叶面积指数遥感反演

冬小麦叶面积指数(LAI)的遥感反演

——经验模型和物理模型方法

李淑敏

2010/12/13

?第一部分.基础知识

?第二部分.遥感反演LAI 的方法

?第三部分.研究实例

本次课程主要内容

叶面积指数LAI 、遥感反演

经验模型反演方法、物理模型反演方法

几何光学模型、辐射传输模型

PROSAIL 模型

硕士论文——―基于MODIS/ASTER 的区域冬小麦叶面

积指数PROSAIL 模型反演研究”

BRDF 模型PROSPECT 模型、SAIL 模型

叶面积指数leaf area index

?定义:单位土地面积上植被叶片总面积。

叶片总面积/占地面积

?陆地生态系统的一个十分重要的参数:

农作物产量预估和病虫害评价;

反映作物生长发育的动态特征和健康状况。

?叶面积指数越大,表明单位土地面积上的叶面积越大。

那么,叶面积指数越大越好吗??

?以冬小麦为例了解叶面积指数变化情况

图为不同群体叶面积指数消长模型(彭永欣等,1992)1—过大群体;2—高产群体;3—过小群体. 低增缓增快

增衰减LAI 消长动态分为四个时期

1. 低速增长期,叶片总数较多,但叶面积较小,总叶面积增速较低;

2. 缓慢增长期,单叶面积渐次增加,但低温条件,出叶周期延长;

3. 快速增长期,气温回升,植株生长快速,至孕穗期LAI 达峰值;

4. 衰减期,植株生殖生长,叶片消亡叶面积衰减,至成熟期LAI 为0。一个生长期内冬小麦叶面积指数变化

叶面积指数获取方法

?实测方法

长宽法、称重法这些方法均需要消耗一定的人力进行实物测量。

借助有关测量工具例如LAI-2000、LAI-2200、LI-3100C、LI-3000、AccuPAR等,此方法仍需实地进行测量。

仅能获得地面有限点的LAI值,对于推广获取大范围LAI存在很大局限性,不能满足植被生态和作物长势监测需求

?遥感反演方法由于遥感数据具有覆盖范围广、时间与空间分辨率高、花费相对较少等优点。

可以用定量遥感方法反演区域LAI

?作物生长模型模拟LAI

遥感反演

?遥感的本质是反演,遥感模型是遥感反演研究的对象从携带了地物信息的电磁信号中提取地物的特征。

遥感的反演问题,是根据观测信息(遥感数据)和前向模型(遥感模型),求解或推算描述地物特征的应用参数(或目标参数)。

?病态反演

陆地遥感反演的根本问题,在于定量遥感往往需要用少量观测数据估计非常复杂的地表系统的当前状态。

已知远少于未知。

?先验知识

反演不会创造信息,不妥善利用先验知识,就不能很好地分配新观测到的信息到感兴趣的时空多变参数中去。

?先验知识越完善,反演结果越可靠。

那么,什么是先验知识??

?在对地遥感反演中,先验知识分为两类:

1)有关地物类型的先验知识

表现在物理模型的选择和模型偏差的统计规律等方面。

2)具体地表目标的先验知识

表现为模型参数的物理边界、不确定性和相关性,以及季相变化等。?随着模型的选择,模型参数的物理限制,如叶片大小非负,反射率非负且小于1,等等先验知识很自然地引入到反演之中,作为参数的“硬边界”,对此人们很少异议。(李小文)

利用遥感反演叶面积指数的依据

植被的光谱特征-红光波段和近红外波段

红-光合作用吸收谷–低反射率

近红-高反射峰–高反射率

―一峰一谷”是植被的光谱特征,与地表其它地物的光谱特征存在很大差别,所以这一特征成为遥感识别植被并判断植被状态的主要依据。

?有了遥感反演的方法,地面实测方法是否还需要呢??1) 由于地表异质性,由低、中分辨率遥感图像模拟出的叶面积指数有很大不确定性,需要对模拟数据的质量和精度进行评估和验证;

2) 有些反演算法还只是处于理论研究阶段,需要利用实测

值进行验证。

?因此,利用模型反演地表参数,需要积累大量的背景测量数据的支持。

经验模型物理利用定量遥感反演植被LAI 的方法

通过建立植被指数(VIs )与叶面积指数的统计关系来反演叶面积指数LAI 。基于植被-土壤波谱特性及非各向同性辐射

传输模型基础上的LAI 反演。

模型

方法一经验反演

?通过建立LAI与光谱数据和表征光谱数据的光谱指数之间的统计关系求算LAI

?最初,经验反演方法是以LAI为因变量,以光谱数据为自变量建立估算模型;

?后来发现,对于复杂的植被遥感,仅用个别波段或多个单波段数据分析对比来提取植被信息是相当局限的,因此往往选用多光谱遥感数据经分析运算(加、减、乘、除等线性或非线性组合方式),得出某些对植被长势、生物量等有一定指示意义的数值——即“植被指数”。

?单变量统计方法

是构建遥感信息单变量(不同波段的反射率值和各种VI)和LAI的经验关系模型来反演LAI。

在拟和单变量和LAI的关系时,一般用到线性模型、指数模型、对数模型、双曲线模型等预测模型,用总均方根差(RMSE)来评价拟和的精度。

?多变量统计方法

与单变量方法基本类似,不同之处在于前者是用多个遥

感信息变量与LAI建立经验统计关系模型。

多变量统计模型也可用RMSE来评价拟和精度。

?植被指数VIs(vegetation indices)

?植被指数种类繁多,它们有一个共同特点是很难消除土壤背景影响和忽略地物二向性反射的基本特征。

使用植被指数反演精度不高的主要原因。

?其中,归一化差植被指数NDVI(Normalized Difference Vegetation Index)是最常使用的一种光谱植被指数。

经验反演的特点

?优点:

简单易行

?缺点:

1)由于函数和函数中的系数是经验型的,这些系数随着植被类型及地点的不同而改变,并且植被指数受到诸如地形、土壤条件和大气状况等非植被因素和林冠层的几何结构等植被因素的影响,也存在很多缺点;

2)植被指数NDVI在消除土壤背景影响方面的能力较差,而且NDVI的饱和点较低,很容易达到饱和,在LAI较大时反应不灵敏;

模型精度没有保证。

方法二物理反演

?物理模型反演方法又称基于物理学的光学模型方法

?目前,植被遥感物理模型分为几何光学模型、辐射传输模型以及二者的混合模型,它们都是物理光学模型

?与经验统计反演LAI方法相比较,物理模型反演是更为可靠的方法??

物理模型反演方法?几何光学模型和辐射传输模型

?二向性反射及BRDF 模型

?PROSPECT 模型、SAIL 模型

及PROSAIL 模型

几何光学模型、辐射传输模型

PROSAIL 模型

BRDF 模型PROSPECT 模型、SAIL 模型

第二部分

?什么是几何光学模型和辐射传输模型?

?在冠层反射率模型中,之所以分为这两类,主要是由于地面植被(森林、草地、农作物)主要有两种外在形态

一种是几何特征明显(如树木、灌丛、成垄分布的农作

物等离散植被,GO)

另一种则无明显几何特征(如大面积草地、已封垄的农

作物等连续植被,RT)。

几何光学模型与辐射传输模型特点对照表

几何光学模型(Geometric-Optical,GO)主要考虑地表的宏观几何结构,把地表假设为具有已知几何形状和光学性质,按一定方式排列的几何体,通过分析几何体对光线的截获和遮阴及地表面的反射来确定植被冠层的方向反射(赵英时,2003)。

优点:考虑了植被冠层的二向性反射;

缺点:没有考虑冠层内的多次散射。

辐射传输模型(Radiative-Transfer,RT)其理论基础是辐射传输理论,描述光辐射和粒子在介质中传播的规律。

优点:考虑了植被冠层内的多次散射;

缺点:无法模拟植被冠层的二向性反射,近年来虽加入了热点效应模型,但无法直接得到LAI解析解。

―热点现象”

“二向性反射”遥感从定性走向定量的必然发展过程

考虑红边特性的多平台遥感数据叶面积指数反演方法研究

考虑红边特性的多平台遥感数据叶面积指数反演方法研究 叶面积指数(Leaf Area Index,LAI)是最重要的植被结构参数之一,是作物长势监测、作物估产、肥水管理等精准农业必备的数据源。遥感技术为大面积、及时获取LAI提供了有效手段。红边波段能够用于研究植物养分及健康状态监测、植被识别和生理生化参数等信息, 是定量遥感分析的理论基础。利用不同遥感数据估测植被LAI各有其优劣性,叶面积指数反演过程中需要充分挖掘包含红边波段的不同数 据源的特点。例如,高光谱数据红边波段数量多、波段窄,但是存在波段间高度相关、数据冗余的问题;包含单个红边波段的多光谱数据, 红边波段较宽,比高光谱数据的红边波段缺少了许多细节;包含多个 红边波段的多光谱数据,可以反映更多红边区域的光谱细节,并且由 于红边区域反射率迅速上升,红边区域内的不同波段之间存在较大差别,在实际反演中需要进行合理选择。本文针对不同遥感数据源的特点,围绕红边波段进行叶面积指数反演研究,主要研究内容及结论如下:(1)基于近地和航空高光谱数据红边波段的叶面积反演方法研究。基于研究区域采集的近地、航空高光谱数据和田间同步试验测量LAI 数据,探究航空和地面高光谱数据红边区域对冬小麦LAI的反演能力。首先,建立高光谱植被指数反演模型,进而研究红边波段组合法和传 统波段组合、逐波段组合方法对植被指数反演LAI精度的影响,结果 显示在红边区域680-750nm波段范围内,波段组合得到的植被指数与LAI的相关性非常高。最后,针对不同肥水条件下叶面积指数的特征 光谱及参数随不同试验条件存在差异,本文基于航空和近地高光谱数

据,以及田间实测数据,建立了基于高光谱植被指数MSAVI(Modified Soil-Adjusted Vegetation Index),NDVI(Normalized Difference Vegetation Index)和MTVI2(Modified Triangular Vegetation Index 2)的普适性强、精度高的冬小麦叶面积指数估算模型。(2)基于包含单个红边波段的多光谱卫星数据反演作物叶面积指数方法研究。针对一般红边波段代替红波段的改进植被指数多是基于单一时相、单一作物实现LAI估算中存在的对叶绿素含量的干扰因素考虑不足的缺陷,本文提出基于红边波段和红波段进行组合改进的新植被指数 ndvired&re(red-edgenormalizeddifferencevegetationindex),msr red&re(red-edgemodifiedsimpleratioindex)和 cired&re(red-edgechlorophyllindex)。依据田间实测的不同生育时期的四种作物(小麦,大麦,苜蓿,玉米)的叶面积指数和与田间试验准同步的rapideye卫星影像,建立基于植被指数的反演模型,结果证明本文提出的植被指数克服了在多时相和多种类型作物的情况下叶绿 素含量的变化对lai反演的影响,有效提高了lai的反演精度,比一般红边波段代替红波段的植被指数反演结果的决定系数提高至少10%。 (3)基于包含多个红边波段的多光谱卫星数据反演作物叶面积指数方法研究。面对包含多个红边波段的新发射多光谱卫星在作物参数反演中的研究尚未成熟的情况,本文以搭载两个红边波段的sentinel-2 卫星为例,针对不同红边波段之间光谱差异、多个红边波段的波段选择等问题,采用三种叶面积指数反演的经典方法:查找表、神经网络和植被指数法,建立冬小麦叶面积指数反演模型。作为对比,同时利用不

遥感反演土壤湿度的主要方法

遥感反演土壤湿度的主要方法 遥感反演土壤湿度根据波段的不同分为3类:微波遥感土壤湿度法;作物植被指数法;热红外遥感监测法(主要是应用热惯量模型)。 1.1 微波遥感土壤湿度法 分主动微波遥感监测法和被动微波遥感监测法两种。此方法物理基础坚实,即土壤的介电特性 和土壤含水量密切相关,水分的介电常数大约为80,干土仅为3,它们之间存在较大的反差。土壤的介电常数随土壤湿度的变化而变化,表现于卫星遥感图像上将是灰度值G亮度温度Tb的变化。因此,微波遥感土壤水分的方法被广泛地应用于实际的监测工作中。 1.1.1 主动微波遥感监测法 以应用x波段侧视雷达为主,主要是后向反射系数法。因为含水量的多少直接影响土壤的介电常数,使雷达回波对土壤湿度反映极为敏感,据此可建立后向散射系数和土壤水分含量之间的函数关系。国内李杏朝据微波后向反射系数法,用x波段散射计测量土壤后向反射系数,与同步获得的X 波段、HH极化机载SAR图像一起试验监测土壤水分;田国良等在河南也应用此方法也进行土壤水分研究。主动微波遥感土壤水分精度较高,且可以全天候使用,成为监测水分最灵活、最适用、最有 效的方法,随着大量的主动微波遥感器的卫星(ERS系列、EOS、SAR、Radar sat、ADEOS、TRMM 等)的发射升空,将使微波遥感的成本不断下降,逐渐被应用于实践 1.1.2 被动微波遥感监测法 原理同主动微波遥感法。值得指出,植被在地表过程研究中的影响突出,为了消除植被的影响,必须同时重视植被的遥感监测,建立相关的计算模型。Teng等通过实验得出在浓密植被覆盖区土壤湿度监测中应避免使用19GHZ波段,此时SMMR 的6.6GHZ波段比SSM/I的19GHZ在遥感监测土壤湿度信息方面的精度更高。说明在植被较密时,为了消除植被对土壤湿度反演的影响,应尽量 选择波段较长的微波辐射计。 1.2 作物植被指数法 采用此方法是基于植被在可见光部分叶绿素吸收了70%-90%红光,反射了大部分绿光,而由 于叶肉组织的作用,后行叶片在近红外波段的反射较强。通过各光谱波段所反射的太阳辐射的比来 表达,这就叫植被指数。常用的植被指数有:归一化植被指数(Normal Difference Vegetation Index, NDVI)、比值植被指数(Ratio Vegetation Index, RVI)距平植被指数(Average Vegetation Index, AVI)和植被条件指数(Vegetation Condition Index,VCI)。 1.3 热红外遥感监测法 土壤热惯量和土壤水分的关系密切,即土壤水分高,热惯量大,土壤表面的昼夜温差小,反之 亦然。热红外遥感手段主要利用地表温度日变化幅度、植被冠层和冠层空气温差、表观热惯量、热 模型(蒸散比)估测土壤含水量[5]。 土壤热惯量法是土壤热特性的综合性参数,定义为: P = tCm (1) (1)式中:P为热惯量(J/m2 k?S1/2);ρ为密度(kg/m3 );C为比热(J/kg?k);λ为热导率。在实际工作中,常用表观热惯量来代替P: ATI=(1一A)/(Td-Tn) (2) 式中:Td、Tn分别为昼夜温度,A为全波段反照率。

叶面积指数获取方法

A.直接方法直接测定方法是一种传统的、具有一定破坏性的方法。 1、叶面积的测定,传统的格点法和方格法。 2、描形称重法. 在一种特定的坐标纸上,用铅笔将待测叶片的轮廓描出并依叶形剪下坐标纸,称取叶形坐标纸重量,按公式计算叶面积. 3、仪器测定法. 叶面积测定仪可以分成两种类型,分别通过扫描和拍摄图像获取叶面积. 扫描型叶面积仪主要由扫描器(扫描相机) 、数据处理器、处理软件等组成,可以获得叶片的面积、长度、宽度、周长、叶片长度比和形状因子以及累积叶片面积等数据,主要仪器有: CI - 202 便携式叶面积仪、L I- 3000台式或便携式叶面积仪、AM - 300手持式叶面积仪等. 此外,还有使用台式扫描仪和专业图像分析软件测定的方法. 图像处理型 叶面积仪由数码相机、数据处理器、处理分析软件和计算机等组成,可以获取叶片面积、形状等数据,主要仪器有:W IND I2AS图象分析系统、SKYE 叶片面积图像分析仪、Decagon - Ag图象分析系统、WinFOL IA 多用途叶面积仪等. B、间接方法间接方法是用一些测量参数或用光学仪器得到叶面积指数,测量方便快捷,但仍需要用直接方法所得结果进行校正。 1、点接触法 点接触法是用细探针以不同的高度角和方位角刺入冠层,然后记录细 探针从冠层顶部到达底部的过程中针尖所接触的叶片数目,用以下公式计算. 式中,LA I为叶面积指数, n为探针接触到的叶片数, G (θ) 为投影函数,θ为天顶角. 当天顶角为57.5°时,假设叶片随机分布和叶倾角椭圆分布 ,则冠层 叶片的倾角对消光系数K的影响最小,此时采用32.5°倾角刺入冠层,会得出较准确的结果,用以下公式计算. 点接触法是由测定群落盖度的方法演进而来的 ,在小作物LA I的测量中较准确 ,但在森林中应用比较困难 ,主要是由于森林植物树体高大以及针叶树种中高密度的针叶影响了测定。 2、消光系数法 该法通过测定冠层上下辐射以及与消光系数该法通过测定冠层上下辐射以及与消光系数相关的参数来计算叶面积指数,前提条件是假设叶片。随机分布和叶倾角呈椭圆分布,由Beer - Lambert定 律知:

叶面积指数LAI测量仪器介绍

叶面积指数LAI测量仪器介绍 目的是给出各种测量LAI的仪器的直观介绍。 LA I 是一个无量纲、动态变化的参数, 随着叶子数量的变化而变化。另外, 植物叶子的生长与植物种类自身特性、外部环境条件以及人为管理方式有关。再加上LA I 的不同定义和假设导致了LAI 值测量的极大差异。植物LAI 的地面测量方法有2 类: 直接测量和间接测量。本文简要介绍LAI2200(LAI2000)、SUNSCAN、TRAC、AccuPAR和DHP仪器并且给出一些选择建议。目前,遥感科学国家重点实验室关于LAI测量的仪器有LAI2000、LAI2200、TRAC和LI3000A。 1,LAI2200(LAI2000) LAI2200植物冠层分析仪基于成熟的LAI-2000技术平台,利用“鱼眼”光学传感器(垂直视野范围148度,水平视野范围360度,波谱响应范围320nm~490nm)测量树冠上、下5个角度的透射光线,利用植被树冠的辐射转移模型(间隙率)计算叶面积指数、空隙比等树冠结构参数。利用随机FV-2200软件,可对数据进行深入处理分析。该仪器由美国 LI-COR公司开发。 仪器组成如下图所示。

测量注意事项: 尽可能避免直射的阳光,尽量在日出日落时或者多云的天气(阴天)进行测量,如果避免不了,需要注意:1,使用270度的遮盖帽或者更小视野的遮盖帽;2,背对着阳光进行测量,遮挡住日光和操作者本身;3,对植物冠层进行遮阴处理;4,如果云分布不均匀导致光线不均匀的天气条件下要等待云彩飘过并且遮挡了阳光时再进行测量。 在非均匀、不连续植被情况下以及复杂地形区的测量结果不理想。 2,SUNSCAN

浅析多源遥感数据融合原理及应用

浅析多源遥感数据融合原理 摘要: 本文介绍了遥感影像融合技术, 系统阐述了几种常见的遥感影像融合方法及其优缺点。首先,阐述了多源遥感影像数据融合的目的、意义以及多源遥感影像数据融合的基本理论;然后介绍了多源遥感影像数据融合的层次和常用方法,在分析和探讨多源遥感影像数据融合原理、层次、结构及特点的基础上,归纳了多源遥感影像数据融合方法,然后通过实验,对不同方法融合后的成果图进行比较,每种方法都有其自身的优点和不足之处,这就决定了它们在应用方面的不同,采用乘积方法变换、Brovey比值变换和PCA变换融合方法融合后的图像,其光谱保真程度逐渐降低.Muhiplieative(乘积)变换融合较好地保留了多光谱波段的光谱分辨率和空间信息,融合图像的光谱保真能力较好,详细程度较高;PCA变换融合和Brovey变换;融合和影像质量一般.与PCA变换融合比较,Brovey变换融合的空间信息的详细程度较低,但相对好的保留了多光谱波段的光谱分辨率。 关键词: 遥感影像融合融合层次融合方法优缺点对比

目录 1、绪论 (1) 2、多源遥感数据融合的基本理论 (1) 2.1 多源遥感数据融合的概念 (3) 2.2多源遥感数据融合的原理 (4) 2.3多源遥感数据融合层次 (4) 2.3.1 像元级融合 (4) 2.3.2 特征级融合 (4) 2.3.3 决策级融合 (5) 3、多源遥感数据融合常用方法 (5) 3.1 主成分变换(PCT) (5) 3.2 乘积变换 (5) 3.3 Brovey比值变换融合 (5) 4、实验与分析 (6) 5、结语 (8) 参考文献 (9) 致谢 (10)

【CN109975250B】一种叶面积指数反演方法及装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利 (10)授权公告号 (45)授权公告日 (21)申请号 201910333471.7 (22)申请日 2019.04.24 (65)同一申请的已公布的文献号 申请公布号 CN 109975250 A (43)申请公布日 2019.07.05 (73)专利权人 中国科学院遥感与数字地球研究 所 地址 100101 北京市朝阳区大屯路甲20号 北 专利权人 首都师范大学 (72)发明人 董莹莹 李雪玲 朱溢佞 叶回春  黄文江  (74)专利代理机构 北京集佳知识产权代理有限 公司 11227 代理人 杨华 王宝筠 (51)Int.Cl.G01N 21/552(2014.01)G06N 3/04(2006.01)G06N 3/08(2006.01)审查员 李新科 (54)发明名称 一种叶面积指数反演方法及装置 (57)摘要 本申请公开了一种叶面积指数反演方法及 装置,其中,方法包括:获取遥感植被冠层光谱反 射率数据,将遥感植被冠层光谱反射率数据输入 预先训练的深度神经网络模型,得到深度神经网 络模型输出的叶面积指数,深度神经网络模型至 少包括卷积层,卷积层的采样步幅大于1,并且取 不大于卷积层使用的滤波器的尺度的数值中的 最大值。通过本申请,可以反演出具有较高精度 的叶面积指数。权利要求书2页 说明书12页 附图2页CN 109975250 B 2020.03.24 C N 109975250 B

权 利 要 求 书1/2页CN 109975250 B 1.一种叶面积指数反演方法,其特征在于,包括: 获取遥感植被冠层光谱反射率数据; 将所述遥感植被冠层光谱反射率数据输入预先训练的深度神经网络模型,得到所述深度神经网络模型输出的叶面积指数,所述深度神经网络模型至少包括卷积层,所述卷积层的采样步幅大于1,并且取不大于所述卷积层使用的滤波器的尺寸的数值中的最大值; 其中,所述卷积层包括:第一个卷积层与第二个卷积层,所述第一个卷积层与所述第二个卷积层连接; 所述第一卷积层的滤波器尺寸为1*3,采样步幅为3,所述第二个卷积层的滤波器尺寸为1*3,采样步幅为3; 其中,所述深度神经网络模型还包括:一个池化层;所述第二个卷积层与所述池化层连接; 其中,所述深度神经网络模型还包括:三个全连接层,分别为第一个全连接层,第二个全连接层与第三个全连接层;所述池化层与所述第一个全连接层连接,所述第一个全连接层输出的数据,输入随机失活(Dropout),所述Dropout输出的数据输入所述第二个全连接层,所述第二个全连接层与所述第三个全连接层连接。 2.根据权利要求1所述的方法,其特征在于,所述预设的神经网络模型是采用训练样本训练得到;所述训练样本包括预设的植被光谱反射率数据,以及与所述预设的植被光谱反射率数据对应的叶面积指数; 所述预设的植被光谱反射率数据为在所述遥感植被冠层光谱反射率数据中的比例为0.14%的数据。 3.根据权利要求1所述的方法,其特征在于,所述第二个卷积层输出的数据输入预设的第一ReLU激活函数,所述第一ReLU激活函数输出的数据输入所述池化层,所述池化层输出的数据输入所述第一个全连接层,所述第一个全连接层输出的数据输入预设的第二ReLU激活函数,所述第二ReLU激活函数输出的数据输入所述Dropout,所述Dropout输出的数据输入所述第二个全连接层,所述第二个全连接层输出的数据输入预设的第三ReLU激活函数,所述第三ReLU激活函数输出的数据输入所述第三个全连接层,所述第三个全连接层输出的数据输入预设的Sigmoid函数。 4.一种叶面积指数反演装置,其特征在于,包括: 获取模块,用于获取遥感植被冠层光谱反射率数据; 输入模块,用于将所述遥感植被冠层光谱反射率数据输入预先训练的深度神经网络模型,得到所述深度神经网络模型输出的叶面积指数,所述深度神经网络模型至少包括卷积层,所述卷积层的采样步幅大于1,并且取不大于所述卷积层使用的滤波器的尺寸的数值中的最大值; 其中,所述卷积层包括:第一个卷积层与第二个卷积层,所述第一个卷积层与所述第二个卷积层连接; 所述第一卷积层的滤波器尺寸为1*3,采样步幅为3,所述第二个卷积层的滤波器尺寸为1*3,采样步幅为3; 其中,所述深度神经网络模型还包括:一个池化层;所述第二个卷积层与所述池化层连接; 2

基于环境减灾卫星遥感数据的呼伦贝尔草地 地上生物量反演研究

第25卷 第7期自 然 资 源 学 报Vol125No17 2010年7月JOURNAL OF NAT URAL RES OURCES Jul.,2010  基于环境减灾卫星遥感数据的呼伦贝尔草地 地上生物量反演研究 陈鹏飞1,王卷乐1,廖秀英1,尹 芳1,陈宝瑞2,刘 睿1 (11中国科学院地理科学与资源研究所,资源与环境信息系统国家重点实验室,北京100101; 21中国农业科学院农业资源与农业区划研究所,北京100081) 摘要:推动国产遥感卫星在资源环境领域中的应用对于促进我国航天事业发展、减少科研 成本具有重要意义。我国近期发射的环境减灾卫星具有时间分辨率高、可获得高光谱影像 的特点,在陆地资源遥感监测领域将有广阔发展空间。研究于2009年夏季获得三景呼伦 贝尔草原区遥感影像和对应地面实测草地生物量信息,基于这些数据探讨了利用环境减灾 卫星多光谱影像和植被指数反演草地生物量的可行性。结果表明基于影像提取的NDV I、 OS AV I、M S AV I、S AV I、EV I、M T V I2、WDRV I和G NDV I等光谱指数均与草地生物量有较好的定 量关系。其中,M T V I2结果最好,预测决定系数达0161,交叉检验决定系数为0158,均方根误 差仅为5816g?m-2,基于M T V I2和环境减灾卫星多光谱影像可准确生成草地生物量空间分 布图。 关 键 词:环境减灾卫星;生物量;草地;呼伦贝尔 中图分类号:Q948 文献标志码:A 文章编号:1000-3037(2010)07-1122-10 及时、准确掌握陆地资源,如耕地、城市、天然植被、沙漠、水体和土地等地物变化状况,进而指导人们正确开发利用自然资源、保护生态环境,是国家决策部门和国内外科学家普遍关注的问题[1]。不断发展的遥感技术,以探测周期短、现时性强、可大面积同时观测的特点,已成为地物定性、定量探测的重要手段[223]。为发挥遥感技术在解决国计民生问题上的优势,国家高技术研究发展计划(863计划)、国家重点基础研究发展规划(973计划)、国家科技支撑计划等已多年持续立项支持其应用研究。 20世纪70年代以来,数种对地观测卫星相继发射,为地球资源监测提供了大量数据。这其中主要有低几何分辨率的NOAA/AVHRR影像、MOD I S影像等,中几何分辨率的T M影像、ET M影像、I RS2P6影像等,和高几何分辨率的SP OT5影像、ALOS影像、I K ONOS影像、Quickbird影像等。基于这些数据,学者们广泛开展了地物特征的遥感监测研究,这其中包括全球气候变化研究[426]、农作物面积和产量估测[729]、土地覆被变化监测[10212]等。但这些数据源多价格昂贵,不利于中小研究单位及生产管理部门使用。因此,推广应用我国自行研制卫星获得的遥感数据意义重大。环境与灾害监测预报小卫星(HJ21A/1B)于2008-09发射。1A星上搭载有CCD相机和高光谱成像光谱仪,1B星上搭载有CCD相机和红外多光谱 收稿日期:2009-09-24;修订日期:2010-05-19。 基金项目:国家自然科学基金项目(40771146,40801180);科技基础性工作专项中国北方及其毗邻地区综合考察项目(2007FY110300);资源与环境信息系统国家重点实验室自主研究课题(088RA102S A)。 第一作者简介:陈鹏飞(1982-),男,河南许昌人,助理研究员,主要从事农业信息化、农业温室气体排放量估算与减排策略研究。E2mail:pengfeichen2001@hot m ail1com

近地表气温遥感反演方法(定)

近地表气温遥感反演方法研究进展 摘要:气温是描述陆地环境条件的重要参数,也是气象观测资料中最基本观测项目之一。结合遥感的空间分辨率高,覆盖面广,资料同步性强的特点,运用遥感方法反演气温弥补了传统方法的缺点,气象卫星的发展,为其提供了技术平台支持。本文从近地表气温反演的各种不同的方法进行阐述,分别从半统计方法、统计方法、多因子分析方法和遗传算法方面进行叙述。 关键词:气温;遥感;反演方法这 1.引言 气温是描述陆地环境条件的重要参数,也是气象观测资料中最基本观测项目之一。由于近地球表面气温控制着大部分陆地表面过程(如光合作用、呼吸作用及陆地表面蒸散过程等),因此,气温是各种植物生理、水文、气象、环境等模式或模型中的一个非常重要的近地表气象参数输入因子[1,2]。高山、水体、植被以及土壤含水量等,以至于表现出很大的空间异质性。我们常常听说的气温,是有气象观测站在植有草皮的观测场所中离地面1.5米高的百叶箱中的温度表测得的。由于温度表保持了良好的通风性并避免了阳光直接照射,因而具有较好的代表性,这个温度基本上反映了观测地点(当地)的气温。但是随着数值预报的发展,常规的探测手段越来越不能满足现代业务预报的需要。特别是在海洋,沙漠,沙漠等的荒僻的地区,基本不可能设立气象站点,即使设立站点也十分稀疏,这就使得我们所获取的气温资料十分有限,要想研究特定位置的气温水平空间分布状况及其内部结构特征等都有一定的困难。同时在不同地形和不同景观条件下,一个气象站观测的数据能够代表的范围有很大差别,即使通过空间内插过程也不能够获得满意的气温空间分布,从影响模型模拟结果[3]。 而遥感具有覆盖面广,空间分辨率高,资料同步性强的特点,所以利用卫星遥感手段资料反演近地表的大气温度就弥补了传统手段的缺陷,不论在现实意义还是经济意义上,都是非常重要的。随着大气科学理论和遥感探测技术的迅速发展,在全球大气观测系统中,卫星探测技术将会成为中流砥柱。同时,从60年代有了气象卫星之后,给遥感反演温度提供了可靠的现实依据。 目前反演大气参数的方法基本可以分为三类:物理方法、半统计方法和统计方法。物理方法是从辐射传输方程出发,根据已知的一些大气知识对方程进行简化,从而达到求解的目的,至今对它们的物理机制认识得还很不清楚,所以极大地限制了该方法的应用与发展。半统计方法是采用物理方法与实测资料的结合,建立个大气参数间的关系,然后利用实测资料进行各参数的反演。目前在该领域采用比较多的是统计方法,它主要包括单因子线性回归分析方法、多元统计方法、Bowen 比分析方法、遗传算法和神经网络方法等,利用这些方法时需考虑多种影响因素,从而建立各因素之间的相互关系[4]。 本文具体从半统计方法和统计方法对气温反演进行研究,着重论述了统计方法反演近地表气温,考虑了热红外和微波两个波段对气温的反演。

多源遥感数据反演土壤水分方法

多源遥感数据反演土壤水分方法 张友静1,王军战2,鲍艳松3 (11河海大学水文水资源与水利工程科学国家重点实验室,江苏南京 210098;21中国科学院寒区旱区环境与工程研究所, 甘肃兰州 730000;31南京信息工程大学大气物理学院,江苏南京 210044) 摘要:基于AS AR 2APP 影像数据和光学影像数据,根据水云模型研究了小麦覆盖下地表土壤含水量的反演方法。利用T M 和MOD I S 影像构建的植被生物、物理参数与实测小麦含水量进行回归分析,发现T M 影像提取的归一化水分指数(NDW I )反演精度较好,相关系数达到0187。根据这一关系,结合水云模型并联立裸露地表土壤湿度反演模型,建立了基于多源遥感数据的土壤含水量反演模型和参数统一求解方案。反演结果表明:该方案可得到理想的土壤水分反演精度,并可控制参数估计的误差。反演土壤含水量和准同步实测数据的相关系数为019,均方根误差为3183%。在此基础上,分析了模型参数的敏感性,并制作了研究区土壤缺水量分布图。 关键词:土壤含水量;多源遥感数据;水云模型;AS AR;多尺度 中图分类号:P33819 文献标志码:A 文章编号:100126791(2010)022******* 收稿日期:2009203209 基金项目:国家自然科学基金资助项目(40701130;40830639) 作者简介:张友静(1955-),男,江苏南京人,教授,主要从事遥感机理与方法研究。E 2mail:zhangyj@hhu 1edu 1cn 土壤含水量是地表和大气界面的重要状态参数,并直接影响地表的热量和水量平衡,因而受到水文、气象和农业灌溉等多个学科的关注。微波土壤水分遥感研究始于20世纪80年代,其中最具代表性的是U laby 利用试验数据得出土壤后向散射系数的主导因素为粗糙度和含水量 [1]。80年代后,Dobs on 和U laby 利用车载、高塔、航空平台的微波数据研究了土壤湿度反演的最佳工作模式,并一致认为小角度入射后向散射系数对土壤湿度最敏感[2]。随着微波散射模型不断发展,相继出现微波散射的小扰动模型、几何光学模型、物 理光学模型、两尺度模型和积分方程模型A I E M 。Dobos on 等在物理模型和试验研究的基础上各自建立了经验和半经验模型,成功地反演了裸土的土壤含水量 [324]。2000年以来,随着Rardrsat,E NV I S AT AS AR 传感器发射,基于卫星雷达数据的土壤湿度反演逐步开展。李震等综合主动和被动微波数据,建立一种半经验模型,用于估算地表土壤水分的变化 [526]。研究表明AS AR 数据在半干旱区农田土壤湿度反演方面具有独特的优势[729]。 在植被覆盖条件下,微波信号的组成十分复杂。研究提取植被覆盖下的土壤湿度信息的重点在于如何有效的分离出植被对微波的散射信号,以便用土壤的后向散射信号估算植被覆盖下的土壤含水量。直接用多频同步微波遥感数据通过理论模型或数值模拟求解植被对微波的散射信号[9],具有很好的同步性和物理意义。但遥感数据获取较为困难,同时求解所需的地面同步观测的数据要求很高,因而区域尺度的监测应用还有待深入研究。根据植被的生物、物理特征与植被散射信号之间的关系,采用同步光学遥感数据反演植被散射信号是近年来的研究热点[9211]。但在植被特征参数表达农作物后向散射信号的能力评价、模型参数的识别以及整体求解方案等方面的研究较少。此外,为满足土壤水分监测和灌溉决策的需求,还需研究不同时空分辨率数据反演植被散射信号的能力。本文根据水云模型,研究多尺度下不同植被特征参数与小麦含水量的关系,采用将所有参数放入统一框架下估算的策略,构建了结合光学和微波遥感数据的土壤水分估算模型,并分析了模型参数的敏感性。经准同步实测数据检验,小麦覆盖下土壤水分的估算达到了较高的精度。 第21卷第2期 2010年3月 水科学进展ADVANCES I N WATER SC I ENCE Vol 121,No 12 M ar .,2010

叶面积指数遥感反演

冬小麦叶面积指数(LAI)的遥感反演 ——经验模型和物理模型方法 李淑敏 2010/12/13

?第一部分.基础知识 ?第二部分.遥感反演LAI 的方法 ?第三部分.研究实例 本次课程主要内容 叶面积指数LAI 、遥感反演 经验模型反演方法、物理模型反演方法 几何光学模型、辐射传输模型 PROSAIL 模型 硕士论文——―基于MODIS/ASTER 的区域冬小麦叶面 积指数PROSAIL 模型反演研究” BRDF 模型PROSPECT 模型、SAIL 模型

叶面积指数leaf area index ?定义:单位土地面积上植被叶片总面积。 叶片总面积/占地面积 ?陆地生态系统的一个十分重要的参数: 农作物产量预估和病虫害评价; 反映作物生长发育的动态特征和健康状况。 ?叶面积指数越大,表明单位土地面积上的叶面积越大。 那么,叶面积指数越大越好吗?? ?以冬小麦为例了解叶面积指数变化情况

图为不同群体叶面积指数消长模型(彭永欣等,1992)1—过大群体;2—高产群体;3—过小群体. 低增缓增快 增衰减LAI 消长动态分为四个时期 1. 低速增长期,叶片总数较多,但叶面积较小,总叶面积增速较低; 2. 缓慢增长期,单叶面积渐次增加,但低温条件,出叶周期延长; 3. 快速增长期,气温回升,植株生长快速,至孕穗期LAI 达峰值; 4. 衰减期,植株生殖生长,叶片消亡叶面积衰减,至成熟期LAI 为0。一个生长期内冬小麦叶面积指数变化

叶面积指数获取方法 ?实测方法 长宽法、称重法这些方法均需要消耗一定的人力进行实物测量。 借助有关测量工具例如LAI-2000、LAI-2200、LI-3100C、LI-3000、AccuPAR等,此方法仍需实地进行测量。 仅能获得地面有限点的LAI值,对于推广获取大范围LAI存在很大局限性,不能满足植被生态和作物长势监测需求 ?遥感反演方法由于遥感数据具有覆盖范围广、时间与空间分辨率高、花费相对较少等优点。 可以用定量遥感方法反演区域LAI ?作物生长模型模拟LAI

遥感提取生物量的方法综述

利用遥感提取森林生物量的方法综述 一、引言 森林是陆地上最大的生态系统,在全球变化研究中占有举足轻重的地位。森林生物量是整个森林生态系统运行的能量基础和营养物质来源,是研究生物生产力、净第一性生产力、碳循环、全球变化研究的基础,因此对森林生物量测定方法进行研究具有非常重要的意义。随着“3S”技术(地理信息系统GIS、全球定位系统GPS、遥感RS)的不断发展,对植被生物量的研究已经从小范围、二维尺度的传统地面测量发展到大范围、多维时空的遥感模型估算。遥感不仅可以为预测生物量的模型提供数据,而且可以直接用于生物量的估算和制图。 二、利用遥感提取生物量 随着全球变化研究的深入,陆地生态系统生物量的估算工作变得越来越重要。基于遥感的生物量估算模型也逐渐由传统的经验模型向机理模型转变。机理模型是建立在植被辐射的吸收、反射与辐射在植被冠层和大气的传输过程以及影响森林生产力的生态学因子之上的。 最初,人们用LandsatMSS来监测植被的叶面积指数和活体生物量。后来,更多的是利用Landsat TM和NOAA A VHRR数据来监测植被生长和生物量。如结合地面调查和TM、A VHRR数据,对数百万平方公里欧洲森林生物量的成功估算,利用TM数据对美国Colorado矮草草原地上部分生物量的估算,对美国EastMaryland落叶林的地上部分生物量的估算等。近年来,各种星载和机载SAR 数据己被广泛用于估算陆地植物生物量,生物量估算己成为SAR数据的重要应用领域之一。卫星遥感使人们能在大陆甚至全球尺度上监测自然资源。过去的研究主要集中在热带和北方针叶林区。 与传统的生物量估算方法比较,遥感方法可快速、准确、无破坏地对生物量进行估算,对生态系统进行宏观监测。研究者可以利用遥感的多时相特点定位分析同一样区一段时间后的非干扰变化,使传统方法难以解决的问题变得轻而易举,使动态监测成为可能。且RS、GIS技术的集成推动了生物量遥感估算的进程,在GIS环境下实现包括RS信息在内的多种信息的复合,建立生物量遥感模型。利用GIS技术将高时相分辨率的卫星遥感数据如NOAA / A VHRR数据、TM 图像和各种观察数据集成在一起,基本上实现了区域尺度甚至全球尺度不同陆地生态系统生物量的动态监测。这一技术体系包括生物量遥感参数模型和生物量遥感机理模型。 生物量遥感估算研究大致可分为三个阶段: 最初的生物量遥感估算是利用单波段进行研究,如Prince和Goward研究认为,地上生物量与植物生长季内最小的可见光反射率存在着负相关,从而建立了地上生物量遥感估算的统计模型: =ρ W 7166.2- ) ( 61 . 式中,W为地上生物量;ρ为生长季A VHRR第一通道的最小值。利用单通道来 估算生物量,运算简便。但其受大气、土壤、传感器性能、太阳角度等一系列因素的影响强烈,估算精度较差。 第二阶段是利用植被指数来估算生物量,因其方法简便、估算精度较高而广为应用,从使用高空间分辨率的TM、MSS数据等到使用高时间分辨率的NOAA

多源遥感影像配准流程

多源遥感影像综合应用的一项重要的准备工作就是影像间的配准,特别是不同类型传感器在同一地区,不同时间,不同高度获取的影像间的配准。即运用一幅纠正过的带有地理信息的影像(主影像)与一幅未纠正的影像(从影像)进行配准,获取一系列同名点位。因为主影像是正射影像,因而这些同名点是具有大地坐标的同名点。同时这些同名点可以作为参考数据(保存在配准后生成的<从影像名>.ctp 文件中)用于对其他影像进行纠正。 在ArcMap中配准影像栅格数据可以通过扫描地图、航片及卫片来获取。扫描的地图通常不包含表明影像对应于地表何处的信息。从航空相片和卫星相片上获得的位置信息往往不适合执行分析,或者与其它数据对齐显示。与其它空间数据一起使用栅格数据,需要把栅格数据对齐或配准到地图的坐标系统。 配准栅格数据定义了它的地图坐标位置,即指定了联系数据与地球上的位置的坐标系统。 配准栅格数据使它能与其它地理数据一起被查看、查询和分析。 配准流程: 1、启动ARCGIS9,用键或者在图层处点右键添加数据,将所要的图象数据 添加近来。如图所示: 2、从“视图”→“工具条”→“影象配准”将影像配准的工具条调出来,如图, , 调出工具条如下, 选择图的四个角的格网点进行配准处理,首先是左上角,如图:

使用“添加控制点”按钮添加第一个控制点,如图: 将左下角格网点放大以准确定位,如图。 点右键,输入XY坐标,根据地图格网坐标输入, 完成一个点,再按相同方法对其他三个角点配准。 4、电击查看连接表可以查看配准后的坐标残差看是否符合要求。

点击地理参考下的矫正,双线性内插,保存矫正图象。 5、将矫正后图象添加到图层覆盖矫正前的,从视图下拉菜单选择数据框属性 打开后如下: 将地图单位改为米,将坐标系统设为西安1980,

(完整)landsat 遥感影像地表温度反演教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时 间 中心经度中心纬度 LC81280402016208LGN002016/7/263:26:56106.1128830.30647…………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标

地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration 。在File Selection 对话框中,选择数据LC81230322013132LGN02_MTL_Thermal ,单击Spectral Subset 选择 Thermal Infrared1(10.9),打开Radiometric Calibration 面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral ”进行辐射定标。

因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings ,如下图。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction ,双击此工具, 打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor 值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。1) Input Radiance Image :打开辐射定标结果数据;2) 设置输出反射率的路径,由于定标时候;

玉米叶面积指数变化及其应用

玉米叶面积指数变化及其应用 摘要 叶面积指数(LAI)与作物产量的增长联系紧密,在一定范围内随着叶面积指 数的增加群体光合速率提高。LAI与品种特性,种植密度,栽培措施,气象条件 有密切联系。本文分别从玉米LAI模型构建和不同处理措施对玉米LAI的影响角 度总结近年来关于玉米LAI的研究以及其对于农业生产的意义。 前言 玉米是大田中的主要作物之一,我国的玉米生产水平有较大的提高潜力。叶 面积指数是计算作物蒸散和干物质累积最重要的生理参数,可为植冠表面最初能 量交换描述提供结构化定量信息,是进行物质循环及能量代谢等研究的基础,是 除单叶光合作用速率以外决定作物冠层光合作用计算精确与否的重要参数,且最 能反映遥感数据与作物生长状态密切关系关系,因此研究叶面积指数动态变化模 式有重要的应用价值。目前有关玉米LAI的测定,LAI动态模型的建立,不同株 型玉米LAI动态变化和不同的栽培因子对于玉米LAI的影响是研究的热点。 一、玉米LAI动态模型 关于玉米全生育期的动态变化模拟模型主要是logistic模型的扩展。例如中国科 学院地理科学与资源研林忠辉等提出的模型便是以积温指标表示的生育阶段为 自变量,综合不同地理位置、品种、播期、密度等的影响,是一个扩展的Logistic 叶面积生长模型。[1] 玉米叶面积指数随生育进程变化可分为4 个时期,即缓慢增长期,指播种~拔 节期叶面积指数增长缓慢;线性增长期,指拔节~抽雄吐丝期叶面积指数增长最 快,且吐丝期达最大值;相对稳定期,指抽雄吐丝~乳熟期叶面积指数相对稳定而 后期略有下降;衰退期,指乳熟~蜡熟期叶面积指数下降。Logistic 曲线可较好 地表述玉米叶面积指数前2 个生育阶段,但不能表述相对稳定期后期及衰退期叶 面积指数下降过程,必须经过修正方可用于整个生育期动态变化模拟。[2] 玉米LAI动态模型主要用于区域作物生长模拟模型和区域作物生长监测及遥感 估产。 二、不同株型玉米LAI动态变化 主要是研究平展型品种和紧凑型品种的LAI动态变化,通过比较得出不同品种 的最大最适叶面积指数,从而为玉米的增产提供理论依据。例如沈阳农业大学的 任志勇等通过比较的玉米品种平展型品种连玉16( A1)、半紧凑型品种丹玉 39( A2) 、紧凑型品种郑单958( A3)不同时期的LAI得出了不同株型品种获得最 高产量的密度不同, 获得最高产量的最大叶面积指数也不同的结论。连玉16在2 600株/667m2密度下获得了最高产量, 其叶面积指数为3.8 ,丹玉39和郑单958在 4 500株/667m2 密度下获得了最高产量, 其叶面积指数分别为5. 15和5. 66。[3] 吉林农大的岳阳等通过分析:两个紧凑型玉米品种:先玉335、郑单958;两个平 展型玉米品种:“三北9、长城799不同生育时期的LAI动态变化得出了两个紧凑 型玉米品种的群体叶面积指数、光合速率等均比两个平展型玉米品种表现优良, 有利于光合产物的积累,提高产量的结论。[4] 这些都为玉米栽培品种的选择和玉米育种提供了重要的参考。 三、不同的栽培因子对于玉米LAI的影响

植被叶面积指数遥感反演的尺度效应及空间变异性

第26卷第5期2006年5月 生 态 学 报AC TA ECOLOGIC A SI NICA Vol.26,No.5May,2006 植被叶面积指数遥感反演的尺度效应及空间变异性 陈 健1 ,倪绍祥1* ,李静静2 ,吴 彤 1 (1.南京师范大学地理科学学院,南京 210097;2.南京信息工程大学计算机科学与技术系,南京 210044) 基金项目:国家自然科学基金资助项目(40371081);江苏省研究生创新计划项目(1612005012)收稿日期:2005 09 25;修订日期:2006 04 20 作者简介:陈健(1978~),男,汉族,山东济宁人,博士生,从事遥感与GIS 应用研究.E mail:chjnjnu@https://www.360docs.net/doc/8c14858101.html, *通讯作者Corresponding author.E mail:sxni@nj https://www.360docs.net/doc/8c14858101.html, Foundation item :The projec t was s upported by National Natural Science Foundation of China (No.40371081)and Innovation Res earch Program of Jiangsu Provincial Department of Educati on for Res earch Students (1612005012)Received date :2005 09 25;Accepted date :2006 04 20 B iography :CHEN Ji an,Ph.D.candidate,mainly engaged in application of remote sensing and GIS.E mai l:chjnjnu@https://www.360docs.net/doc/8c14858101.html, 摘要:遥感作为宏观生态学研究中数据获取的一种便捷手段,有助于把握较大尺度内生态学现象的特征。应用遥感数据反演LAI 时,由于像元的异质性,不同尺度遥感数据之间的转换是遥感发展的一个重要问题。以河北省黄骅市为研究区,在利用TM 和MODIS 遥感数据对芦苇LAI 反演误差产生原因进行分析的基础上,利用半变异函数对像元空间异质性进行了定量描述。发现NDVI 算法的非线性带给LAI 尺度转换的误差很小,而LAI 的空间异质性则是引起L AI 尺度效应的根本原因。并且当像元内空间异质性很大时半变异函数的基台值比纯像元要大得多,空间自相关的程度是引起LAI 尺度转换误差的主要原因;反之,像元内空间异质性不大时,随机误差是引起LAI 尺度转换误差的主要原因。当像元为纯像元时,由像元异质性引起的反演误差基本可以忽略。此外,研究区芦苇的空间相关有效尺度约为360m,超过此距离空间相关性则不复存在。关键词:叶面积指数;尺度效应;半变异函数;异质性 文章编号:1000 0933(2006)05 1502 07 中图分类号:Q948,TP79 文献标识码:A Scaling effect and spatial variability in retrieval of vegetation LAI from remotely sensed data CHEN Jian 1 ,NI Shao Xiang 1,* ,LI Jing Jing 2,WU Tong 1 (1 Colle ge o f Ge ographical Science ,Nanjing Normal U nive rsity ,Nanjing 210097, China ;2 De partment o f Compute rsc ienc e &Tec hnology ,Nanjing U niversity o f In f o rmation Sc ie nce &Technology ,Nanjing 210044,China ).Acta Ecologica Sinica ,2006,26(5):1502~1508. Abstract :As one kind of the means for data acquiring in mac roscopic ec ology,re mote sensing has an ability to grasp fea tures of the ec ological phenomena on lar ger scale.In de riving Le af Area Inde x (LAI )from remotely sensed data,the transformation of the re motely sensed data from one kind of resolution to anothe r has bec ome a signific ant problem because of the heterogeneity in pixel.In this paper,based on an analysis of the reasons for e rror appearing in LAI retrieval,the spatial he terogenei ty in pixel was described by se mivariogra m.Taking the city of Huanghua in Hebei province as the study area and using TM a nd MODIS data,this paper e xplores the scaling effect in the re trie ving reeds LAI .Firstly,the LAI image with 30m scale was retrieved from the TM ima ge data based on the statistic model.Then,se ven test plots we re selected from the LAI image.Each plot is diffe rent in reeds c overage,and the smaller reeds coverage in pixel the lager heterogeneity within it.Follo wing this step,the reeds LAI on the MODIS scale (990m by 990m)were obtained for the seven plots using the method of spatial transformation,and the reason for e rror appea red in the LAI retrieval was e xplored.Finally,the semivariogram model of reeds coverage was de veloped through the analysis on the semivariograms of these plots. The following c onclusions we re obtained from this study:(1)The scaling problem appeared in de riving the paramete rs on ground surface stems from not only the non linearity of algorithm for nor malized difference vege tation inde x (NDV I ),but also the spa t ial he terogeneity within pixel.The variation in LAI error depends mainly on the degree of he terogeneity of ground surface.It

相关文档
最新文档