水力学第八章讲义

水力学第八章讲义
水力学第八章讲义

第八章 边界层理论基础及绕流运动

边界层是在实际流体的大雷诺数流动中,紧贴固壁存在的一个粘性起主导作用的薄流层。根据边界层的流动特征建立起来的边界层理论不仅为处理无分离的大雷诺数流动的粘性影响提供了手段,而且也给边界层外的理想流体假设提供了依据,对理论流体力学和实验流体力学的结合奠定了基础。

§8—1 边界层的概念

● 在讨论来流绕过物体的外部流动时,如果流动的雷诺数足够大,似乎有理由忽略粘性,

作理想流体假设,使问题简单易解。然而,不论流动的雷诺数大到什么程度,也不能改变无滑移物面条件必须满足这个事实,所以紧贴着物体表面,有一层薄的边界层,在边界层中流速从零迅速增大,而且雷诺数越大,边界层越薄,流速梯度越大,所以在边界层中,粘性力是必须要考虑的。而在边界层外,则完全可以作理想流体处理。 ● 边界层厚度可以看成是壁面对来流的粘滞作用扩散范围的度量,定义为壁面起沿法向

至流速达到外界主流流速之99%处。粘性扩散的范围与νt 成比例,对于大雷诺数流

动,边界层是很薄的,除非有非常长的作用时间。

● 正因为边界层的厚度比起一般规则物体的曲率半径是很薄的,所以在局部观察边界层

内的流动时,物面就好象是平板一样。由此可见,一块平板的外部绕流问题是最重要,最基本的。

● 为限制粘性扩散的作用时间,考虑长度为l 的平

板恒定绕流。外界主流中的一个流体质点从平板前缘起顺流运动x 距离,受板面粘滞作用影响的时间为x / U ,可见边界层厚度δ将随x 增加,估计其量级为δν()()/x x

U x R ex ∝

=12

. 注意边界层的

外边界线)(x δ不是流线,它只是一个区域范围的界线。

● 边界层中的流动也存在两种流态,从前缘起自层流

开始,随x 增加,边界层越来越厚,壁面对扰动的稳定作用逐渐减弱,直至发生流态的转捩。转捩点

x C

对应的雷诺数

Ux C

ν

记为R eC ,称为转捩临界雷诺

数。影响边界层转捩的因素很多、很复杂,所以层流与紊流的转捩不是在某个断面突然发生的,而是在一个过渡区内完成的。转捩点主要依靠试验确定。一般认为转捩临界雷诺数在3×105~3×106之间。 ● 层流边界层与紊流边界层在边界层厚度、边界层内

速度分布和壁面切应力等方面有很大的区别。紊流

边界层中雷诺应力所代表的动量对流使流速分布趋于均匀,所以紊流边界层比层流边界层厚,顺流增厚的速度也比层流边界层快,相对均匀的流速分布还导致壁面切应力的增加。正因为如此,对两种流态的边界层必须分别讨论。

§8—2 边界层微分方程式

● 根据边界层的特点,对N-S 方程的各项进行量级分析,去掉高阶小量的项,简化为边

界层微分方程。首先,认为边界层厚度方向的特征长度)(l δ比长度方向的特征值l 是高一阶的小量。其次,认为边界层内流动的惯性力项与粘性力项是同阶量项。y u 比x u 小一个量级,

x

??比y

??小一个量级。

● 经简化,边界层微分方程为:???????????=??+??=??''-????

+??-=??+??00

]

[11y u

x

u y p

u u y u y x p y u u x u u y x y x x x y x x ρμρρ ● 因为 0=??y

p

,所以 )(x p p =. 这说明边界层中一个断面上的p 都是相等的,故可用其外边界上的p 来代表。而外边界上的p 又可从边界层外部流动得到,外部流动可看成理想流体的流动,根据伯努利方程

const 2

2=+

U p

ρ

可知

x

U

U x p x p d d d d 11-==??ρρ,这里U

是边界层外边界上的流速,可从外部流动解得,对于平板绕流的情况,U 是常数。 ● 将上述结果代入,边界层微分方程最终可写成

][1d d y x x x y x x

u u y

u y x U U y u u x u u ''-????

+=??+??ρμρ. §8—3 边界层几种厚度的定义

● 位移厚度1δ : 因为有了边界层,使通过断面的流

量比理想流体流动时减少了 ?-δ

d )(y u U x ,把这些流量

折合成理想流体流动通过一个厚度1δ的流量,这个厚度就叫做位移厚度。根据定义 ?-

δ0

1d )1(y U

u x . 因为

有了边界层,来流的流线向外排挤了位移厚度的距离,所以位移厚度也称为排挤厚度。

● 动量损失厚度δ2 : 边界层内流动通过断面的质量流量为 ?δ

ρ0

d y u x ,动量通量为

ρ0

d y u u x x ,如果这些流量用理想流体流动速度U 运动,则动量通量为 ?δ

ρ0

d y u U x ,相

当于因为有了边界层,损失了 ?-δ

ρ0

d )(y u U u x x 的动量通量,把这些动量通量折合成理

想流体流动通过一个厚度2δ的动量通量,这个厚度就叫做动量损失厚度。根据定义

?

-=δ

δ02d )1(y U u

U

u x x

.

● 很显然,动量损失厚度δ2小于位移厚度1δ. 另外 1δ 和 δ2 定义式中的积分上限可换

成∞.

● 动能损失厚度3δ :边界层内流动通过断面的质量流量为

ρ0

d y

u x ,具有的动能为

ρ0

2

d y u u x x

如果这些流量用理想流体流动速度U 运动,则具有的动能为?

δρ0

2

d y

U

u x ,因为有了边界层,使通

过断面的流体动能比理想流体流动时减少了?

-δρ0

2

2d )(y

u U u

x x

,把这些动能通量折合成理想流体流动

通过一个厚度2δ的动能通量,这个厚度就叫做动能损失厚度。根据定义?-=δ

δ

22

3

d )1(y U u U u x x 。 §8—4 平板边界层动量积分方程

对平板绕流的如图区域应用动量方程,进口断面选在平板前缘处,出口断面离前缘距离为x ,出口断面厚度为当地边界层厚度δ()x ,进口断面厚度取为出口断面的δδ()()x x -1,这样通过进口断面和出口断

面的流量是相等的,必有一条流线可以连接两个断面的厚度,用它作为区域的上边界。由于是平板绕流,上边界和两断面上的压强都是常数,流体在沿程方向的受力只有板面摩擦力,所以动量方程具体化为:

?????

-=-=+----=--)

(0

022

12)(0)

(02

)

()(0

22

d )()()(d )1(d )1(d d 1x x

x x x x x x x x

x x x U x U y U u y U u U u U

y U y u δδδδδτδρδρρρ

ρ,

即 202

d d U

x ρτδ=. 它有清晰的物理解释:平板绕流边界层中沿程单位长度上的动量通量损失等于

板面切应力。

§8—5 边界层的分离、压强阻力

● 非流线型物体绕流的边界层与平板绕流不

同,由于存在

??p

x

>0 的逆压区,处于逆压区中边界层内的流速剖面会顺流变得越来越瘦削,紧贴壁面的流体越走越慢,壁面切应力则越来越小,直到分离点处,壁面切应力降为零,即

??u y

x y ==0

0,边界层内的流体质

点开始脱离壁面,此后便会发生流体沿着壁面‘回流’的现象,就象我们在§7-2中讨论平面库塔流时提到 P <-1 的情况,这样边界层中从上游流来的流体在到达分离点时,受到堆积和回流的影响,只能被挤向主流,离开壁面,这就是边界层的分离。 ● 由于在分离点后的回流区、旋涡区中压强大大下降,导致绕流物体前后的压差,形成

压强阻力,也可称为形状阻力。绕流物体的阻力包括摩擦阻力和压强阻力两部分。 ●

边界层理论回答了实际流体绕流中物体阻力的成因,也对理想流体绕流中物体不受阻

力的达朗贝尔佯谬作出了解释。

为减小绕流物体的总阻力应从摩擦阻力和压强阻力两个方面综合考虑,其中降低压强阻力的原则是尽可能避免或推迟边界层的分离,缩小旋涡区。采用人工激流,提前转捩,使边界层在分离前转变为紊流是方法之一,这样做的理由是:紊流具有较丰满的速度分布,较大的动能,在抵抗逆压时比层流能更持久。

水力学第二章课后习题测验答案

2.12 密闭容器,测压管液面高于容器内液面h =1.8m ,液体的密度为850kg/m 3,求液面压 强。 解:08509.807 1.8a a p p gh p ρ=+=+?? 相对压强为:15.00kPa 。 绝对压强为:116.33kPa 。 答:液面相对压强为15.00kPa ,绝对压强为116.33kPa 。 2.13 密闭容器,压力表的示值为4900N/m 2,压力表中心比A 点高0.4m ,A 点在水下1.5m ,, 求水面压强。 解:0 1.1a p p p g ρ=+- 4900 1.110009.807a p =+-??

5.888a p =-(kPa ) 相对压强为: 5.888-kPa 。 绝对压强为:95.437kPa 。 答:水面相对压强为 5.888-kPa ,绝对压强为95.437kPa 。 解:(1)总压力:433353.052Z P A p g ρ=?=??=(kN ) (2)支反力:()111333R W W W W g ρ==+=+??+??总水箱箱 980728274.596W =+?=箱kN W +箱 不同之原因:总压力位底面水压力与面积的乘积,为压力体g ρ?。而支座反力与水体 重量及箱体重力相平衡,而水体重量为水的实际体积g ρ?。 答:水箱底面上总压力是353.052kN ,4个支座的支座反力是274.596kN 。 2.14 盛满水的容器,顶口装有活塞A ,直径d =0.4m ,容器底的直径D =1.0m ,高h =1.8m , 如活塞上加力2520N (包括活塞自重),求容器底的压强和总压力。

水力学

目录 绪论: (1) 第一章:水静力学 (1) 第二章:液体运动的流束理论 (3) 第三章:液流形态及水头损失 (3) 第四章:有压管中的恒定流 (5) 第五章:明渠恒定均匀流 (5) 第六章:明渠恒定非均匀流 (6) 第七章:水跃 (7) 第八章:堰流及闸空出流 (8) 第九章:泄水建筑物下游的水流衔接与消能 (9) 第十一章:明渠非恒定流 (10) 第十二章:液体运动的流场理论 (10) 第十三章:边界层理论 (11) 第十四章:恒定平面势流 (11) 第十五章:渗流 (12) 第十六章:河渠挟沙水流理论基础 (12) 第十七章:高速水流 (12) 绪论: 1 水力学定义:水力学是研究液体处于平衡状态和机械运动状态下的力学规律,并探讨利用这些规律解决工程实际问题的一门学科。 2 理想液体:易流动的,绝对不可压缩,不能膨胀,没有粘滞性,也没有表面张力特性的连续介质。 3 粘滞性:当液体处在运动状态时,若液体质点之间存在着相对运动,则质点见要产生内摩擦力抵抗其相对运动,这种性质称为液体的粘滞性。可视为液体抗剪切变形的特性。(没有考虑粘滞性是理想液体和实际液体的最主要差别) 4 动力粘度:简称粘度,面积为1m2并相距1m的两层流体,以1m/s做相对运动所产生的内摩擦力。 5 连续介质:假设液体是一种连续充满其所占空间毫无空隙的连续体。 6 研究水力学的三种基本方法:理论分析,科学实验,数值计算。 第一章:水静力学 要点:(1)静水压强、压强的量测及表示方法;(2)等压面的应用;(3)压力体及曲面上静水总压力的计算方法。

7 静水压强的两个特性:1)静水压强的方向与受压面垂直并指向受压面2)任一点静水压强的大小和受压面方向无关,或者说作用于同一点上各方向的静水压强大小相等。 8 等压面:1)在平衡液体中等压面即是等势面2)等压面与质量力正交3)等压面不能相交4)绝对静止等压面是水平面5)两种互不相混的静止液体的分界面必为等压面6)不同液体的交界面也是等压面 9 静水压强的计算公式:p=p0+ 10 绕中心轴作等角速度旋转的液体: 11 绝对压强:以设想没有大气存在的绝对真空状态作为零点计量的压强,称为绝对压强。 12 相对压强: 13 真空度:是指该点绝对压强小于当地大气压强的数值, 14 压强的测量:测压管,U型水银测压计, 差压计 15 静止液体内各点,测压管水头等于常数, 16 作用在矩形上的静水总压力:(画图是考点)1)按一定比例,用线段长度代表改点静水压强的大小2)用箭头表示静水压强的方向,并与作用面垂直P37 17 静水总压力的计算:(为平面形心在点C液面下的淹没深度) () 18 矩形,绕形心轴的面积惯矩:。圆形平面绕圆心轴线的面积惯矩 19作用在曲面上的静水总压力:,,, tan 20 沉体:如果质量力大于上浮力,物体就会下沉,直到沉到底部才停止下来,这样的物体称为沉体。 浮体:如果质量力小于上浮力,物体就会上浮,一直要浮出水面,且使物体所排开的液体的重量和自重刚好相等后,才能保持平衡状态,这样的物体我们称为浮体。(定倾中心要高于重心) 潜体:质量力等于上浮力,物体可以潜没于水中任何位置而保持平衡,这样的物体称为潜体。(重心位于浮心之下) 21 平衡的稳定性:是指已处于平衡状态的潜体,如果因为某种外来干扰使之脱离平衡位置时,潜体自身恢复平衡的能力。

水力学(闻德荪)习题答案第八章

选择题(单选题) 8.1 明渠均匀流只能出现在:(b ) (a )平坡棱柱形渠道;(b )顺坡棱柱形渠道;(c )逆坡棱柱形渠道;(d )天然河道中。 8.2 水力最优断面是:(c ) (a )造价最低的渠道断面;(b )壁面粗糙系数最小的断面;(c )过水断面积一点,湿周最小的断面;(d )过水断面积一定,水力半径最小的断面。 8.3 水力最优矩形渠道断面,宽深比/b h 是:(c ) (a )0.5;(b )1.0;(c )2.0;(d )4.0。 8.4 平坡和逆坡渠道中,断面单位能量沿程的变化:(b ) (a ) de ds >0;(b )de ds <0;(c )de ds =0;(d )都有可能。 8.5 明渠流动为急流时:(a ) (a )r F >1;(b )h >c h ;(c )v 1;(b )h >c h ;(c )v

水力学知识点讲解.

1 第一章 绪 论 (一)液体的主要物理性质 1.惯性与重力特性:掌握水的密度ρ和容重γ; 2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。 描述液体内部的粘滞力规律的是牛顿内摩擦 定律 : 注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动 3.可压缩性:在研究水击时需要考虑。 4.表面张力特性:进行模型试验时需要考虑。 下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设 1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。 2.理想液体:忽略粘滞性的液体。 (三)作用在液体上的两类作用力 第二章 水静力学 水静力学包括静水压强和静水总压力两部分内容。通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。 (一)静水压强: 主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。 1.静水压强的两个特性: (1)静水压强的方向垂直且指向受压面 (2)静水压强的大小仅与该点坐标有关,与受压面方向无关, 2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。 (它是静水压强计算和测量的依据) 3.重力作用下静水压强基本公式(水静力学基本公式) p=p 0+γh 或 其中 : z —位置水头, p/γ—压强水头 (z+p/γ)—测压管水头 请注意,“水头”表示单位重量液体含有的能量。 4.压强的三种表示方法:绝对压强p ′,相对压强p , 真 空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑ 相对压强:p=γh,可以是正值,也可以是负值。要求 掌握绝对压强、相对压强和真空度三者的概念和它们之间的转换关系。 1pa(工程大气压)=98000N/m 2=98KN/m 2 下面我们讨论静水总压力的计算。计算静水总压力包括求力的大小、方向和作用点,受压面可以分为平面和曲面两类。根据平面的形状:对规则的矩形平面可采用图解法,任意形状的平面都可以用解析法进行计算。 (一)静水总压力的计算 1)平面壁静水总压力 (1)图解法:大小:P=Ωb, Ω--静水压强分布图面积 方向:垂直并指向受压平面 作用线:过压强分布图的形心,作用点位于对称轴上。 静水压强分布图是根据静水压强与水深成正比关系 绘制的,只要用比例线段分别画出平面上俩点的静水压强,把它们端点联系起来,就是静水压强分布图。 (2)解析法:大小:P=p c A, p c —形心处压强 方向:垂直并指向受压平面 作用点D :通常作用点位于对称轴上,在平面的几何中心之下。 求作用在曲面上的静水总压力P ,是分别求它们的水平分力P x 和铅垂分力P z ,然后再合成总压力P 。 (3)曲面壁静水总压力 1)水平分力:P x =p c A x =γh c A x 水平分力就是曲面在铅垂面上投影平面的静水总压力,它等于该投影平面形心点的压强乘以投影面面积。要求能够绘制水平分力P x 的压强分布图,即曲面在铅垂面上投影平面的静水压强分布图。 2〕铅垂分力:P z =γV ,V---压力体体积。 在求铅垂分力P z 时,要绘制压力体剖面图。压力体是由自由液面或其延长面,受压曲面以及过曲面边缘的铅垂平面这三部分围成的体积。当压力体与受压面在曲面的同侧,那么铅垂分力的方向向下;当压力体与受压面在曲面的两侧,则铅垂分力的方向向上。 3〕合力方向:α=arctg 下面我们举例来说明作用在曲面上的压力体和静水总 压力。 例5图示容器左侧由宽度为b 的直立平面AB 和半径为R 的1/4圆弧曲面BC 组成。容器内装满水,试绘出AB 的 压强分布图和BC 曲面上的压力体剖面图及水平分力的压强分布图,并判别铅垂作用力的方向, 铅垂作用力大 小如何计算? 解:(1)对AB 平面,压强分布如图所示。总压力P=1/2 γH 2b ; (2)对曲面BC ,水平分力的压强分布如图所示, c p z =+γ x z P P d y d u μ τ=

大学水力学课件

大学水力学课件 大学水力学课件 水力学是研究以水为代表的液体的宏观机械运动规律,及其在工程技术中的应用。水力学包括水静力学和水动力学。 水力学课件 【开课单位】环境科学与工程学院【课程模块】学科基础【课程编号】【课程类别】必修 【学时数】48(理论48实践0)【学分数】3 一、课程描述 本课程大纲根据20**年本科人才培养方案进行修订。 (一)教学对象:环境工程专业本科生 (二)教学目标及修读要求 1、教学目标 掌握基本概念。包括:流体的主要物理性质及作用于流体的力,静水压强及其特性,压强的测量与表示方法,恒定一元流,理想液体,微小流束,均匀流与非均匀流,非均匀渐变流与急变流,水头损失,液体运动的两种型态,管道的基本概念,明渠的类型,明渠均匀流,水力最佳断面,允许流速,明渠水流的三种流态,断面比能与临界水深,临界底坡、缓坡与

陡坡,明渠恒定非均匀渐变流,水跃,共轭水深,堰流的类型,闸孔出流。 掌握基本理论。包括:静水压强的基本公式,几种质量力同时作用下的液体平衡,实际液体恒定总流的能量方程及应用,恒定总流的动量方程及应用,量纲分析与π定理,液流型态及水头损失液体运动的两种型态,谢才公式,棱柱体明渠中恒定非均匀渐变流水面曲线分析,棱柱体水平明渠的水跃方程,水跃的能量损失,堰流与闸孔出流。 掌握基本计算。一是建筑物所受的水力荷载,即所承受的静水压力、动水总作用力等的计算;二是建筑物的过水能力计算;三是水流的流动形态及水头损失计算;四是水流的能量消耗计算。 2、修读要求 水力学是力学的一个分支,通过课程学习和训练,使学生掌握水力学基本概念、基本原理、基本技能和方法;培养学生分析解决问题的能力和实验技能,并为学习专业课程和处理工程实际中的技术问题打下基础。通过课堂讲授和讨论、课后辅导、习题和练习、实验和实践教学等教学环节,运用多媒体或实验等直观教学手段,完成教学大纲要求的基本内容。由于水力学是一门技术基础课,应当理论联系实际,但应以分析水流现象,揭示水流运动规律,加强水力学的'基本概念和基本原

水力学第二章课后习题答案

2.12 密闭容器,测压管液面高于容器内液面h=1.8m ,液体的密度为850kg/m 3,求液面 压强。 解:P o = P a ,gh = P a 850 9.807 1.8 相对压强为:15.00kPa。 绝对压强为:116.33kPa。 答:液面相对压强为15.00kPa,绝对压强为116.33kPa。 2.13 密闭容器,压力表的示值为4900N/m 2,压力表中心比A点高0.4m , A点在水下 1.5m,,求水面压强。 P0 1.5m 1 0.4m A

解: P0 = P a P -1.1 'g 二P a 4900 -1.1 1000 9.807 二p a「5.888 (kPa) 相对压强为:_5.888kPa。 绝对压强为:95.437kPa。 答: 水面相对压强为-5.888kPa,绝对压强为95.437kPa。 3m 解:(1)总压力:Pz=A p=4「g 3 3 = 353.052 (kN) (2)支反力:R 二W总二W K W箱二W箱;?g 1 1 1 3 3 3 =W箱 9807 28 =274.596 kN W箱 不同之原因:总压力位底面水压力与面积的乘积,为压力体Qg。而支座反力与水体重量及箱体重力相平衡,而水体重量为水的实际体积Eg。 答:水箱底面上总压力是353.052kN,4个支座的支座反力是274.596kN。 2.14 盛满水的容器,顶口装有活塞A,直径d =0.4m,容器底的直径D=1.0m,高h

=1.8m ,如活塞上加力2520N (包括活塞自重),求容器底的压强和总压力 解: (1)容器底的压强: P D =P A'gh =252°9807 1.8 =37.706(kPa)(相对压强) /-d2 4 (2)容器底的总压力: P D二Ap D D2 p D12 37.706 10 = 29.614(kN) 4 4 答:容器底的压强为37.706kPa,总压力为29.614kN 。 2.6用多管水银测压计测压,图中标高的单位为m,试求水面的压强P0。

水力学第二章课后答案

1 2 6 11答案在作业本 2.12 (注:书中求绝对压强)用多管水银测压计测压,图中标高的单位为m , 试求水面的压强0p 。 解: ()04 3.0 1.4p p g ρ=-- 265.00a p =+(kPa ) 答:水面的压强0p 265.00=kPa 。 2-12形平板闸门AB ,一侧挡水,已知长l =2m ,宽b =1m ,形心点水深c h =2m ,倾角α=?45,闸门上缘A 处设有转轴,忽略闸门自重及门轴摩擦力,试求开启闸门所需拉力T 。 解:(1)解析法。 10009.80721239.228C C P p A h g bl ρ=?=?=????=(kN ) 2-13矩形闸门高h =3m ,宽b =2m ,上游水深1h =6m ,下游水深2h =4.5m ,试求: (1)作用在闸门上的静水总压力;(2)压力中心的位置。 解:(1)图解法。 压强分布如图所示: ∵ ()()12p h h h h g ρ=---???? 14.71=(kPa ) 14.713288.263P p h b =??=??=(kN ) 合力作用位置:在闸门的几何中心,即距地面(1.5m,)2 b 处。 (2)解析法。 ()()111 1.56 1.5980732264.789P p A g h hb ρ==-?=-???=(kN ) ()120.250.75 4.6674.5 =?+=(m ) ()222 1.539.80732176.526P p A g h hb ρ==-?=???=(kN ) ()22211111130.75 3.253 C C D C C C C I I y y y y A y A ??=+=+=+= ???(m ) 合力:1288.263P P P =-=(kN ) 合力作用位置(对闸门与渠底接触点取矩): 1.499=(m ) 答:(1)作用在闸门上的静水总压力88.263kN ;(2)压力中心的位置在闸门的

水力学知识点讲解

《水力学》学习指南 中央广播电视大学水利水电工程专业(专科) 同学们,你们好!这学期我们学习的水力学是水利水电工程专业重要的技术基础课程。通过本课程的学习,要求大家掌握水流运动的基本概念、基本理论和分析方法,;能够分析水利工程中一般的水流现象;学会常见的工程水力计算。 今天直播课堂的任务是给大家进行一个回顾性总结,使同学们在复习水力学时,了解重点和难点,同时全面系统的复习总结课程内容,达到考核要求。 第一章 绪 论 (一)液体的主要物理性质 1.惯性与重力特性:掌握水的密度ρ和容重γ; 2.粘滞性:液体的粘滞性是液体在流动中产生能量损失的根本原因。 描述液体内部的粘滞力规律的是牛顿内摩擦定律 : 注意牛顿内摩擦定律适用范围:1)牛顿流体, 2)层流运动 3.可压缩性:在研究水击时需要考虑。 4.表面张力特性:进行模型试验时需要考虑。 下面我们介绍水力学的两个基本假设: (二)连续介质和理想液体假设 1.连续介质:液体是由液体质点组成的连续体,可以用连续函数描述液体运动的物理量。 2.理想液体:忽略粘滞性的液体。 (三)作用在液体上的两类作用力 第二章 水静力学 水静力学包括静水压强和静水总压力两部分内容。通过静水压强和静水总压力的计算,我们可以求作用在建筑物上的静水荷载。 (一)静水压强: 主要掌握静水压强特性,等压面,水头的概念,以及静水压强的计算和不同表示方法。 1.静水压强的两个特性: (1)静水压强的方向垂直且指向受压面 (2)静水压强的大小仅与该点坐标有关,与受压面方向无关, 2.等压面与连通器原理:在只受重力作用,连通的同种液体内, 等压面是水平面。 (它是静水压强计算和测量的依据) 3.重力作用下静水压强基本公式(水静力学基本公式) p=p 0+γh 或 其中 : z —位置水头, p/γ—压强水头 (z+p/γ)—测压管水头 请注意,“水头”表示单位重量液体含有的能量。 4.压强的三种表示方法:绝对压强p ′,相对压强p , 真空度p v , ↑ 它们之间的关系为:p= p ′-p a p v =│p │(当p <0时p v 存在)↑ 相对压强:p=γh,可以是正值,也可以是负值。要求掌握绝对压强、相对压强和真空度三者的概念 c p z =+γ dy du μ τ=

水力学闻德荪习题答案第二章

选择题(单选题) 2.1 静止流体中存在:(a ) (a )压应力;(b )压应力和拉应力;(c )压应力和剪应力;(d )压应力、拉应力和剪应力。 2.2 相对压强的起算基准是:(c ) (a )绝对真空;(b )1个标准大气压;(c )当地大气压;(d )液面压强。 2.3 金属压力表的读值是:(b ) (a )绝对压强;(b )相对压强;(c )绝对压强加当地大气压;(d )相对压强加当地大气压。 2.4 某点的真空度为65000Pa ,当地大气压为0.1MPa,该点的绝对压强为:(d ) (a )65000Pa ;(b )55000Pa ;(c )35000Pa ;(d )165000Pa 。 2.5 绝对压强abs p 与相对压强p 、真空度V p 、当地大气压a p 之间的关系是:(c ) (a )abs p =p +V p ;(b )p =abs p +a p ;(c )V p =a p -abs p ;(d )p =V p +V p 。 2.6 在密闭容器上装有U 形水银测压计,其中1、2、3点位于同一水平面上,其压强关系 为:(c ) (a )1p >2p >3p ;(b )1p =2p =3p ;(c )1p <2p <3p ;(d )2p <1p <3p 。 2.7 用U 形水银压差计测量水管内A 、B 两点的压强差,水银面高差h p =10cm, A p -B p 为: (b )

(a)13.33kPa;(b)12.35kPa;(c)9.8kPa;(d)6.4kPa。 2.8露天水池,水深5 m处的相对压强为:(b) (a)5kPa;(b)49kPa;(c)147kPa;(d)205kPa。 2.9垂直放置的矩形平板挡水,水深3m,静水总压力P的作用点到水面的距离 D y为:(c) (a)1.25m;(b)1.5m;(c)2m;(d)2.5m。 2.10圆形水桶,顶部及底部用环箍紧,桶内盛满液体,顶箍与底箍所受张力之比为:(a) (a)1/2;(b)1.0;(c)2;(d)3。 2.11在液体中潜体所受浮力的大小:(b) (a)与潜体的密度成正比;(b)与液体的密度成正比;(c)与潜体淹没的深度成正比; (d)与液体表面的压强成反比。 2.12正常成人的血压是收缩压100~120mmHg,舒张压60~90mmHg,用国际单位制表示是 多少Pa? 解:∵1mm 3 101.32510 133.3 760 ? ==Pa ∴收缩压:100120mmHg13.33 =kPa16.00kPa 舒张压:6090mmHg8.00 =kPa12.00kPa 答:用国际单位制表示收缩压:100120mmHg13.33 =kPa16.00kPa;舒张压:

清华 水力学 讲义 第二章

第二章 流体静力学 本章研究流体平衡规律,由平衡条件求静压分布,并求静水总压力。 静止是相对于坐标系而言的,不论相对于惯性系或非惯性系静止的情况,流体质点之间肯定没有相对运动,这意味着粘性将不起作用,所以本章的讨论不须区分流体是实际(粘性)流体或理想流体。 §2—1 流体静压强及其特性 ● 静止流体的应力只有法向分量(因无相对运动),而且沿内法线方向(流体不能受拉),称为静压强。 ● 静压强p 仅取决于场点的空间位置,而与 作用面的方位无关。对如图以M 为顶点的 小四面体,写出平衡方程,再令小四面体 趋于M 点,注意到质量力比起面力为高阶 无穷小,即得证。 ● 静止流体的应力状态只须用一个静压强数量场p=p (x,y,z )来描述,任意一点、任意方位 上的应力为: p pn n =-. §2—2 流体的平衡微分方程 ● 在直角坐标系中,取体积微元六面体,建立流 体的平衡微分方程: X p x -=10ρ??; Y p y -=10ρ??; Z p z -=10ρ??. 合并表示成矢量形式 f p -?=10ρ. X,Y,Z 是质量力 f 的三个分量,?p 是静压强场的梯度:?=++p p x i p y j p z k ?????? . 流体的平衡微分方程实质上表明了质量力和压差力之间的平衡。 ● 把 k z j y i x ??????++≡? 称为哈米尔顿算子,它同时具有矢量和微分(对跟随其后的变量)运算的功能。用它来表达梯度,非常简洁,并便于记忆。 ● ?p 的三个分量是压强在三个坐标轴方向的方向导数,它反映了数量场),,(z y x p 在空间上的不均匀性。流体的平衡微分方程实质上表明了质量力和压差力之间的平衡,压强对流体受力的影响是通过压差来体现的。 §2—3 重力作用下的液体平衡 一. 重力作用下的平衡方程 ● 重力 f gk =-(z 轴垂直向上),液体(看成不可压缩流体)的平衡微分方程具体化为:γρ??-=-== g z p z p d d . 其解为:z p gz p p γρ-=-=00. 有时令 h z =-(向下为正),则

水力学知识点总结

一、流体的主要性质:①惯性(质量密度)②万有引力(重量和容重)③粘滞性④压 缩性 二、表面力:作用在液体的表面上,并与受作用的的液体表面积成比例的力。 三、质量力:作用在液体的每一个质点上,并与受作用的液体质量成比例的力。 四、静水压强:把静置液体作用在受压面单位面积上的静水压力,称为静水压强。 五、静水压强的特性:(1)静水压强的方向垂直并指向受压面(2)静水压强的大小与 作用面的方位无关 六、等压面:由压强相等的空间点构成的面积称为等压面。 七、等压面的两个性质:①在平行液体中,等压面为等势面②等压面垂直质量力 八、描述液体运动的两种方法:(1)拉格朗日法:把每一个质点作为研究对象,观察 其运动的轨迹、速度和加速度,掌握其运动状况,综合所有质点的运动情况就可 得到这个液体的运动规律,(2)欧拉法:以考察不同液体质点通过固定的空间点 的运动情况来了解这个运动空间内的流动情况,既着眼于研究各运动要素的分布 场,又叫流场法。 九、流管:在水流中,任取一条与流线重合的微小封闭曲线,通过曲线上每一点做一 条流线,这些流线成一个封闭的管状表面,称为流管 十、元流:充满以流管为边界的水流称为元流。 十一、非恒定流:液体运动区域内每个点处的动水压强和流速随时间而改变,也就是说他们不仅同坐标有关,而且同时间有关。 十二、恒定流:当运动液体在任意空间点处的动水压强和流速,均不随时间而改变时,称为恒定流。 十三、均匀流:组成总流的各个流线或元流为互相平行的直线时,这种水流称为均匀流。十四、均匀流的特性: (1)均匀流的过水断面为平面,其形状和尺寸均沿程不变。 (2)均匀流中,同一流线上不同点的流速都相等,,因此各过水断面上的流速分布相同,断面平均流速相等。 (3)均匀流过水断面上的动水压强分布规律与静水压强分布规律相同,既在同一过水断面上各点的测压管水头为一常输。 十四、非均匀流:水流的流线与流线之间不是互相平行的直线时,该水流称为非均匀流 十五、渐变流:水流的流线虽然不是相互平行的直线,但其流线间夹角甚小,或流线虽然平行,但并非直线,而其曲率半径甚大。既水流的流线近似于平行直线时。 十六、急变流:当水流流线间夹角很大或流线的曲率半径很小时称为急变流 十七、有压流:液体沿程整个周界都与固体壁面接触,而无自由表面的流动称为有压流 十八、无压流:若液体沿程一部分周界与固体壁面接触,另一部分与空气接触,具有自由 表面的流动。 十九、雷诺数的物理意义:水流的惯性力与粘滞力之比。 二十、形成紊流的条件(1)液体中有涡体形成(2)涡体必须脱离流层而冲入相邻流层,具体说,就是雷诺数要达到一定的数值。 二十一、自由出流:管道中出水水流直接流入大气中的出流。 二十二、淹没出流:出流则是管道出水口水流淹没在水下的出流。 二十三、长管:指水头损失以沿程损失为主、局部损失和流速水头在总损失中所占的比重很小的管道。 二十四、短管:局部损失和流速水头在总损失中所占的比重较大、计算时不能忽略的管道。二十五、边坡系数m:边坡上高差为1m的两点之间的水平距离。 二十六、棱柱体渠道:渠身长直,底坡、横断面的形状及尺寸都沿程保持不变的。 27、非棱柱体渠道:明渠的断面形状和尺寸筑成沿程改变的。 28、明渠均匀流满足的条件: (1)水流必须为恒定流(2)流量应沿程保持不变,并且没有水流的汇入和分出(3)渠道应是底坡沿程不变的、长而直的正坡棱柱体渠道。 29、缓流:由于底坡平缓,因而流速减小,遇到渠底有阻水的障碍物时,在障碍物处水面产生跌落,而在其上游则被壅高,并一直影响到上游较远处,这种水流状态称为、、 30、急流:波速小于水流的断面平均流速,则干扰波就不能向上游传播,而只能向下游传播,这种水流称为、、 31、断面比能E s与单位总能量的区别: (1)断面比能与单位总能量的基准面选择不同,两者相差一个渠底位置高度Z0 (2)水流在流动过程中,为了克服阻力要消耗一部分能量,所以水流的单位总能量沿流程总是不断减小,既dE/ds<0 32、临界底坡:将均匀水深h0恰好等于临界水深hk时,其相应的底坡称为、、、、 33、ii k为缓坡i=i k为临界坡 34、水跃:在较短渠(河)段内水深从小于临界水深急剧的跃升到大于临界水深的特殊局 部水力现象 35、水跃产生的条件:水流由急流向缓流过渡,长发生在溢流堰,闸门,陡槽等泄水建筑 物的下游。 36、闸孔出流:水流受到闸门或胸墙的控制,闸前水位壅高,水流由闸门底缘与闸底之间 的孔口流出,过水断面手闸门开启尺寸的限制,其水面是不连续的,这种水流 现象称为、、 37、堰流:水流由于受到堰坎或两侧边墙的束窄阻碍,上游水位壅高,水流经过溢流堰顶 下泄,其溢流水面上缘不受任何约束,而成为光滑连续的自由降落水面,这种 水流现象称为、、 38、堰流分类: (1)薄壁堰流:()/H<0.67 (2)实用堰流:0.67<=()/H<2.5 (3)宽顶堰流:2.5<=( )/H<10 39、明渠水流的三种流态:缓流急流临界流 40、明渠水流的判别方法:①波速②弗劳德数③临界水流④均匀流 41、作用于流体上的两种力:①质量力②表面力 42、运动液体的分类:恒定流均匀流有压流 43、圆管层流:①速度分布:抛物线②断面平均流速:最大流速

水力学

第4章流动形态及水头损失 一、判断题 1、紊流光滑区的沿程水头损失系数λ仅与雷诺数有关,而与相对粗糙度无关。(y ) 3、紊流中存在各种大小不同的涡体。(y ) 4、紊流运动要素随时间不断地变化,所以紊流不能按恒定流来处理。( x ) 5、谢才公式既适用于有压流,也适用于无压流。(y ) 6、 ' ' y u x uρ τ- =只能代表X 方向的紊流时均附加切应力。(x ) 7、临界雷诺数随管径增大而增大。(x ) 8、在紊流粗糙区中,对同一材料的管道,管径越小,则沿程水头损失系数越大。( y ) 9、圆管中运动液流的下临界雷诺数与液体的种类及管径有关。(x ) 10、管道突然扩大的局部水头损失系数ζ的公式是在没有任何假设的情况下导出的(x ) 11、液体的粘性是引起液流水头损失的根源。( y ) 11、不论是均匀层流或均匀紊流,其过水断面上的切应力都是按线性规律分布的。( x ) 12、公式gRJ ρ τ=即适用于管流,也适用于明渠水流。(x ) 13、在逐渐收缩的管道中,雷诺数沿程减小。(x ) 14、管壁光滑的管子一定是水力光滑管。(x ) 15、在恒定紊流中时均流速不随时间变化。(y ) 16、恒定均匀流中,沿程水头损失hf 总是与流速的平方成正比。( x ) 17、粘性底层的厚度沿流程增大。(x ) 18、阻力平方区的沿程水头损失系数λ与断面平均流速v 的平方成正比。(x ) 19、当管径和流量一定时,粘度越小,越容易从层流转变为紊流。(y ) 20、紊流的脉动流速必为正值。(x ) 23、当管流过水断面流速符合对数规律分布时,管中水流为层流。(x ) 24、沿程水头损失系数总是随流速的增大而增大。(x ) 25、边界层内的流动也有层流与紊流之分。(y ) 26、当雷诺数Re很大时,在紊流核心区中,切应力中的粘滞切应力可以忽略。( y ) 二、选择题 1、(3) 2、(1) 3、(2) 4、(1) 5、(4) 6、(3) 7、(3) 8、(2) 9、(1) 10、(2)11、(3)12、(1) 13、(2)14、(3)15、( 3)16、(1) 17、(2) 18、(4)19、(3)20、(3)21、(4)22、(3)23、(3)24、(2) 25、(2) 26、(1) 27、(4)28、(4)29(4) 1、其它条件不变,层流内摩擦力随压力的增大而() ⑴增大;⑵减小;⑶不变;⑷不定。 2、按普朗特动量传递理论,紊流的断面流速分布规律符合() ( 1 )对数分布;( 2 )椭圆分布( 3 )抛物线分布( 4 )直线分布。 3、其它条件不变,层流切应力随液体温度的升高而() ( 1 )增大;( 2 )减小;( 3 )不变;( 4 )不定。 4、其它条件不变,液体雷诺数随温度的增大而() ( 1 )增大;( 2 )减小;( 3 )不变;( 4 )不定。 5、谢才系数C 与沿程水头损失系数λ的关系为() (1 )C 与λ成正比;(2 ) C 与1/λ成正比(3 )C 与λ2 成正比;(4 ) C 与 λ 1成正比。

《水力学》第二章答案汇编

第二章:水静力学 一:思考题 2-1.静水压强有两种表示方法,即:相对压强和绝对压强 2-2.特性(1)静水压强的方向与受压面垂直并指向手压面;(2)任意点的静水压强的大小和受压面的方位无关,或者说作用于同一点上各方向的静水压强都相等. 规律:由单位质量力所决定,作为连续介质的平衡液体内,任意点的静水压强仅是空间坐标的连续函数,而与受压面的方向无关,所以p=(x,y,z) 2-3答:水头是压强的几何意义表示方法,它表示h 高的水头具有大小为ρgh 的压强。 绝对压强预想的压强是按不同的起点计算的压强,绝对压强是以0为起点,而相对压强是以当地大气压为基准测定的,所以两者相差当地大气压Pa. 绝对压强小于当地大气压时就有负压,即真空。某点负压大小等于该点的相对压强。Pv=p'-pa 2-4.在静水压强的基本方程式中C g p z =+ρ中,z 表示某点在基准面以上的高度,称为位置水头,g p ρ表示在该点接一根测压管,液体沿测压管上升的高度,称为测压管高度或压强水头,g p z ρ+称为测压管水头,即为某点的压强水头高出基准面 的高度。关系是:(测压管水头)=(位置水头)+(压强水头)。 2-5.等压面是压强相等的点连成的面。等压面是水平面的充要条件是液体处于惯性坐标系,即相对静止或匀速直线运动的状态。 2-6。图中A-A 是等压面,C-C,B-B 都不是等压面,因为虽然位置高都相同,但是液体密度不同,所以压强水头就不相等,则压强不相等。 2-7.两容器内各点压强增值相等,因为水有传递压强的作用,不会因位置的不同

压强的传递有所改变。当施加外力时,液面压强增大了A p ?,水面以下同一高度的各点压强都增加A p ?。 2-8.(1)各测压管中水面高度都相等。 (2)标注如下,位置水头z,压强水头h,测压管水头p. 图2-8 2-9.选择A 2-10.(1)图a 和图b 静水压力不相等。因为水作用面的面积不相等,而且作用面的形心点压强大小不同。所以静水压力Pa>Pb. (2)图c 和图d 静水压力大小相等。以为两个面上的压强分布图是相同的,根据梯形压强分布图对应的压力计算式可知大小相等,作用点离水面距离相等。 2-11.(1)当容器向下作加速运动时,容器底部对水的作用力为F=m*(g-a),由牛顿第三定律知水对容器的压力也等于F ,根据p=F/A,知底部的压强 p=)(*)()(a g h h V a g m A a g m -==--ρ水面上相对压强为0,所以作图如a 。 (2)当容器向上作加速运动时,水对容器底部的压力大小为)(a g m F +=,则底部压强大小)()(h g h p A a g m +==+ρ,水面压强为0,作图如b 。 P P

水力学复习资料汇总

第零章绪论 0.1水力学的任务与研究对象(了解) 水力学的任务是研究液体(只要是水)的平衡和机械运动的规律及其实际应用. 水力学研究的基本规律有两大主要组成部分:一是关于液体平衡的规律.它研究液体处于静止或相对平衡状态时,作用于液体上各种力之间的关系,这一部分称为水静力学;二是关于液体运动的规律,它研究液体在运动状态时,作用于液体上的力与运动要素之间的关系,以及液体的运动特性与能量转换等,这部分称为水动力学. 0.2液体的粘滞性(理想液体与实际液体最大的差别) 粘滞性当液体处于运动状态时,若液体质点之间发生相对运动,则质点间会产生内摩擦力来阻碍其相对运动,液体的这种性质就称为粘滞性,产生的内摩擦力叫做粘滞力. 0.3牛顿内摩擦定律当液体做层流运动时,相邻液层之间在单位面积上作用的内摩擦力(或粘滞力)的大小与速度梯度成正比,同时和液体的性质有关.即 . 0.4牛顿内摩擦定律的另一种表述(了解)P7 0.5运动粘度系数它是动力黏度系数与液体密度的比值,是表征液体粘滞性 大小的物理量.其值是随温度的变化而变化的,即温度越高,其值越小(液体的流动性是随温度的升高而增强的) 0.6牛顿内摩擦定律只适用于牛顿流体(符合牛顿内摩擦定律的液体,其特点是温度不变,动力黏度系数就不变P8图0.3) 0.7体积压缩率液体体积的相对缩小值与压强的增大值之比.(水的压缩性很小,一般不考虑) 0.8表面张力表面张力是指液体自由表面上液体分子由于两侧引力不平衡,使其受到及其微小的拉力(表面张力仅存在于液体表面,液体内部不存在,其值表示为自由面单位长度受到拉力的大小,并且随液体种类和温度的变化而变化,怎样变化) 0.9毛细现象在水力学实验中,经常使用盛有水或水银细玻璃管做测压计,由于表面张力的影响使玻璃管中液面和与之向连通容器中的液面不在同一水平面上.这就是物理学中所讲的毛细现象. 0.10由实验得知,管的内经越小,毛细管升高值越大,所以实验用的测压管内径不宜太小.P10图0.4,0,5 0.11连续介质在水力学中,把液体当作连续介质看待,即假设液体是一种连续充满其所占据空间毫无空隙的连续体.(水力学所研究的液体运动是连续介质的连续流动,但实际上,从微观角度来看,液体分子与分子之间是存在空隙的,但水力学研究的是液体的宏观运动,故将液体看作连续接介质) 0.12把液体看作连续介质的意义 如果我们把液体看作连续介质,则液流中的一切物理量都可以视为空间坐标和时间坐标的连续函数,这样,在研究液体的运动规律时,就可以运用连续函数的分析方法.

水力学考研讲义(重要知识点总结)

第1章概论 内容提要 本章主要介绍水力学的定义及研究内容。同时介绍了连续介质模型、波体的特征及主要物理力学性质和作用在波体上的力。 1.1 液体的连续介质模型 液体是由无数没有微观运动的质点组成的没有空隙存在的连续体,并且认为表征液体运动的各物理量在空间和时间上都是连续分布的。 在连续介质模型中,质点是最小单元,具有“宏观小”、“微观大”的特性。 1.2 液体的主要物理性质 液体的主要物理性质有质量和重量、易流性、黏滞性、压缩性、表面张力等。 液体单位体积内所具有的质量称为液体的密度,用ρ表示。 一般情况下,可将密度视为常数,水银的密度p=13600 kg/m3。 2.黏滞性 易流性: 液体受到切力后发生连续变形的性质。 黏滞性:液体在流动状态之下抵抗剪切变形的性质。 切力、黏性、变形率之间的关系可由牛顿内摩擦定律给出 3.压缩性 液体受压后体积减小的性质称为液体的压缩性。用体积压缩系数来衡量压缩性 大小,K值越大,液体越难压缩。 4.表面张力 表面张力是液体自由表面在分子作用半径一薄层内,由于分子引力大于斥力而 在表层沿表面方向产生的拉力。通常用表面张力系数来度量,其单位为N/m。 1.3 作用于液体的力 (1)无论是处于静止或运动状态都受到各种力的作用,这些力可以分为两类。 表面力:作用在液体的表面或截面上且与作用面的面积成正比的力,如压 力P、切力F。表面力又称为面积力。 质量力:作用在脱离体内每个液体质点上的力,其大小与液体的质量成正 比。如重力、惯性力。对于均质液体,质量力与体积成正比,故又称为体积力。 第2章水静力学 内容提要 水静力学研究液体平衡(包括静止和相对平衡)规律及其在工程实际中的应用。其主要任务是根据液体的平衡规律,计算静水中的点压强,确定受压面上静水压强的分布规律和求解作用于平面和曲面上的静水总压力等。 2.1 静水压强及其特性 在静止液体中,作用在单位面积上的静水压力定义为静水压强,用字母p表示。单位是N/m2(或Pa),kN/m2(或kPa)。 静水压强具有两个特性: (1)静水压强的方向垂直指向作用面; (2)静止液体中任一点处各个方向的静水压强的大小都相等,与该作用面的方位无关。 2.2 液体平衡微分方程 1.欧拉液体平衡微分方程

水力学第二章课后答案(20210203080748)

1 2 6 11 答案在作业本 2.12 (注:书中求绝对压强)用多管水银测压计测压,图中标高的单位为 m 试求水面的压强P o 。 P a 265.00 (kPa ) 答:水面的压强P o 265.00kPa 。 2-12形平板闸门AB ,一侧挡水,已知长l=2m 宽b=1m 形心点水深h c =2m 倾 角=45,闸门上缘A 处设有转轴,忽略闸门自重及门轴摩擦力,试求开启闸 门所需拉力T o △ 1.4 解: P 0 P 4 3.0 1.4 g P 5 2.5 1.4 Hg g 3.0 P a 2.3 1.2 Hg g 2.5 P a 2.3 2.5 1.2 1.4 P a 2.3 2.5 1.2 1.4 1.4 g 1.2 g 2.5 1.4 Hg g 3.0 1.4 g Hg g 2.5 3.0 1.2 1.4 g 13.6 2.5 3.0 1.2 1.4 g g

解:(1)解析法 P P c A h e g bl 1000 9.807 2 1 2 39.228 (kN) bl3 y D y c I c h c12 2 22 2 2 2 2.946 h c r 12 2 y C A sin bl sin 45 12 sin p sin 45, (m) a 对A点取矩,当开启闸门时,拉力厂满足’ # 户(打—儿)一丁 240 1 Z C6S0 /- 9 =31 007 (kN) 4 当TE3L007妙L时,可以开启闸门…

(2)图解法。a 压强分布如图所示,卩 p」=;屁sin45。=12.68 (kPa), A?+〒si£J45Q ;0g = 26.55 (kPa) … z、lb (12.68+26.55)x2x1 ““ Z1、 P =(P^P B>~ = ~---------- -- ——= 39.23 (kN) 对A点取矩,有P. AD^P^.lD.-T.AP -cos 45° — 0亠 ] 1 2 血?人5?卞+(丹一乙)?八牙乂几牙/ /. T= ---------------- 2 ----------- ? --- 门 / ? cos 45° 12.68x1x1 + (26.55-12.68) xlxj cos 45° = 31.009 (kN) d 答;开启闸门所 需拉力r=S1.009kNo

水力学(闻德荪)习题答案第八章

水力学 课程试题 一、判断题 1、局部水头损失系数可用尼古拉兹的试验图来分析说明其变化规律。 ( ) 2、重力与其它质量力同时作用时,等压面为水平面。 ( ) 3、在恒定紊流中,瞬时流速不随时间变化。 ( ) 4、明渠均匀流中,当底坡 i < i k (临界底坡) 时,则水深 h > h k (临界水深 )。 ( ) 5、瞬时压强减时均压强等于脉动压强。 ( ) 二、单项选择题 1、 静止液体中同一点各方向的压强 ( ) (1) 数值相等 (2) 数值不等 (3) 仅水平方向数值相等 (4) 沿铅直方向数值最大 2、平底棱柱体明渠的水跃函数 )(1h J 与)(2h J 的关系是 ( ) (1) )()(21h J h J = (2) )()(21h J h J > (3) )()(21h J h J < (4) 无法确定 3、已知某水闸下游收缩断面水深 c h = 0.6 m (相应的跃后水深 c h ''= 3.5 m),临界水深 k h = 1.6 m ,下游河道水深t h = 1.4 m ,则闸下将发生 ( ) (1)远驱水跃 (2) 临界水跃 (3) 淹没水跃 (4) 急流 4、在恒定流中 ( ) (1) 流线一定互相平行 (2) 断面平均流速必定沿程不变 (3) 不同瞬时流线有可能相交 (4) 同一点处不同时刻的动水压强相等 5、谢才公式RJ C v = ( ) (1)只适用于明渠水流; (2)只适用于管流; (3)适用于明渠流和管流; (4)只适用于均匀紊流。 6、在进行棱柱形明渠恒定渐变流水面曲线分析时,将明渠分为三个区,各区水面曲线有其确定的特征,例如 ( ) (1) 发生在第1区水面曲线为壅水曲线,发生在第2、3区为降水曲线 (2) 发生在第1、2区水面曲线为壅水曲线,发生在第3区为降水曲线 (3) 发生在第1、3区水面曲线为壅水曲线,发生在第2区为降水曲线 (4) 发生在第2、3区水面曲线为壅水曲线,发生在第1区为降水曲线 7、选择下列正确的等压面: ( ) (1) A ?A 面 (2) B ? B 面

相关文档
最新文档