天然气加热炉的现状与改进研究

天然气加热炉的现状与改进研究
天然气加热炉的现状与改进研究

天然气加热炉的发展现状与改进探索

2010-10-11郭韵曹伟武严平钱尚源

摘要:作为一种特殊的炉型形式,天然气加热炉采用中间载热介质间接加热的方式,是天然气生产、输送和应用中的主要耗能设备。为了节能降耗、提高加热效率,必须结合工程实际的需要,优化加热炉的结构,设计制造出高效节能的天然气加热炉。为此,分析了天然气加热炉传热的薄弱环节及其强化措施,针对天然气加热炉大筒体内换热面的常规布置形式存在的缺陷,提出了旋转加热和冷却受热面以及在受热面之间加装导流板两种简单而有效的天然气加热炉改良结构,使中间载热介质形成整体有组织的顺畅流动并强化传热,从而达到节能降耗和提高天然气加热炉效率的目的。以上两项技术已获得国家专利授权。

关键词:天然气加热炉;流场组织;旋转;大简体;中间载热介质

天然气加热炉常用于井口、计量站、接转站等,将天然气加热至工艺所要求的温度,以便进行运输、分离和粗加工等(图1)。

天然气在使用过程中也常需要加热,如在燃气发电机组中,其工艺对燃料气的压力、温度和露点要求很高[1],电厂使用的燃料气必须经过调压和加热处理。另外,在液化天然气(LNG)输配应用系统中,要使LNG气化,也必然会用到大量加热气化炉。

1 天然气加热炉的工作原理

天然气加热炉采用整体组装式结构,在卧式大容积筒体内布置火筒、烟管束等加热受热面和多回程对流管束等冷却受热面,筒内充注中间载热介质作为加热和冷却受热面之间的传热媒介,帮助冷、热两种流体达到传热的目的,中间载热介质可采用水、乙二醇溶液和导热油。通常,加热和冷却受热面沿大筒体圆截面中心轴呈轴对称布置,火筒和烟管束位于水平轴的下方,对称布置于垂直轴的左右侧;多回程对流管束位于水平轴的上方,各回程也对称布置于垂直轴的左右侧,如图2所示。

天然气加热炉工作时,用燃料燃烧产生的热量加热需要加热以达到工艺要求的工业用天然气。燃料和空气经燃烧器混合后喷入大简体下部一侧的火筒燃烧产生高温烟气,烟气经火筒折入大筒体下部另一侧的烟管束,最后经烟囱向上排入大气。在该过程中,高温烟气将热量通过火筒壁和烟管束壁传递给中间载热介质,中间载热介质吸热升温;同时中间载热介质将大部分热量通过对流管束壁面传递给需要加热的工业用天然气,中间载热介质放热降温。

天然气加热炉是采用中间载热介质间接加热的一种特殊的炉型形式,工作运行可靠,但启动慢,是天然气工业中的重要耗能设备之一。提高天然气加热炉的热效率,显然是一个必须解决的问题。

2 天然气加热炉传热系统分析

对天然气加热炉来说,烟气、中间载热介质、需加热的天然气这三者是通过火筒、烟管束和对流管束进行换热的。火筒、烟管束和对流管束的材料均为钢材,其导热系数为定值,只有通过提高三者之间的传热系数,加热炉的热效率才能得到提高。研究人员对提高天然气加热炉热效率投入了大量的精力,主要考虑了烟气-中间载热介质、中间载热介质-被加热介质传热系统的换热情况。

2.1 烟气-中间载热介质传热系统

传统天然气加热炉的烟气-中间载热介质传热系统中,火筒和烟管热负荷的比例约为6:4,火筒负荷率偏大,导致火筒结构不合理,是造成天然气加热炉结构庞大、金属耗量高的一个重要原因。

火筒主要传递辐射热,且换热量份额大,因此燃烧器和火筒的设计是关键。燃气燃烧充分,烟气温度高,可有效提高烟气的辐射传热能力,所以应采用高效燃烧器,合理经济地设计火筒,以供燃气充分燃烧。现在的天然气加热炉多采用机械通风微正压燃烧方式,燃烧器为强制供风式燃烧器,并配备自动程序点火和熄火保护装置。较之自然通风燃烧方式,加热炉热效率更高、结构更紧凑。

烟管主要传递对流热,尽管其换热面积比火筒大,但换热份额少,在很大程度上影响到天然气加热炉的热效率、钢耗量和外形尺寸,因此需采取办法强化烟管的对流换热效果。缩小管径、提高烟气流速能够达到强化传热的目的,但烟气在高速流动下产生的阻力很大,必须提高强制通风能力,使成本上升。近年来,中国石油大学开展了采用三维内肋管作为加热炉烟管的研究,结果表明,烟气与三维内肋管的对流换热系数能达到光管的4.6倍[2],可以有效地提高天然气加热炉的热效率,降低金属耗量,但需要合理地控制烟气阻力。目前,三维内肋管的热力、阻力计算还依赖于实验资料。

为增强烟气和中间载热介质之间的换热,开展了将热管元件应用于加热炉的试验研究(通常是在烟管内插装热管元件)。由于烟管中的烟气温度比火筒低,采用相对便宜的碳钢一水低温热管就能满足要求。实践证明,热管元件对加热炉能起到良好的强化换热作用。经测试,热管加热炉的实际运行热效率为87%~88%,过量空气系数为1.04~1.17,排烟温度为160℃[3]。但热管的应用推广受到冷、热流道间的密封及热补偿等问题的制约。

2.2 中间载热介质-被加热介质传热系统

天然气加热炉的被加热介质是带压天然气,传统的气盘管一般做成蛇形盘管形式,它的优点是制作简单,易于布置在天然气加热炉内。为了提高传热效率,采取缩小管径、提高被加热介质流速的方法达到强化传热的目的,在设计时将蛇形加热盘管由大直径管改为小直径管组成的多回程管束,以取代传统大直径管盘。

为了强化中间载热介质与被加热介质的换热,也可采用真空相变技术。在密闭加热炉筒体内,将火筒与烟管束置于相变介质的液相空间内,对流管束置于相变介质的气相空间内。工作时,火筒与烟管束加热相变介质使其沸腾,载热介质与火筒和烟管束间产生沸腾换热。同时,产生的蒸汽上升,在对流管束的冷却下凝结,载热介质与对流管束间产生凝结换热。随后,液滴落下来重新汇入液相,如此反复循环。由于凝结换热和沸腾换热是高强度的对流换热形式,因此,与自然对流换热过程相比,相变换热过程具有更高的换热强度。实践证明,对一台1740kW加热炉进行真空相变换热技术改造后,运行效率将达到89.03%,节能效果显著[4]。但是相变传热受到饱和压力、对流管束排数尤其是不凝结气体的影响很大,更重要的是,由于真空加热炉主要是通过调节真空度来调节气相空间的温度,温度可调范围比常压天然气加热炉窄,操作弹性小,限制了其使用。

还可采用高效传热元件来优化对流管束结构。例如采用可拆卸式螺旋槽u型管束,换热系数一般可以提高50%左右[5],但采用螺旋槽管使对流管束阻力约增大一倍,另外,由于螺旋槽管的造价较高,一般根据被加热介质的性质与状态,经过综合评价后决定是否采用。

天然气加热炉的研究随着其应用的不断增加而深入,取得了很大的进展,但仍侧重于从增加气相侧的换热技术方面着手[6],忽视了对大简体内中间载热介质的流动与换热研究。

3 大简体中间载热介质流场的组织

在常压天然气加热炉的整个传热过程中,中间载热介质与火筒、烟管束和对流管束的传热形式为自然对流换热。贴近火筒和烟管束壁面的介质温度较高,形成上升流,对流管束附近的介质温度相对较低,形成下降流。通过测试简体内中间载热介质的温度分布发现,天然气加热炉大简体内换热面的常规布置形式存在如下缺陷[7] (图3):①大简体内流场组织紊乱,这是因为上升流和下降流均是自发产生的,没有恰当的流道组织,二股流之间易发生对冲,造成流动不畅及加热不匀;②大筒体内流场上下温差较小,自然对流的动力小,加热受热面和冷却受热面之间的对流传热非常弱,传热效率低;③在整个流场中,还存在着不少流动死角,如大简体底部等。

所有这些因素都不利于有效传热流场的形成,使加热和冷却受热面的有效利用降低,造成筒体内传热流场组织紊乱,从而使天然气加热炉效率低、能耗高。显然,中间载热介质传热过程的形成,亦即大容积简体内流场的组织是提高天然气加热炉效率的关键点之一。

3.1 天然气加热炉大圆筒旋转流场研究

针对天然气加热炉大筒体内无法形成有效传热流场的缺点,首先提出一种旋转型圆筒式天然气加热炉(国家实用新型专利:ZL200820057571.9):将大筒体内对称布置的加热受热面(即火筒和烟管束,以及冷却受热面)旋转适当的角度,使加热受热面尽可能置于较低的位置[8](如图4所示),这时大筒体内温度最高的火筒位于筒体的最下部,形成一股较强向上的热压,增大引起自然对流的动力,由于火筒、烟管束和对流管束内的流体存在温差,促使大简体内中间载热介质形成顺时针循环顺畅的热流场,消除大筒体底部的“死角”,达到强化传热,提高效率的目的。研究表明:该旋转角度以20°为最佳[9],旋转太小,达不到增大动力的目的;旋转太大,会导致烟管束与输入对流管束处于同一水平位置,反而破坏了顺畅流场的形成。

3.2 天然气加热炉筒内加装导流板组织流场研究

为加强天然气加热炉大筒体内有效传热流场的组织,提出一种大筒体内加装导流板组织热流场的改良结构(国家发明专利:ZL200810036446.4):在筒体上部的冷却受热面和筒体下部的加热受热面之间,沿简体轴向设置导流板,导流板的长度可按实际需要沿筒体轴向分割成几块,这样便于加工安装和提高使用效果,如图5所示。

导流板的设置,合理分隔加热炉加热和冷却受热面之间的流动区域,中间载热介质在吸收筒体下方火筒和烟管束内的热量后,沿着导流板的方向形成均匀顺畅有组织的向上流动,然后将热量传递给上方的对流管束,加热低温天然气。中间载热

介质放热后,沿导流板另一侧向下流动,形成循环均匀的流场。在火筒和对流管束之间加装弧形导流板,导流板挡住了火筒与输入对流管束之间的通道,使火筒周围的载热介质向烟管束上方流动,与烟管束周围的载热介质一起向上依次流经对流管束各流程放热后,向下回流到火筒周围,在大筒体内形成了整体大循环流场(图6)。弧形导流板与热流场的流线更贴切,能使大筒体内的流场更顺畅均匀,传热效果更好。

实际应用中,亦可布置双侧导流板(图7),火筒和烟管束周围的上升流在双导流板的引导下,分别流经各自上方的对流管束放热后,向下回流到火筒和烟管束附近,从而在大筒体内形成了更有效的双循环流场。

对于黏性较大的中间载热介质,如乙二醇,尤其需要这种导流型的强化传热方式。通过加装导流板,促使靠近壁面的热边界层变薄,引导中间载热介质在大筒体中形成整体有组织的顺畅流动,消除热流场死角,提高传热效率。就天然气加热炉的特殊传热结构和载热介质特性而言,在大筒体内加装导流板是一种有效的强化传热手段,效率可提高3%[10]。

4 结论

1) 天然气加热炉在研究应用微正压燃烧技术、螺旋管槽对流管束、三维内肋烟管强化传热技术、热管传热技术、相变传热技术等方面取得了较大进步。

2) 旋转加热和冷却受热面的布置结构优化了加热炉的整体传热效果,而无需额外投资。研究表明最佳旋转角度为20°。这种旋转型圆筒式天然气加热炉值得推广应用。

3) 在受热面之间设置导流板能优化天然气加热炉的整体传热结构,使大筒体内形成有效顺畅的流场,是一种简单而有效的改良结构,尤其对于乙二醇这种黏性大的中间载热介质,能够促进对流换热,提高传热效率,降低能耗。导流板的位置和形状等结构参数可根据使用条件和工艺要求进行优选。

参考文献

[1] 袁斌,羊东明,王颖,等.燃气发电机组的供气工艺[J].油气田地面工程,2001,2

0(2):30-32.

[2] 李清方.三维内肋管在水套炉上的应用[J].石油规划设计,2004,15(6):38-40.

[3] 张连明,王海,陈普信,等.热管式常压水套加热炉研究与应用[J].油气田地面工

程,2003,22(12):24-25.

[4] 牛春庆,别如山,朱利民.相变换热技术在水套加热炉节能改造上的应用[J].节能

技术,2003,21(5):32-33.

[5] 李清方,张国忠,张建,等.新型高效水套炉的开发研究[J].石油规划设计,2006,

17(5):42-45.

[6] GARY H PALMER,PAULA WENDLAND,张华岩.油气田水套加热炉[J].天然

气工业,2002,22(1):80-84.

[7] 郭韵,曹伟武,严平,等.天然气加热炉的可视化实验研究[J].上海理工大学学报,

2009,31(4):327-331.

[8] 郭韵,曹伟武,严平,等.天然气加热炉结构与传热特性研究[J].上海理工大学学

报,2009,31(3):251-254.

[9] 曹伟武,严平,郭韵,等.一种旋转型圆筒式气体加热炉:中国,ZL2008200575

71.9[P].2009-03-04.

[10] 曹伟武,严平,郭韵,等.一种圆筒式气体加热炉热流场的改良结构:中国,ZL

200810036446.4[P].2008-09-10.

(本文作者:郭韵1,2曹伟武2 严平2钱尚源2 1.上海理工大学能源与动力工程学院;

2.上海工程技术大学机械工程学院)

加热与加热炉安全技术示范文本

加热与加热炉安全技术示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

加热与加热炉安全技术示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 燃料与燃烧的安全。工业炉用的燃料分为固体、液体 和气体。燃料与燃烧的种类不同,其安全要求也不同。气 体燃料有运输方便、点火容易、易达到完全燃烧,但某些 气体燃料有毒,具有爆炸危险,使用时要严格遵守安全操 作规程。使用液体燃料时,应注意燃油的预热温度不宜过 高,点火时进入喷嘴的重油量不得多于空气量。为防止油 管的破裂、爆炸,要定期检验油罐和管路的腐蚀情况,储 油罐和油管回路附近禁止烟火,应配有灭火装置。 工业炉发生事故,大部分是由于维护、检查不彻底和 操作上的失误造成的。首先要检查各系统是否完好,加强 维护保养工作,及时发现隐患部位,迅速整改,防止事故 发生。

均热炉、加热炉、热处理炉的安全注意事项:各种传动装置应设有安全电源,氢气、氮气、煤气、空气和排水系统的管网、阀门、各种计量仪表系统,以及各种取样分析仪器和防火、防爆、防毒器材,必须确保齐全、完好。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

轧钢技术的现状和新发展

轧钢技术的现状和新发展 摘要:中国轧钢工作者要进一步加强的技术改造,突破制约钢铁轧制技术发展的关键和共性技术,大力开发节能减排、创新性和前沿性新技术、新装备,实现钢铁材料的减量化、节约型制造,推动钢铁工业的可持续发展。 关键词:轧钢技术现状新发展 前言 经过改革开放以来的持续发展,中国已经建设了一大批具有国际先进水平的轧钢生产线,比较全面地掌握了国际上最先进的轧制技术,具备了轧钢先进设备的开发、设计、制造能力,一大批国民经济急需、具有国际先进水平的钢材产品源源不断地供应国民经济各个部门,为中国经济与社会发展、人民幸福安康提供了重要的基础原材料。 一、中国轧钢技术的发展概况 改革开放以来,以宝钢建设为契机,中国成套引进了热连轧、薄板坯连铸连轧、冷连轧、中厚板轧制、棒线轧制、长材轧制、钢管轧制等各类轧制工艺技术以及相应的轧制设备和自动化系统,开始了轧制技术的跨越式发展的第一步。通过引进技术的消化吸收和再创新,中国快速掌握了轧钢领域的前沿工艺技术;通过设备的合作制造以及自主研发,中国掌握了重型轧机的设计、制造、安装的核心技术,逐步具备了自主集成和开发建设先进轧机的能力;利用先进的工艺和装备技术,以及严格科学精细的管理,开发了一大批先进的钢铁材料,满足了经济发展的急需,产品的质量水平不断提高。 进入21 世纪以来,轧钢战线的广大科技工作者遵循“自主创新,重点跨越,支撑发展,引领未来”的科技发展方针,以节省资源和能源、工艺和产品的绿色化、实现可持续发展为目标,在工艺、装备、产品等方面开展技术创新,逐步解决制约轧钢技术发展的重大关键技术和共性技术问题,自主建设并高效运行了一大批轧钢生产线,推动了轧钢工业的跨越式发展。 二、热连轧的技术发展 1热带钢装备技术进步 现在热连轧机很多的技术发展依然集中在板形、厚度精度、温度与性能的精准控制、表面的质量控制等方面,比如广泛使用的强力弯辊(WRB) 系统、工作辊窜辊( HCW、CVC) 和对辊交叉( PC) 技术,工作辊的精细冷却、高精度的数学模型的不断改进等,都使热轧产品的质量不断提高。值得提出的新型轧机技术是日本2000 年发明的在热连轧机组的最后 3 个机架上采用单辊驱动和不同辊径工作辊轧制技术( SRDD) ,该技术是轧制中驱动大直径的下工作辊(直径620 mm) ,而较小直径的上工作辊从动,其优点是轧制中有剪应力产生,降低轧制力、减少边

中国钢铁企业工业气体的现状和发展趋势

综述评论 中国钢铁企业工业气体的 现状和发展趋势 李树德 (石家庄钢铁有限责任公司 石家庄市和平东路517号 050031) 对钢铁企业工业气体的配置及综合利用有一定的参考价值。 关键词:钢铁工业 气体 发展现状 中国钢铁企业既是工业气体产生源也是消耗地,但工业气体的综合利用始终未能得到很好解决,其中既有方法问题又有认识问题。钢铁企业在整个生产过程中为完成各工序生产大量地使用工业气体,随之也产生大量尾气即工业气体,如高炉冶炼需鼓风助燃以满足冶炼过程对温度的要求,而还原反应过程又产生了含有大量的一氧化碳、二氧化碳的高炉煤气,转炉炼钢吹氧随之产生大量转炉煤气等。钢铁企业生产过程中应用的工业气体有:压缩空气、氧气、氮气、氩气,焦炉煤气,转炉煤气,高炉煤气等。受传统习惯影响由于工业气体应用多,研究和综合利用少,因此,带来的是污染严重,资源和能源浪费,若能加以综合利用,既能产生较大的经济效益又能改变周围环境。 1 压缩空气 在钢铁企业压缩空气属于企业动力,几乎整个生产过程都离不开它。主要作为助燃气用于鼓风燃烧;作为原料气用于空气分离氧、氮、氩;作为控制气用于仪表和气动控 制系统。作为助燃气不必处理可直接使用,作为原料气必须清除机械杂质水、二氧化碳和碳氢化合物,作为控制气也必须清除机械杂质和水才能使用。 2 氧气 在钢铁企业将制氧工序称之为心脏,常用有氧就有钢来形容其重要性,同时也显示出其地位。 211 设计与使用 传统设计的一般年产100万t钢的企业其氧气生产能力为冶炼过程平均耗氧量的2~3倍。贮存系统均配以球罐,它的外供能力可以保证事故状态下炼钢一个吹炼周期的用氧,液氧通常为备用,即在检修或突发事故状态下启动,启动时按液氧泵,启动时间约为20多m in,贮备量为单机产量4~12h的产量。这就形成氧产量远大于贮备和使用量而造成大量放散。在生产、贮供、使用中造成不平衡,这是因为产氧是连续均衡生产,而炼钢(指转炉)间断不连续。这种设计的不合理就带来了使用上浪费惊人。当制氧设备

轧钢技术发展前景

轧钢技术发展前景 世界轧钢工业的技术进步主要集中在生产工艺流程的缩短和简化上, 最终形成 轧材性能高品质化、品种规格多样化、控制管理计算机化等。展望未来, 轧钢工艺和技术的发展主要体现在以下几方面: 1.铸轧一体化 利用轧辊进行钢材生产, 因其过程连续、高效、可控且便于计算机等高新技术的应用, 在今后相当一段时间内, 以辊轧为特征的连续轧钢技术仍将是钢铁工业钢材成型的主流技术, 但轧钢前后工序的衔接技术必将有长足的进步。在2O 世 纪, 由于连铸的发展, 已经逐步淘汰初轧工序。而连铸技术生产的薄带钢直接进行冷轧, 又使连铸与热轧工序合二为一。铸轧的一体化, 将使轧制工艺流程更加紧凑。同时, 低能耗、低成本的铸轧一体化, 也是棒、线、型材生产发展的方向。 2.轧制过程清洁化 在热轧过程中, 钢的氧化不仅消耗钢材与能源, 同时也带来环境的污染, 并给深加工带来困难。因此, 低氧化燃烧技术和低成本氢的应用都成为无氧化加热钢坯的基本技术。酸洗除鳞是冷轧生产中最大的污染源, 新开发的无酸清洁型(AFC) 除鳞技术, 可使带钢表面全无氧化物、光滑, 并具有金属光泽。无氧化(或低氧化)和无酸除鳞(氧化铁皮)这两项被称为绿色工艺的新技术, 将使轧钢过程清洁化。 3.轧制过程柔性化 板带热连轧生产中压力调宽技术和板形控制技术的应用, 实现了板宽的自 由规程轧制。棒、线材生产的粗、中轧平辊轧辊技术的应用, 实现了部分规格产品的自由轧制。冷弯和焊管机也可实现自由规格生产。这些新技术使轧制过程柔性化。 4.高新技术的应用 20 世纪轧钢技术取得重大进步的主要特征是信息技术的应用。板形自动控制, 自由规程轧制, 高精度、多参数在线综合测试等高新技术的应用使轧钢生产达到全新水平。轧机的控制已开始由计算机模型控制转向人工智能控制, 并随着信息技术的发展, 将实现生产过程的最优化, 使库存率降低, 资金周转加快, 最终降低成本。 5.钢材的延伸加工 在轧钢生产过程中, 除应不断挖掘钢材的性能潜力外, 还要不断扩大多种钢材的延伸加工产业, 如开发自润滑钢板用于各种冲压件生产, 减少冲压厂润滑油污染; 开发建筑带肋钢筋焊网等, 把钢材材料生产、服务延伸到各个钢材使用部门。随着工业的发展和轧钢技术的进步, 轧钢工艺的装备水平和自动控制水平不断 提高, 老式轧机也不断被各种新型轧机所取代。按照我国走新型工业化道路的要求, 轧钢技术发展的重点也转移到可持续发展上, 在保证满足环保要求的条件下, 达到钢材生产的高质量和低成本。

加热炉保温技术的发展

加热炉保温技术的发展 唐琦龙 (河北联合大学冶金学院热动2008届二班唐山路南区063000) 摘要:加热炉保温散热损失是加热炉热效率和节能的一个重要方面。炉墙的保温效果直接影响加热炉的散热损失大小。通过列举当前国内以及国外的一些先进保温技术综合阐述加热炉保温技术的发展情况。The heat insulation :heaters loss is heaters thermal efficiency and energy efficient an important aspect of the wall. the temperature effect a direct impact of heaters have lose little. through the list of current domestic and foreign some advanced technology heaters. 关键词:加热炉保温技术发展 国内加热炉保温技术 1 热处理加热炉保温定时器研究 热处理加热炉保温定时器由硬件和软件组成,硬件电路包括前向通道、主机、后向通道、软件设计包括中断优先级安排、倒计时、报警等程序,解决了普通处理加热炉无时间控制的问题。 2 新型保温衬里在焦化加热炉的应用 加热炉是焦化装置中的关键设备之一,其运行好坏直接影响装置安全生产的周期。加热炉炉管结焦速度和加热炉保温衬里破损情况是直接影响加热炉安全运行的重要因素。加热炉衬里的作用是使加热炉在运行的重要因素。加热炉衬里的作用是使加热炉在运行过程中能承受高温热负荷、抵抗化学侵蚀并减少热量损失,其具有一定的结构强

中国轧钢技术的历史现状和未来走向

中国轧钢技术的历史、现状和未来走向 摘要:轧钢是钢铁材料生产的关键工序,其装备、技术及生产管理不仅是钢铁工业总体水平的一个重要反应,而且直接影响到国民经济的发展,有着举足轻重的作用。轧钢技术作为国民经济支柱之一的钢铁材料产业的发展,必须符合可持续发展、环境友好、技术创新和信息化的要求。今后中国钢铁行业应进一步加强的技术改造,突破制约钢铁轧制技术发展的关键和共性技术,大力开发节能减排、创新性和前沿性新技术、新装备,实现钢铁材料的减量化、去库存、节约型制造,推动钢铁工业的可持续发展。 关键字:轧钢,发展趋势,节能减排,去库存 中国钢铁产量占全球总产量30%以上,在推动世界钢铁工业发展中所起的作用越来越突出,为我国经济的持续快速发展也作出了重大贡献。多年来,正是得益于钢铁工业提供的各类钢铁产品,才确保了国内机械、交通运输、建筑、国防等基础行业的大发展。钢铁工业是国民经济的重要基础产业,钢铁发展直接影响着与其相关的国防工业及建筑、机械、造船、汽车、家电等行业。从1996年钢产量首次突破1亿吨开始,一直稳居世界钢产量排名第一的位置。2008年中国粗钢产量达到了5亿吨,超过位居第二位到第八位的国家的粗钢产量的总和。中国钢铁工业不仅为中国国民经济的快速发展做出了重大贡献,也为世界经济的繁荣和世界钢铁工业的发展起到积极的促进作用。近几年,中国钢铁工业取得了多项世界第一:产量第一、出口量第一、消费量第一,并一跃成为全球钢铁生产大国。 自1980年起,我国的轧钢工业和技术发展充满了活力,钢材产量从1985年的3692万t,发展到1998年的10518万t,居世界轧材产量第一位,已基本满足国内需求。装备水平不断提高,引进了一批热连轧机、冷连轧机、连轧管机、小型连轧机、高速线材轧机等,使我国钢材的连轧比大幅度提高,特别是新建的一批钢铁生产短流程小钢厂投产,薄板坯连铸连轧板带厂也即将投产,大型和中型H型钢厂已投入生产,这些都成为我国轧钢生产的主力和样板。取得一批科技成果。代表性的如武钢1700mm热连轧机自动化改造及其在太钢、梅山热轧机上的推广应用、宝钢生产系统优化技术、高效连铸技术、连续式小型轧机和高线轧机的国产化工程等。科技进步对轧钢经济增长的贡献率不断增大。百余年来冶金工业的发展中,高效的轧钢工业和技术使轧钢始终是钢铁工业中钢材成型的主要方式。轧制技术的进步,在钢铁工业中也始终是名列前茅,如计算机的应用、连续化生产的实现等,预计在高新技术改造钢铁传统产业中,信息化和智能化管理和控制的轧钢工厂将很快出现。 初轧机的发展经过了3个阶段,到20世纪70年代初,初轧机的轧辊直径已增大到了1500mm.我国从1959年开始自行设计制造开坏机,目前已经研制成功的有700mm,750mm,850mm,1150mm初轧机。20世纪80年代以来,连铸技术得到较大的发展,连铸比达到80%甚至更高,连铸连轧工艺和设备也日趋完善,初轧机的职能将逐步转变为配合连铸,弥补连铸在钢种和规格方面的不足。 在所有市场需求的钢材中,板带材占有相当大的比重。我国于1981年从日本引进1700mm热连轧机的全套设备。传统热连轧方式自1924年第一套带钢热连轧机(14700问世以来,其发展已经经历了三代。20世纪50年代以前是热连轧带钢生产初级阶段,称为第一代轧机,其主要特征是轧制速度低、产量低、坯重轻、自动化程度低;20世纪60年代,美国首创快速轧制技术,使带钢热连轧进入第二代,其轧速达15-20m/s,计算机、测压仪、X射线测厚仪等应用于轧制过程,同时开始使用弯棍等板型控制手段,使轧机产量、产品质量及自动化程度得到进一步提高;20世纪70年代热连轧板带发展进入第三阶段,特点是计算机全程控制轧制过程,轧速可达30m/s,使轧机的产量和产品质量的发展达到一个新的水平。特别是近十年来,随着连铸连轧紧凑型、短流程成产线的发展,以及正在测验中的无头轧制,极大的

台车式燃气加热炉技术方案

6x2.5x2.5台车式燃气加热炉技术方案 一.概述 本台车式燃气加热炉的技术设计本着自动化,轻型化,节能化的方向进行设计,具体方案为:全纤维炉衬,全密封炉体,轮式自行走台车,各介质压力自控、炉压自控、燃烧自控。具有故障检测及位置报警柜面显示,设置PLC+智能温控仪表+手控三级控温方式;配置自动/手动两套可切换操作系统。能耗低,稳定性高。 主管路设有气体流量计,气体过滤器,调压稳压阀,并设有天然气总 管快速切断装置及安全放散设施等,综合考虑单炉燃气计量及安全保护等设施。 设置换热器以增加空气的预热温度及提高余热利用率,设置炉压自控 设施以保证炉温均匀性及炉子工作寿命,对于台车式加热炉,炉压控制是 相对重要的一个环节,炉压高时炉气会冲出炉体的各密封间隙形成气流冲 刷,高温气流对炉体周围环境和控制器件也会造成影响及破坏。而炉压低 时冷空气从密封间隙吸入,除增加工件的氧化外还会使炉内高温被负压迅 速抽出造成燃料浪费。为此,在炉膛内安装炉压测量装置,在烟管上安装电动调节烟气闸板及喷流引射装置,使炉压保持在微正压状态. 燃烧控制为四区控制,控制方式为调幅脉宽时序脉冲控制,以保证炉温均匀性。 炉子用途为锻前加热,工作温度:1250℃,控温精度:±1℃。炉门采用电动升降式,密封为楔铁滑道自重压紧密封。台车采用双层车架,耐热铸铁护板,链条传动轮式自行走结构。炉体为型钢框架及钢板炉壳焊

接结构,炉墙底部炉衬为耐火浇注料,炉墙及炉顶为纤维炉衬。 炉子各缝隙的密封为双重密封,第一重:台车与炉墙之间为迷宫式配 合缝,形成摭档式密封;第二道压紧式密封:侧密封为气缸驱动升降式软密封,尾部密封为机械式弹簧压紧软密封。 炉子的排烟方式暂按尾部上排烟设计。 二..主要工艺参数 2.1 工作区尺寸:6000×2500×2500mm(L×W×H)。 2. 2 温度均匀性:1250℃≤±15℃; 2. 3 控温精度:±1℃ 2.4 最高炉温:1300℃ 2.5 满载升温速度:200℃/h 2.6 炉底承载能力:60t。 三. 主要技术参数 3.1 炉膛内尺寸:669631962500mm(长宽高) 3.2 燃料种类及热值:天然气(热值33.24MJ/Nm3,压力4-6kpa) 3.3 燃气消耗量:480Nm3/h 3.4 空气消耗量:(4320+1000)Nm3/h 3.5 总电力需求:35KW 3.6 台车传动形式:车轮式自行走机构; 3.7 炉门开关形式:升降式炉门,采用电动葫芦升降 3.8 炉门密封方式:利用炉门自重自动压紧方式 3.9 排烟方式:上排烟

钢铁轧制技术的进步与发展趋势探索

钢铁轧制技术的进步与发展趋势探索 发表时间:2019-07-31T11:58:04.810Z 来源:《科学与技术》2019年第05期作者:孙旭东 [导读] 经过钢铁轧制技术自主创新,中国钢铁轧制技术已经跻身世界先进行列,基本完成了工业化过程。 南京钢铁联合有限公司江苏南京210044 摘要:改革开放以来,中国钢铁轧制技术取得了长足的进步。工业和国民经济的发展,钢材需求量增大,推动了轧钢制造技术的进步与发展。经过钢铁轧制技术自主创新,中国钢铁轧制技术已经跻身世界先进行列,基本完成了工业化过程。 关键词:钢铁轧制;技术进步;发展趋势 近年来,我国钢铁工业在经历了快速发展后,进入了调整结构、转型发展的阶段。钢铁企业在努力消化引进技术,提高管理与生产操作水平的同时,也在大力进行技术创新,着力开发绿色化、智能化的新技术、新工艺、新装备、新产品,不断增强核心竞争力。 一、中国轧钢技术的发展概况 改革开放以来,特别是进入21世纪以来,中国钢铁工业飞跃发展,为中国社会进步和经济腾飞做出了巨大贡献。作为钢铁工业的关键成材工序,轧钢行业在引进、消化、吸收的基础上,开展集成创新和自主创新,在轧制工艺技术进步、装备和自动化系统研制和引领未来钢铁材料的开发方面实现跨越式发展,为中国钢铁工业的可持续发展做出了突出贡献。经过改革开放以来的持续发展,中国已经建设了一大批具有国际先进水平的轧钢生产线,比较全面地掌握了国际上最先进的轧制技术,具备了轧钢先进设备的开发、设计、制造能力,一大批国民经济急需、具有国际先进水平的钢材产品源源不断地供应国民经济各个部门,为中国经济与社会发展、人民幸福安康提供了重要的基础原材料。作为一个发展中的国家,必须尽快掌握世界上的最先进的轧钢技术,引进、消化、吸收是必须的。改革开放以来,以宝钢建设为契机,中国成套引进了热连轧、薄板坯连铸连轧、冷连轧、中厚板轧制、棒线轧制、长材轧制、钢管轧制等各类轧制工艺技术以及相应的轧制设备和自动化系统,开始了轧制技术的跨越式发展的第一步。通过引进技术的消化吸收和再创新,中国快速掌握了轧钢领域的前沿工艺技术;通过设备的合作制造以及自主研发,中国掌握了重型轧机的设计、制造、安装的核心技术,逐步具备了自主集成和开发建设先进轧机的能力;利用先进的工艺和装备技术,以及严格科学精细的管理,开发了一大批先进的钢铁材料,满足了经济发展的急需,产品的质量水平不断提高。 二、钢铁轧制技术的进步与发展历程 1.轧钢技术进步依赖于高新技术的应用。近十年来,钢铁轧制的产量和规模在不断增大,其中轧钢技术的进步也取得了长足发展.高新技术在轧钢中的应用赋予了钢铁轧制新鲜的活力,提高了生产效率和质量.中厚板平面形状控制技术和无切边技术在板带材生产上的应用,提高了对板厚和板型的控制能力和钢铁成材率,使得产品的质量档次有了明显的大幅提高.H型钢自由尺寸轧制、型钢的多线切分轧制等技术也在在型钢生产方面得到了广泛的应用.目前的技术发展集中在板型、板厚精度、温度和性能的精准控制上,使得钢铁轧制产品的质量在不断提高. 2.电脑信息技术的应用创新轧钢工艺。以计算机为中心的信息技术在钢铁轧制中的应用,极大程度上推动着轧钢技术的进步.使用电脑和模型进行配合的金属变形程序转变了传统的轧钢制造工艺,使用电脑对型钢、钢管轧制和板带材进行立体解析和模拟,对于轧钢制造的精度和技术系数的改善都具有重要作用.同时,计算机系统还创新和强化了全面检查措施和掌控体系,使得轧钢制造向着更高精确度和高品质、高效率不断迈进.随着计算机等高新技术的应用,钢铁轧制无论是产品还是生产工艺上都有了很大的变化,性能上也得到了极大的优化. 3.轧钢品种的开发与进步。近年来,轧钢的产品开发也有着新的发展和进步.在冷轧产品方面,高强度、更宽和更薄的产品成为开发的主要方向;在热轧方面,高强度高韧性的管线钢发展很快,目前研发了X80、X100、X120等性能优越的高压输气管线钢.多样化的产品和更加优质的质量是钢铁轧制技术的开发动力,推动着钢铁轧制技术的向前进步与发展. 三、问题与展望 建国60多年以来,特别是改革开放以来,中国轧钢行业高速发展,基本建成了工业化轧钢技术体系。大力采用国际上的先进技术,利用自动化、机械化、电气化手段,快速推进生产发展。但是,在大量生产工业产品的同时,大量消耗资源和能源,大量排放。这种资源和能源的消耗以及对环境的破坏,已经超过人类和自然界可以忍受的底线。从技术层面来说,这种发展主要依靠引进、跟跑,真正中国自主创新的技术不是很多。由于缺乏创新,没有特色,各个轧钢厂利用几乎同样的工艺、同样的装备,生产同样的产品,甚至存在的问题也是同样的。企业缺少特色、缺少绝活、核心竞争力不强。钢铁工业的这种无序发展和产能的剧烈膨胀,造成严重供大于求,同质化竞争十分激烈。中国轧钢行业目前存在着的严重不平衡、不协调和不可持续问题已经引起了各方面的重视,必须大胆创新,努力转变发展方式,走新型工业化的发展道路,让中国的热轧板带厂健康发展。 这就要求工业化的技术体系向生态化的技术体系转变。中国的钢铁行业,中国的轧制行业,尤其需要由工业化的技术体系向生态化的技术体系转变。生态化技术体系的特点是减量化、低碳化、数字化。因此,中国应当依据生态化技术体系的特点,针对面临的资源、能源、环境问题,加强技术创新,实现“绿色制造,制造绿色”这一生态化、绿色化的大计方针。所谓生态化、绿色化,即节省资源和能源;减少排放,环境友好,易于循环;产品低成本,高质量、高性能。轧制技术的生态化、绿色化特征在轧制过程创新与轧制产品研发上具体体现在下述4个方面,即:“高精度成形;高性能成形;减量化成分设计;减排放清洁工艺”。今天比以往任何时候都要突出现代轧制技术生态化、绿色化特征,着力围绕“高精度成形、高性能成形、减量化成分设计、减排放清洁工艺”开展创新研究,解决一批前沿、战略问题和关键、共性问题,推进中国轧制技术的发展。在世界轧制技术的发展中,留下中国人的印记,将是中国轧制科技工作者长期、艰巨而光荣的任务。大规模的引进、新建轧钢生产线的阶段已经过去,今后的任务是对现有的生产线进行针对性地改造,通过改造出特色,通过改造出创新,出质量,出效益,出高水平的产品,实现减量化和低碳化。在改造的过程中,要广泛采用信息化技术,将信息化技术的比特世界融于钢铁轧制过程,融于钢铁材料的原子世界,实现轧制过程的实时感知、分析与控制。中国的改造要联合机械制造业、信息产业等相关行业,通过行业的交叉和融合,研究出、制造出与生态化要求相适应的未来一代轧制技术与装备以及信息化系统,为生态化的工艺技术服务。钆钢工业的改造要面向下游产业,与下游产业合作,采取EVI等先进方式为下游产业服务。对于轧钢这个成材工序来说,这一点尤为重要。这场改造应当是一场群众运动。动员广大群众出主意,提建议,紧紧围绕企业面临的关键、共性问题,进行系统诊断,为生产线的技术改造提出方案。在此基础上,大力推进企业的技术创新,围绕生态化(减量化、低碳化、数字化)这个核心加强技术改造,在资源、能源、环境可以承受的范围内,生产社会需求的高质量、高性能产品,实现企业、国家和社会的平衡、和谐、可持续发展。

天然气加热炉的现状与改进研究

天然气加热炉的发展现状与改进探索 2010-10-11郭韵曹伟武严平钱尚源 摘要:作为一种特殊的炉型形式,天然气加热炉采用中间载热介质间接加热的方式,是天然气生产、输送和应用中的主要耗能设备。为了节能降耗、提高加热效率,必须结合工程实际的需要,优化加热炉的结构,设计制造出高效节能的天然气加热炉。为此,分析了天然气加热炉传热的薄弱环节及其强化措施,针对天然气加热炉大筒体内换热面的常规布置形式存在的缺陷,提出了旋转加热和冷却受热面以及在受热面之间加装导流板两种简单而有效的天然气加热炉改良结构,使中间载热介质形成整体有组织的顺畅流动并强化传热,从而达到节能降耗和提高天然气加热炉效率的目的。以上两项技术已获得国家专利授权。 关键词:天然气加热炉;流场组织;旋转;大简体;中间载热介质 天然气加热炉常用于井口、计量站、接转站等,将天然气加热至工艺所要求的温度,以便进行运输、分离和粗加工等(图1)。 天然气在使用过程中也常需要加热,如在燃气发电机组中,其工艺对燃料气的压力、温度和露点要求很高[1],电厂使用的燃料气必须经过调压和加热处理。另外,在液化天然气(LNG)输配应用系统中,要使LNG气化,也必然会用到大量加热气化炉。 1 天然气加热炉的工作原理 天然气加热炉采用整体组装式结构,在卧式大容积筒体内布置火筒、烟管束等加热受热面和多回程对流管束等冷却受热面,筒内充注中间载热介质作为加热和冷却受热面之间的传热媒介,帮助冷、热两种流体达到传热的目的,中间载热介质可采用水、乙二醇溶液和导热油。通常,加热和冷却受热面沿大筒体圆截面中心轴呈轴对称布置,火筒和烟管束位于水平轴的下方,对称布置于垂直轴的左右侧;多回程对流管束位于水平轴的上方,各回程也对称布置于垂直轴的左右侧,如图2所示。

加热炉技术协议-总体说明

1.概述 江苏永钢公司计划新建一条130万吨棒材生产线,需配套一座220t/h(冷装)步进梁式加热炉,采用高炉煤气双蓄热燃烧技术。 本方案遵循的指导原则是:“先进、实用、可靠、经济”。 2.买卖双方负责本工程范围的详细叙述 卖方详细供货内容以《附件03:设备材料清单》为准。 卖方负责从上料台架开始到出炉辊道为止的设备和电气的设计。主要有加热炉本体系统及炉底步进机械系统的设计、加热炉燃烧系统的设置、汽化冷却系统的设计、上料台架、上料辊道和出炉辊道等的设计,风机房、液压系统的设计,加热炉采用双预热蓄热技术,换向阀使用全功能隔断型三通换向阀。加热炉设计时要考虑有一定的富裕能力。液压、电气控制包括PLC、交流调速系统主要元器件要选用代表国外先进水平厂商的产品。 仪电控设计涵盖整个炉区部分,从上料台架开始到上料辊道为止。 加热炉采用高炉煤气、空气双蓄热燃烧技术,采用仿生六角形陶瓷蜂窝体。 2.1.设备的供货、安装 2.1.1.加热炉设备的供货、安装 卖方负责炉底步进机械、悬臂辊道、缓冲挡板、水封槽、水梁、耐热垫块、风机蓄热式烧嘴、三通换向阀、汽化冷却系统、液压系统、润滑系统等的供货和安装(其中汽化冷却补水系统由买方提供材料)。买方负责炉外设备的供货和安装。 2.1.2.电气设备 电气控制设备全部由卖方供货,买方负责安装及施工。主要有:交流传动控制、顺控自动化装置(含上料系统电控制设备)等。 2.1. 3.仪控设备 压力、温度、流量的测量装置、调节阀等、完整的仪表自动化装置,钢坯的测长全套设备全部由卖方供货(入炉钢温测量用测温仪、蒸汽流量计、氮气流量计及压力表及变送器由买方提供),买方负责安装及施工。 2.1.4.自动化控制系统 自动化(含PLC、通讯、显示、工业摄像头等)系统由卖方供货,买方负责安装及施工。软件编程和调试由卖方负责。 上述所有设备安装的主辅材由买方供货;安装用地脚螺栓、螺母、垫片、电缆、桥架、电线、引压管等由买方供货安装;安装后的设备涂装由买方负责;所有设备的卸车、倒运、转场、装车等均由买方负责。 2.2.钢结构供货制作安装(含装出料炉门) ·炉下部、上部、顶部钢结构的设计由卖方负责,供货、制作、安装由买方负责; ·进出料侧钢结构及固定在它上面的耐热铸钢件、进出料侧水冷梁等的设计由卖方负责,供货制作安装由买方负责; ·炉区钢结构平台、楼梯、走道、栏杆等的设计由卖方负责,供货、制作、安装由买方负责;

无头轧制技术的发展及展望

无头轧制技术的发展及展望 上世纪60年代以前,传统生产钢材方法是先将钢水模铸成大型钢锭,经加热、轧制成坯,钢坯经冷却、清整后再加热,轧成用户所需断面的成品钢材。近40多年来经历了三次飞跃式发展:一是将模铸改为连铸,取消开坯机;二是由一般连铸改为近终形连铸,减少加热、轧制次数;无头轧制技术是钢铁加工流程的第三次飞跃,即钢材生产不再是单块的、间隙性的,而是连续进行轧制,然后根据用户需求剪切成所需长度或卷重。无头轧制的好处是: 1.钢材全长以恒定速度进行轧制,生产率有较大提高; 2.因对钢材全长施加恒定张力,使钢材断面形状波动减少,钢材质量改善,这点对热轧扁平材生产特别重要; 3.由于成品长度不受限制,根据交货状态要求剪切,成品率显著提高; 4.由于轧材运行稳定性提高,对热轧带钢来说,有利于生产薄规格带钢; 5.和单块轧制不同,钢品啮入次数减少,减小对轧辊冲击,有利于提高轧辊寿命。 在施行无头轧制技术中分扁平材和长材两类,其中又有无头轧制和半无头轧制的区别;就技术类型来说分为焊接型和铸轧型两种,将分别叙述于后。 扁平材的无头轧制 1.在传统热连轧带钢机上无头轧制。 第一台全连续无头轧制热连轧带钢机是1996年在日本JFE公司千叶厂投用的。它的轧机组成是:粗轧机架3台,精轧机架7台,辊身长2030mm,设计最高轧速为25m/s,年产能力为540万t。连铸坯经加热在粗轧机架轧成最大厚度为50mm中间带坯进人热卷箱,在热卷箱后设有中间带坯剪断机,将带坯头剪平,以便于后面的焊接设备(用对接压合法电磁感应焊接)进行焊接,焊接后的带坯经过带坯边部加热器使带坯温度均匀,然后送入精轧机架轧成所需带钢厚度,由于中间带坯头尾已经焊接,从理论上来讲是可以无限长的,故称为无头轧制。轧机后卷取机前设有高速带钢剪断机,将高速前进的带钢(最大1200m/min)切断分卷。 在千叶厂3号轧机全连续无头轧制取得成功经验后,日本新日铁公司和韩国浦项公司分别将其大分厂和光阳厂热连轧带钢机改造成能无头轧制的全连续热轧带钢机。 由于中间带坯焊接操作过程比较复杂,对中间坯头尾可搭接性能要求较高,因而这项技术还没有在全球范围内迅速推广。据对千叶厂考察该轧机的情况介绍,由于市场原因,千叶3#热连轧带钢机实际年产量为300—350万t (设计年产能力540万t的55%-65%),采用无头轧制产品的月产量不足4万t。随着生产经验的积累和对新技术的掌握和改进,相信这项技术将会发挥更大的作用。 2.薄板坯连铸连轧生产线上半无头轧制。 实现半无头轧制薄板坯连铸连轧生产线的基本设备配置和传统的薄板坯连铸连轧大体相同,但是技术上上有较大变化,即钢水经连铸机浇铸成钢坯后,不需剪切分段直接送人辊底加热炉进行均热,热后即直

轧钢加热炉

轧钢车间加热炉设计 design of reheating furnace for rolling mill zhagong ehejian Jiarelu sheji 轧钢车l’ed加热炉设计(design of reheating furnaee for rolling mill)对型钢、中厚板、热轧带钢及线材等轧钢厂坯料加热炉的设计。设计内容包括炉型选择、确定装出料方式与炉子设施的平面布置、炉子加热能力与座数选择、炉温制度与炉型结构选择、炉子供热负荷计算及其分配比例、炉子尺寸设计以及炉子的检测与自动化操作。炉型选择轧钢车间加热炉主要有推钢式加热炉和步进式加热炉两大类型。一般在设计前期根据原料和燃料、生产规模与产品大纲、车间布置、加热与轧制工艺要求以及整个轧制线的装备水平等原始条件综合考虑选择。步进式加热炉始建于20世纪60年代中期,与传统的推钢式加热沪相比,具有加热质量好、热工控制与操作灵活、劳动环境好等优点,特别是炉长不受推钢长度的限制,可以提高炉子的容量和产量,更适应当代轧机向大型化、高速化与现代化发展的需要。步进式加热炉在配合连铸坯热装时有明显的优越性,一般采用炉底分段传动方式,即在连铸开始浇铸时停止向炉内装料,而炉子仍按轧制节奏连续出钢,炉子装料侧一段炉底空出,当热连铸坯送到后即迅速装入炉内,尽量减少热坯的散热损失,同时集中加热热连铸坯可以有效地提高炉子产量和降低燃料消耗。推钢式加热炉和步进式加热炉的主要技术经济指标,如单位炉底面积产量和热耗,基本相同或相近,但步进式加热炉的最高小时产量则可大大超过推钢式加热炉,热耗也较低。步进式加热炉的钢坯在炉时间短,其钢坯氧化烧损率、脱碳率及废品率低于推钢式加热炉。步进梁式加热炉的冷却水消耗量比推钢式加热炉约多一倍,因此水系统投资要高一些,对操作及维护水平的要求也较高。现在新建的具有经济规模的各类轧钢厂基本上都选用了步进式加热炉;一些老厂如美国底特律钢厂热轧车间、法国索拉克和恩西俄厂的热轧车间、日本和歌间炉子座数多于两座时很难布置。山热连轧厂与鹿岛厚板厂以及加拿大汉密尔顿的多发炉内装料可以单排或双排(包括单排装长料和双斯科厂等,在改建或扩建中都选用了步进式加热炉替排装短料),这要根据坯料长度范围、单炉产量、车间代原有的推钢式加热炉。中国在70年代设计和建设步占地以及投资经济合理与节能等因素确定。进式加热护,但当前轧钢加热炉,特别是中小型轧钢厂炉子设施的平面布置炉子两侧净空尺寸及各种推钢式加热炉仍较多,这与中国的原燃料条件等多种平台、梯子的设置,要满足生产操作与检修的要求并符因素有关,加热短小钢锭不能采用步进式加热炉。合有关的安全规定,要考虑“回炉坯”运送设施的位置。设计加热炉时还要决定炉子的热工制度、结构型煤气、重油、蒸汽、空气及冷却水系统的设计与布式、主要技术经济指标、燃烧装置的型式与数量、排烟置,要考虑生产控制功能完备,检修方便,符合安全规和余热利用方式、出渣方式等。定,不妨碍交通和吊车操作及设备检修等多种因素。装出料方式与炉子设施的平面布置按照工艺要地下烟道要尽量缩短,换热器前后一般不设旁通求确定加热炉的装出料方式及炉子在车间的位置。炉烟道,尽可能不采用多座炉子合用一座烟囱。换热器的子的平面布置设计,包括撼烧系统管道设施、排烟系统位置要考虑更换吊装方便及清扫位置,热风放散管应及热回收设施、冷却水与汽化冷却系统、排渣设施以及引出厂房,避免在车间内产生热污染与噪音。炉子区域操作检修平台等的平面布置。炉子仪表室及炉子加热能力与座数选择炉子加热能力包括单计算机房的位置、尺寸及炉子设施占用的轧钢跨、原料炉小时产量和车间炉子总加热能力。跨等按设计要求确定。单座炉子小时产量的计算理论计算法是根据

钢铁轧制加工未来发展趋势

材料加工基础论文 题目:钢铁轧制加工现状及发展趋势 学院:材料科学与工程 专业班级:冶金工程03班 学生姓名:刘世焱 学号:20133183 指导老师:信运昌 2016年10月31日

钢铁轧制加工现状及发展趋势 近年来,大多钢材生产厂家从一味地追求产量,转至降低成本,提高经济效益,节约能耗和提高质量的方向发展。为此,一系列轧钢新工艺、新技术相继被研发并投入使用。本文针对热轧带钢、冷轧带钢等,从工艺、装备、产品等方面总结了中国钢铁轧制技术的发展情况。同时,指出了我国轧钢厂今后要大力开发节能减排、创新性和前沿性新技术、新装备,推动钢铁工业的可持续发展。 关键词:热轧带钢,冷轧带钢,关键技术,可持续发展 1.热轧带钢技术发展状况 自1924年第一台带钢热连轧机投产以来,连轧带钢技术得到了很大的发展。热轧带钢生产工艺过程包括原料准备、加热、粗轧、卷板、焊接、精轧、冷却、飞剪、卷取等。现代热带连轧机精轧机组大多是6~8架组成,但粗轧机组组成和布置不同,由此热带连轧机主要区分为全连续式、半连续式和3/4连续式。1.1热轧工艺装备关键技术 (1)无头轧制(EndlessWeldingRolling) 无头轧制就是将加热到开轧温度的钢坯,在加热炉及粗轧机之间用移动式焊机将钢坯头尾焊接起来,实现钢坯在轧机中的连续轧制。无头轧制的采用是为了满足生产各种热轧薄板的需要。与常规的分批次轧制工艺相比,无头轧制是一种具有成本效益的工艺。 (2)ASR技术 无取向硅钢热轧板形控制的ASR技术可用来满足冷轧硅钢片日趋严苛的板形质量要求,ASR非对称自补偿工作辊偏摆控制功能开发与窜辊策略的实现是大型工业生产应用ASR技术的重要条件。在分析提出ASR板形控制技术应用要求基础上,在1700热连轧机过程控制系统MAC机新增了一系列寄存器和编制、修改梯形图程序,开发了记忆功能,实现了ASR偏摆控制功能和特定窜辊策略,可适应多种宽度无取向硅钢连续编排的大工业生产方式。 (3)CVC技术(continuouslyvariablecrown) 在轧机机型确定的情况下,辊形是板形控制最直接、最活跃的因素。自20世纪80年代开始,我国引进的多套热连轧、冷连轧机采用国外提供的轴向移位变凸度工作辊辊形,如三次连续变凸度进行板形控制。事实证明,对辊形的特性进行分析研究并结合实际生产情况进行改进,对提高板形控制水平尤为重要。(4)在线制造 连铸板坯宽度、热轧带钢宽度及平直度的在线测量非常重要。目前,板带轧制中的在线制造已经广泛应用于热轧主传动在线监测、热轧带钢表面在线检测和热轧钢板厚度在线测量以及板带轧制在线控制等环节。

轧钢加热炉

轧钢加热炉 国内轧钢加热炉吨钢燃耗高、效率低,造成了能源的极大浪费,在国家节能减排的政策下,要搞好加热炉节能工作,提高炉子热效率,以降低轧钢生产成本。 能源的竞争是钢铁工业正在面临的挑战,降低能源消耗、建立环境友好的钢铁企业已经成为钢铁工业可持续发展的一个重要方面,也是钢铁工业利润增长的一个重要的基础工作。中共中央关于制定国民经济和社会发展第十一个五年规划的建议中也提出,“十一五”期间单位国内生产总值能源消耗要比“十五”期末降低20%左右,重点抓好冶金、建材、化工、电力等行业的节能降耗工作。 轧钢加热炉的能源消耗约占冶金行业能源消耗的10%左右,其中轧钢加热炉又占了75至80%。中国冶金行业的轧钢加热炉在产量、炉型结构、机械化、自动化水平及理论操作上与国外还存在一定的差距,炉子吨钢燃耗高、效率低,造成了能源的极大浪费因此提高加热炉效率、搞好加热炉节能工作,是降低轧钢生产成本,实现钢铁企业可持续发展的有效方法之一。 合理的炉型结构 炉型结构是加热炉节能与否的先天性条件,因此在加热炉新建时应该尽量考虑到加热炉节能的需要。炉型结构的新建或改造,要使燃料燃烧尽可能多的在炉膛内发生,减少出炉膛的烟气热损失;要尽可能多的江烟气余热回收到炉膛中来,提高炉子的燃料利用系数;尽量的减少炉膛各项固定热损失,提高炉子热效率。 (1)采用步进式炉型。步进式加热炉的实践表明,它与传统推钢式加热炉相比有很多优点:由于钢坯之间留有间隙,因此钢坯四面受热,加热质量好、钢材加热温度均匀;加热速度快,钢坯在炉内停留时间短,有利于降低钢坯的氧化烧损,有利于易脱碳钢种对脱碳层深度的控制;操作灵活,可前进、后退或踏步,可改变装料间距,控制炉子产量;生产能力大,炉子不受钢坯厚度和形状控制,不会拱炉;便于连铸坯热装料的生产协调。 (2)适当增加炉体长度。炉体长度是由总加热能力决定的,但是为了降低燃耗。提高炉子热利用率,可以适当增加炉体长度。炉体短,高温的烟气将不能得到充分的利用,废气就要带走大量的热能从烟道跑掉。因此适当延长露体可以使炉底强度降低,提高热效率。在一定的加热条件下,炉床负荷越高,热效率越低,燃料单耗越高。反之,随炉床负荷降低,废气带走的热损失将显著减少。如其它条件不变时适当延长炉体,虽然因炉底水管及炉体砌体的增加会使这部分热损失有所增加,但远远小于节约的燃料量。 一般而言,炉子每延长1米,可使钢坯温度上升25至30摄氏度,排烟温度下降约30摄氏度,单位热耗减少1.5至1.8。增加炉体长度主要是延长预热段的长度,降低排烟温度。国内一些企业按照预热段长度为全炉有效长度的45至50%,适当调整了预热段。取得了明显的节能效果。 (3)减少炉膛空间。炉膛各段高度与长度对炉内的传热有很大的影响,直接影响着炉子的加热和燃料的利用,在考虑炉膛高度时,既要保证燃料的充分燃烧,又要使炉气充满炉膛。 (4)炉内隔墙。炉内隔墙可以起到稳定炉压、控制炉气流动、控制炉温、减少烟气外溢、降低排烟温度和减少炉头吸冷等作用。因此,根据实际情况在炉头、炉尾及各段之间增加隔墙,对炉子节能降耗有明显的效果。 减少炉膛热损失 炉膛热损失主要包括水冷、炉门辐射、逸气、炉衬散热等热量损失。减少这部分热量可以大幅度降低单耗。 1.减少炉底管的热损失 (1)炉底管的绝热包扎。为消除加热炉水管黑印。减少热损失,提高加热质量及产品质量,降低燃料消耗,加热炉普遍采用了炉底管绝热包扎技术。水冷热损失一般占加热炉总热收入的10%左右,这部分热量损失主要是由炉底纵横水管及炉用水冷部件造成的。为了减少这部分热量损失就要加强冷却水管的隔热,可将原炉底纵横水管的单层绝热包扎改为两种材料的双层包扎,可显著降低水冷带走的热量损失。国内轧钢加热炉的炉底管及水冷滑轨绝热包扎方法有耐火塑料包扎,陶瓷纤维包扎、硅铝耐火纤维毡包扎及其它一些不定型耐火纤维预制件和耐火浇注料包扎等。 (2)最低管底比。中国轧钢加热炉的管底比普遍较大,为尽量降低管底比,现在所采用的方法主要有:增大横水管间距,在纵水管强度允许范围内,减少横水管根数,增大间距;改变纵横水管支

加热炉设计总结

中国石油化工股份公司炼油样板加热炉设计总结 中国石化集团洛阳石油化工工程公司 1概述 管式加热炉是炼油生产装置的主要设备之一,又是炼油生产装置的耗能大户,同时还是炼油生产装置对环境产生污染的主要污染源。提高管式加热炉热效率,减少炼油生产装置加热炉燃料耗量,对于落实党中央和国务院“节能减排”政策以及提高炼油企业经济效益都有一定意义。为了推动各企业炼油加热炉节能工作,中国石油化工股份公司炼油事业部决定:采用国内领先技术进行集成,建设炼油样板炉。 常减装置是炼油企业处理量最大,管式工艺加热炉燃料耗量最多的炼油装置。提高加热炉热效率,减少燃料耗量对于降低常减压装置及其全炼油厂的能耗有着重要意义。上海高桥分司800×104t/a常减压装置是国内最大的常减压装置之一;常压炉为双室立管箱式炉,是国内外大型常压炉代表炉型。中国石油化工股份公司炼油事业部决定:通过采用国内领先水平的新技术、新设备、新材料进行技术改造,把上海高桥分司800×104t/a常压炉建成“中国石油化工股份公司炼油样板炉”之一。 受中国石油化工股份公司炼油事业部委托,中国石化集团洛阳石油化工工程公司完成了上海高桥分司800×104t/a常压炉技术改造既中国石油化工股份公司炼油样板加热炉(高桥)建设施工图设计。初步设计于2007年5月9日通过中国石油化工股份公司炼油事业部组织的专家审查。施工图设计于2007年7月26日通过中国石油化工股份公司炼油事业部组织的专家审查。2007年8月26日向上海高桥分公司提交了全部施工设计图纸和设计技术文件。 中国石油化工股份公司炼油样板加热炉(高桥)设计创新点如下: (1)热效率≧92%,突破了我国大型炼油加热炉设计热效率≧90%。 (3)燃烧供风量采用了O /CO串级调节控制技术,实现了燃烧供风量以热效率 2 寻优调节控制。克服了目前普遍采用的燃烧供风量以烟气中O 含量寻优调节控制技 2 术存在的缺陷。 、CO、NOx、SOx作为检(4)采用了以相关的压力、流量、温度、烟气中的0 2 测和控制对象,设定多项控制策略,动态优选和最优参数组合,使加热炉实现高效、低污染运行全新的加热炉自动控制系统。克服了目前普遍采用的炼油加热炉控制技术存在的缺陷。提高了调节和控制自动化水平,为炼油加热炉长周期、安全、平稳、高效运行提供了保障。 、CO、NOx和SOx含量在(5)在辐射室顶部和空气预热器烟气出口设置了O 2 线分析仪,可对样板炉整个运行周期的排烟中O2、CO、SOx和NOx含量实施在线检测。可使操作工或管理者随时了解或掌握样板炉的燃烧状况,热效率和环保指标。也使用户有了评价燃烧器真实技术水平的手段,为检验燃烧器长期实际使用效果创造了条件。

相关文档
最新文档