节中所描述的银行家避免死锁算法。 可自定义进程数目、资源类型和每种类型资源的数目; 可输入每个进程对每种资源的最大需求、已经获得的数量; 当某进程发起某种资源请求时,计算系统状态是否安全。 思想: 操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配,从而达到死锁的避免。

二、总体设计(含系统的结构、原理框图或模块介绍等) 1.系统的结构 2.原理框图 从主函数开始进入银行家算法系统,先调用初始化函数chushihua()分别输入Allocation[i][j],Max[i][j],All[y]并判断是否符合条件,在调用函数show(),输出当前状态Available,Max[i][j],Allocation[i][j],Need[i][j]。然后调用安全性算法函数safe()判断在该时刻是否处于安全状态,并输出安全序列。然后调用银行家算法函数bank()进行试分配后再调用安全性算法函数判断在该时刻是否处于安全状态,若不安全,则恢复试分配时改变的值。

死锁的检测与解除C语言代码

实验名称:死锁的检测与解除姓名:杨秀龙 学号:1107300432 专业班级:创新实验班111 指导老师:霍林

实验题目 死锁的检测与解除 实验目的 为了更清楚系统对死锁是如何检测和当死锁发生时如何解除死锁 设计思想 首先需要建立和银行家算法类似的数组结构,先把孤立的进程(没有占用资源的进程)放入一个数组中,根据死锁原理,找出既不阻塞又非独立的进程结点,使之成为孤立的结点并放入孤立数组中,再释放该进程的占用资源,继续寻找下一个孤立结点,如果所有进程都能放入孤立数组中,则系统不会发生死锁,如果有进程不能放入,则系统将发生死锁,并进行死锁解除,撤消所有的死锁进程,释放它们占用的资源。 主要数据结构 和银行家算法类似,需要建立相应的数组 int allocation[M][M]; int request[M][M]; int available[M]; int line[M]; //管理不占用资源的进程 int no[M]; //记录造成死锁的进程 int work[M];

流程图 否

运行结果 图(1)不会发生死锁时 图(1)当发生死锁时

附录 源代码如下: # include "stdio.h" # define M 50 int allocation[M][M]; int request[M][M]; int available[M]; int line[M]; int no[M]; intn,m,i,j,f,a=0; main() { void check(); void remove(); void show(); printf("输入进程总数:"); scanf("%d", &n); printf("输入资源种类数量:"); scanf("%d", &m); printf("输入进程已占用的资源Allocation:\n"); for(i=0;i

第三章习题(处理机调度与死锁)

一、单项选择题 1.在为多道程序所提供的可共享的系统资源不足时,可能出现死锁。但是,不适当的 c 也可能产生死锁。 A.进程优先权 B.资源的线性分配 C.进程推进顺序 D. 分配队列优先权 2.采用资源剥夺法可解除死锁,还可以采用 b 方法解除死锁。 A.执行并行操作 B.撤消进程 C.拒绝分配新资源 D.修改信号量 3.产生死锁的四个必要条件是:互斥、 b 、循环等待和不剥夺。 A. 请求与阻塞 B.请求与保持 C. 请求与释放 D.释放与阻塞 4.发生死锁的必要条件有四个,要防止死锁的发生,可以破坏这四个必要条件,但破坏 a 条件是不太实际的。 A. 互斥 B.不可抢占 C. 部分分配 D.循环等待 5.在分时操作系统中,进程调度经常采用 c 算法。 A.先来先服务 B.最高优先权 C.时间片轮转 D.随机 6.资源的按序分配策略可以破坏 D 条件。 A. 互斥使用资源 B.占有且等待资源 C.非抢夺资源 D. 循环等待资源 7.在 C 的情况下,系统出现死锁。 A. 计算机系统发生了重大故障 B.有多个封锁的进程同时存在 C.若干进程因竞争资源而无休止地相互等待他方释放已占有的资源 D.资源数大大小于进程数或进程同时申请的资源数大大超过资源总数 8.银行家算法是一种 B 算法。 A.死锁解除 B.死锁避免 C.死锁预防 D. 死锁检测 9.当进程数大于资源数时,进程竞争资源 B 会产生死锁。 A.一定 B.不一定 10. B 优先权是在创建进程时确定的,确定之后在整个进程运行期间不再改变。 A.先来先服务 B.静态 C.动态 D.短作业 11. 某系统中有3个并发进程,都需要同类资源4个,试问该系统不会发生死锁的最少资源数是 B A.9 B.10 C.11 D.12 答:B 13.当检测出发生死锁时,可以通过撤消一个进程解除死锁。上述描述是 B 。 A. 正确的 B.错误的 14.在下列解决死锁的方法中,属于死锁预防策略的是 B 。 A. 银行家算法 B. 资源有序分配法 C.死锁检测法 D.资源分配图化简法 15.以下叙述中正确的是 B 。 A. 调度原语主要是按照一定的算法,从阻塞队列中选择一个进程,将处理机分配 给它。 B.预防死锁的发生可以通过破坏产生死锁的四个必要条件之一来实现,但破坏互斥条件的可能性不大。 C.进程进入临界区时要执行开锁原语。 D.既考虑作业等待时间,又考虑作业执行时间的调度算法是先来先服务算法。

关于进程中死锁问题的研究

关于进程中死锁问题的研究 摘要 死锁问题是Dijkstra于1965年研究银行家算法时首先提出的,也是计算机操作系统乃至并发程序设计中非常重要但又最难处理的问题之一。实际上死锁问题是一种具有普遍性的现象。不仅在计算机系统中,就是在其它各个领域乃至日常生活中,也都是屡见不鲜的。掌握对死锁的处理方法,对于指导我们的现实生活,都会有积极地意义。本文研究的是操作系统进程中的死锁问题。从理论上说,死锁问题的研究涉及到计算机科学中一个基本问题,即并行程序的终止性问题。本文将通过对死锁的基本概念、产生的原因和产生死锁的四个必要条件的了解,找出合理的预防、避免、检测和解除的有效方法,并将其运用到实际问题中去。 关键字:死锁的预防死锁的避免银行家算法死锁的检测死锁的解除 一、死锁的基本概念 1.1 死锁的概念 当两个或两个以上的进程因竞争系统资源而无休止的相互等待时,我们就称这些进程是死锁的,或者说它们处于死锁状态。 1.2 死锁产生的原因 1、各进程竞争有限的资源。 2、进程推进顺序不当。 1.3 产生死锁的四个必要条件 1、互斥条件。指在一段时间内,一个资源只能由一个进程独占使用,若别的进程也要求该资源,则须等待直至其占用者释放。 2、请求和保持条件。指进程已经保持了至少一个资源,但又提出新的请求,而该资源已被其他进程占用,此时请求进程阻塞,但又不释放自己已获得的资源。 3、不可剥夺条件。进程所获得的资源在未使用完之前,不能被其他进程强行夺走,而只能由其自身释放。

4、环路条件。指存在一个等待进程集合{}n P P P P ,,,,210 ,0P 正在等待一个1P 占用的资源,1P 正在等待一个2P 占用的资源,…,n P 正在的等待一个由0P 占用的资源。这些进程及其请求的资源构成一个“进程——资源”的有向循环图。 二、死锁的处理 2.1 死锁的预防 死锁的预防是排除死锁的静态策略,因为我们已经知道了导致死锁产生的四个必要条件,那么我们只须破坏这四个条件中的一个即可预防死锁。为此介绍如下4种方法。 1、共享使用法 允许一个资源部件可以由多个进程“同时”使用。这种方法在早期曾使用过,但实践证明这种方法对有些资源是行不通的。如对宽行就是由各个进程“同时”使用,结果在打印纸上交替出现了不同进程的不同信息,从而给用户带来很大的不便,故对此类资源一般都采用独占方式。由于对大多数资源来说互斥使用是完全必要的,所以通过破坏互斥条件来防止死锁是不现实的。 2、预先静态分配法 在进程调度程序选择进程时,仅当进程所需要的全部资源都能满足时,才调度它进入内存运行。或者说,在进程尚处于运行前的静态情况下,就为它分配了所需要的全部资源。显然这是一种简单而安全的预防死锁的方法,但是,若资源搭配不当,就会导致进程将延迟运行,资源利用率低。 3、采用剥夺式调度法 这种方法主要用在处理器和存储器资源调度上,是调度进程自身的开销,以及主存和磁盘的对换进程、数据的开销。但对于需要由操作员装卸私有数据的外围设备,此法就不宜使用。这种方法实现起来比较复杂,且要付出很大的代价,还可能导致反复地请求和释放资源,而使进程的执行无限延迟。这不仅延长了进程的周转时间,还增加了系统的开销,降低了系统的吞吐量。 4、有序资源使用法 系统设计者把系统中所有资源都赋予一个唯一的编号。如令输入机为1,

死锁检测

实验四死锁检测实验 (一)实验目的 采用银行家算法来预防死锁是可靠的,但也是非常保守的,因为它限制了进程对资源的存取,从而降低了进程的并发运行程度。死锁检测并不限制进程对资源的申请,只要有,就分配,但这也可能造成死锁。但由于死锁并不是经常发生的,故大大提高了系统运行的效率。通过本实验,可使学生进一步加深理解和掌握死锁的检测算法。 (二)实验题目 两个题目任选其一: 1、编写对每种类型多个资源的死锁检测算法。 2、使用检测“进程—资源循环等待链”的方法,编写死锁检测算法(有参考代码)(三)实验要求 题目1: (1)死锁检测算法的数据结构参考教材3.4.2节图3-6的现有资源矩阵E、可用资源矩阵A、当前分配矩阵C、进程请求资源矩阵R。 (2)完成对教材中图3-7的死锁检测算法例子的测试。 (3)完成在图3-7基础上,修改进程2的请求分别为2 1 0 1 下的死锁检测。 题目2: (1)利用“进程—资源循环等待链”的方法,编写死锁检测算法的具体方法可参考教材 3.4.1节的算法,在了解此算法思想的基础上,也可参考给定代码;具体代码描述见 附件1。 (2)利用教材图3-5 a)中的资源分配图完成对该算法的测试。 (四)实验报告要求 ?画出所实现算法的详细框图; ?说明所采用的数据结构; ?列出输入数据(进程和所申请的资源数据可用命令行或文件输入); ?列出运算的输出结果(输入结果包括是否死锁,死锁进程有哪些,也可包含中间结果); ?实验总结与心得。 ?根据情况可以列出代码。

附件1: 模拟死锁检测算法描述 1.输入: “资源分配表”文件,每一行包含资源编号、进程编号两项(均用整数表示,并用空格分隔开),记录资源分配给了哪个进程。 “进程等待表”文件,每一行包含进程编号、资源编号两项(均用整数表示,并用空格分隔开),记录进程正在等待哪个资源。 下面是一个示例: 资源分配表: 1 1 2 2 3 3 进程等待表: 1 2 2 3 3 1 2.处理要求: 程序运行时,首先提示“请输入资源分配表文件的文件名:”;再提示“请输入进程等待表文件的文件名:”。 输入两个文件名后,程序将读入两个文件中的有关数据,并按照死锁检测算法进行检测。3.输出要求: 第一行输出检测结果:有死锁或无死锁。 第二行输出进程循环等待队列,即进程编号(如果有死锁)。 4.死锁检测算法:检测算法通过反复查找进程等待表和资源分配表,来确定进程Pj对资源ri的请求是否导致形成环路,若是,便确定出现死锁。 5.源代码参考: #include #include #include const int MAXQUEUE=100; //定义表的最大行数 typedef struct node{ int resource; int process; }cell; //边的结构(一个资源节点、一个进程节点) cell occupy[MAXQUEUE]; //分配边数组

5资源管理(死锁)习题

第九章死锁练习题 (一)单项选择题 l系统出现死锁的根本原因是( )。A.作业调度不当B.系统中进程太多C.资源的独占性D.资源管理和进程推进顺序都不得当 2.死锁的防止是根据( )采取措施实现的。A.配置足够的系统资源B.使进程的推进顺序合理C.破坏产生死锁的四个必要条件之一D.防止系统进入不安全状态 3.采用按序分配资源的策略可以防止死锁.这是利用了使( )条件不成立。A.互斥使用资源B循环等待资源c.不可抢夺资源D.占有并等待资源 4.可抢夺的资源分配策略可预防死锁,但它只适用于( )。A.打印机B.磁带机c.绘图仪D.主存空间和处理器 5.进程调度算法中的( )属于抢夺式的分配处理器的策略。A.时间片轮转算法B.非抢占式优先数算法c.先来先服务算法D.分级调度算法 6.用银行家算法避免死锁时,检测到( )时才分配资源。A.进程首次申请资源时对资源的最大需求量超过系统现存的资源量B.进程己占用的资源数与本次申请资源数之和超过对资源的最大需求量c.进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足尚需的最大资源量D进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足本次申请量,但不能满足尚需的最大资源量 7.实际的操作系统要兼顾资源的使用效率和安全可靠,对资源的分配策略,往往采用( )策略。A死锁的防止B.死锁的避免c.死锁的检测D.死锁的防止、避免和检测的混合 (二)填空题 l若系统中存在一种进程,它们中的每一个进程都占有了某种资源而又都在等待其中另一个进程所占用的资源。这种等待永远不能结束,则说明出现了______。2.如果操作系统对______或没有顾及进程______可能出现的情况,则就可能形成死锁。3.系统出现死锁的四个必要条件是:互斥使用资源,______,不可抢夺资源和______。4.如果进程申请一个某类资源时,可以把该类资源中的任意一个空闲资源分配给进程,则说该类资源中的所有资源是______。5.如果资源分配图中无环路,则系统中______发生。6.为了防止死锁的发生,只要采用分配策略使四个必要条件中的______。7.使占有并等待资源的条件不成立而防止死锁常用两种方法:______和______. 8静态分配资源也称______,要求每—个进程在______就申请它需要的全部资源。9.释放已占资源的分配策略是仅当进程______时才允许它去申请资源。10抢夺式分配资源约定,如果一个进程已经占有了某些资源又要申请新资源,而新资源不能满足必须等待时、系统可以______该进程已占有的资源。11.目前抢夺式的分配策略只适用于______和______。12.对资源采用______的策略可以使循环等待资源的条件不成立。13.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于______。14.只要能保持系统处于安全状态就可______的发生。15.______是一种古典的安全状态测试方法。16.要实现______,只要当进程提出资源申请时,系统动态测试资源分配情况,仅当能确保系统安全时才把资源分配给进程。17.可以证明,M个同类资源被n个进程共享时,只要不等式______成立,则系统一定不会发生死锁,其中x为每个进程申请该类资源的最大量。18.______对资源的分配不加限制,只要有剩余的资源,就可把资源分配给申请者。19.死锁检测方法要解决两个问题,一是______是否出现了死锁,二是当有死锁发生时怎样去______。20.对每个资源类中只有一个资源的死锁检测程序根据______和______两张表中记录的资源情况,把进程等待资源的关系在矩阵中表示出来,以判别是否出现死锁。21.如果资源类中含有若干个资源,应根据进程对各类资源的占有量、______和各类资源的______来考虑是否有死锁存在。22.解除死锁的方法有两种,一种是______一个或几个进程的执行以破坏循环等待,另一种是从涉及死锁的进程中______ 23.中断某个进程并解除死锁后,此进程可从头开始执行,有的系统允许进程退到发生死锁之前的那个______开始执行。24.操作系统中要兼顾资源的使用效率和安全可靠,对不同

使用锁分配图动态检测混合死锁

计算机研究与发展DOI :10.7544桙issn 1000‐1239.2017.20160369Journal of Computer Research and Development 54(7):15571568,2017 收稿日期:2016-05-25;修回日期:2017-02-06  基金项目:国家自然科学基金项目(61173021,61672191) T his w ork w as supported by the National Natural Science Foundation of China (61173021,61672191). 通信作者:苏小红(sxh @hit .edu .cn )使用锁分配图动态检测混合死锁 禹 振 苏小红 邱 景 (哈尔滨工业大学计算机科学与技术学院 哈尔滨 150001) (y uzhen _3301@aliyun .com ) Dynamically Detecting Multiple Types of Deadlocks Using Lock Allocation Graphs Yu Zhen ,Su Xiaohong ,and Qiu Jing (School o f Com p uter Science and Technolo gy ,H arbin Institute o f Technolo gy ,H arbin 150001) Abstract Deadlock bugs are hard to expose ,reproduce and diagnose .Once happening ,they will cause increasing response time ,decreasing throughput ,or even crash to the target multithreaded p rograms .However ,current deadlock detection techniques can detect only one mutex ‐caused deadlock at a time .In order to detect all possible deadlocks one time caused by multiple threads and multiple mutexes or rwlocks ,this paper proposes the concept of multiple ‐type lock allocation graph (M LAG )and its construction method .T hen a M LAG ‐based dynamic detection algorithm to detect multiple types of deadlocks is proposed .By instrumenting all lock 桙unlock operations on mutexes and rwlocks ,our method dynamically constructs and real ‐time updates a M LAG w hich reflects the synchronization state of the target program .Our method detects deadlock bugs by detecting cycles on the M ALG and checking w hether or not a cycle is a deadlock cycle .When a deadlock is detected ,the method outputs information about that bug to assist debugging .T he experimental results on benchmarks show that our method is strong in deadlock detection for successfully detecting all 13deadlock bugs with 5types ,and has a slight impact on target programs for incurring at most 10畅15%slowdow n to openldap ‐2畅2畅20摧s performance ,and is scalable because the overhead increase gently along with an exponentially increasing number of threads .Key words dynamic analysis ;software testing ;concurrency bug detection ;deadlock detection ;cycle detection 摘 要 死锁难以暴露、重演和调试.一旦发生,将导致多线程程序响应时间增长、吞吐量下降甚至宕机崩溃.现有死锁检测技术每次只能检测一个互斥锁死锁.为一次性检测由多个线程和多个互斥锁或读写锁造成的所有类型死锁,首先提出混合锁分配图的概念和构建方法,然后提出一种利用混合锁分配图动态检测混合死锁的方法.通过劫持所有互斥锁和读写锁的加锁解锁操作,以动态构建和实时更新一个反映目标程序同步状态的混合锁分配图.通过在锁分配图上检测环并判定该环是否为死锁环来检测死锁.当检测到死锁时,输出死锁信息来辅助调试.死锁检测实验、性能影响实验和可扩展性实验结果表明:该方法成功检测出所有13个共5种类型的死锁缺陷,检测能力强;给openldap ‐2畅2畅20带来至多10畅15%的性能下降幅度,对目标程序造成的性能影响较小;性能开销随线程数目指数级增大而平缓增长,扩展性良好. 万方数据

相关文档
最新文档