动物遗传学部分考试大纲——整理

动物遗传学部分考试大纲——整理
动物遗传学部分考试大纲——整理

全日制专业硕士学位研究生

《动物遗传学》考试大纲

第一部分关于参考书

一、指定参考书《动物遗传学》,吴常信主编,2009年8月第一版,高等教育出版社。(注:如果在当地书店购书有困难,可以采取网上订购:网址为http//https://www.360docs.net/doc/8c17668843.html,)二、必考章节:

绪论

第一章分子遗传学基础

第二章细胞遗传学基础

第三章遗传的基本规律

第四章遗传物质的改变

第八章动物遗传操作

第九章群体遗传学

第十章数量遗传学

三、使用方法根据本考试大纲指定的必考章节和考试范围认真学习和记忆重要概念和知识点,认真完成并且反复练习必考章节后面的作业,非必考章节不在考试范围。

第二部分考试范围和考试要求

动物遗传学考试要求主要包括对必考章节重要概念的掌握、对知识点含义的理解和描述,在理解的基础上,能运用基本概念、基本原理和基本方法,综合分析和解决有关的理论和实际问题。下面分别列出必考章节的重要概念和知识点。

绪论

在绪论当中重点掌握遗传学、动物遗传学、遗传和变异的基本概念,遗传学的三个发展时期以及对遗传学做出突出贡献的科学家,动物遗传学在动物生产中的地位。

遗传学:研究生物的遗传和变异的一门科学。

动物遗传学:

遗传和变异:在上下代传递中,子代与亲代的特征相似的现象称为遗传,而子代与亲代间以及子代个体间存在差异的现象叫做变异。

遗传学的三个发展时期以及对遗传学做出突出贡献的科学家:

第一时期(1910-1940年)细胞遗传时期标志性的发现是确立了遗传的染色体学说。(摩尔根1910年基因连锁与互换定律)

第二时期(1941-1960年)微生物遗传和生化遗传时期研究对象涉及细菌真菌等,对基因的结构和生化功能进行了探讨。(1944 埃弗里肺炎双球菌转化,证明了遗传物质为DNA,而不是pro;1953 沃森和克里克,DNA空间结构的双螺旋模型,1958,中心法则(DNA到RNA到

Pro信息的传递))

第三时期(1953至今)分子遗传时期1953年DNA双螺旋模型的简历标志着分子遗传学的诞生。雅克、勒沃夫、莫诺、

动物遗传学在动物生产中的地位:

品种贡献一般在40%以上,动物遗传学是动物育种学的基础。

第一章分子遗传学基础

重要概念

要求熟记本章的重要概念,例如基因、操纵子、岗崎片段、端粒酶、转录等。

基因:一个与调控区域、转录或功能序列相关联的,在基因组序列中可以找到的,对应于一个遗传单位的区域。

操纵子:指启动基因、操纵基因和一系列紧密连锁的结构基因的总称。转录的功能单位。

冈崎片段:相对比较短的DNA链(大约1000核苷酸残基),是在DNA的滞后链的不连续合成期间生成的片段。

端粒酶:一种反转录酶,由蛋白质和RNA两部分组成核糖蛋白复合体,其中RNA是一段模板序列,指导合成端粒DNA的重复序列片段。

转录:是指以DNA中的一条单链为模板,4种核糖核苷酸(ATCG)为原料,在依赖于DNAf 的RNA聚合酶催化下合成RNA链的过程。

知识点

遗传物质的特征遗传物质的基本特征是能够自我复制,能够控制性状的产生,具备分子结构相对稳定性,具有丰富的多样性,以及能引起可遗传的变异等。遗传信息传递的主要方式是以DNA或RNA的为储存形式,以蛋白质或RNA为功能表现形式。

DNA的结构DNA的结构包括一级结构、二级结构和高级结构。四种核苷酸(dAMP、dCMP、dGMP、dTMP)按照一定的顺序排列,通过3'-5′磷酸二酯键相互连接,构成DNA的一级结构。Watson-Crick的双螺旋结构模型总结了DNA二级结构的主要特征,双螺旋模型所描绘的B型DNA是生物体最常见的一种。

RNA分子类型RNA分子类型是多样的,除了在蛋白质合成过程中起到直接作用的mRNA、rRNA、tRNA以外,还有许多种类的RNA分子起着重要的调节作用或直接参与加工过程。

基因的概念基因的概念在不断地发展,更多的基因结构形式逐渐被发现,熟记真核生物编码基因的一般结构,了解基因遗传信息传递的一般过程。

DNA的复制DNA复制以半保留复制方式完成,复制合成的方向保持5'→3'方向。

转录转录是遗传信息由DNA传递到RNA。与原核生物不同,真核细胞转录产生的mRNA 要经过加工才具有功能。

蛋白质的生物合成蛋白质的生物合成就是核糖体RNA与转运RNA和信使RNA在各种因子的参与下相互作用的过程。最终产生的蛋白质氨基酸序列仍需要加工与修饰,才能变成有功能的蛋白质。

第二章细胞遗传学基础

重要概念

要求熟记本章的重要概念,例如原核细胞、真核细胞、核小体、着丝粒、端粒、有丝分裂和减数分裂、同配性别、异配性别、SRY基因等。

原核细胞:一般较小,结构简单,种类较少,细胞膜内为DNA、RNA、蛋白质及其他小分子物质构成的细胞质,没有核膜核仁和真正的细胞核,在细胞质内也不存在线粒体、叶绿体、内质网、高尔基体、中心体等细胞器。各种细菌、蓝藻和放线菌等低等生物由原核细胞构成,统称为原核生物。

真核细胞:

核小体:核小体是染色体的基本结构单位,由DNA和组蛋白(histone)构成,是染色质(染色体)的基本结构单位。

着丝粒:染色体中将两条姐妹染色单体结合起来的区域。由无编码意义的高度重复DNA序列组成,是动粒的形成部位。

端粒:染色体端部的一种增大了的特化染色粒,使DNA序列终止。

有丝分裂和减数分裂:

同配性别:带有一对相同性染色体(XX,ZZ)只产生一种类型配子的性别。

异配性别:带有一对不同性染色体(XY,ZW)产生不同配子的性别。

SRY基因:雄性的性别决定基因,指Y染色体上具体决定生物雄性性别的基因片段。

知识点

细胞的结构细胞的结构可分为原核细胞和真核细胞两大类。原核细胞一般较小,结构简单,细胞质由DNA、RNA、蛋白质及其它小分子构成,在缘何细胞的细胞质内没有线粒体、叶绿体、内质网、高尔基体、中心体等细胞器,没有核膜、核仁和细胞核是原核细胞区别于真核细胞的主要特征。真核细胞在结构和功能比原核细胞复杂的多,其结构分为细胞膜、细胞质和细胞核三部分,细胞质内有线粒体、核糖体、内质网、高尔基体、中心体、溶酶体和液泡等众多的细胞器,其中线粒体、核糖体和内质网等具有重要的遗传功能,细胞核是遗传物质集聚的主要场所。

染色体在细胞中,由DNA、组蛋白、非组蛋白和少量的RNA构成染色体,染色体可以是线性的或环状的,每个物种染色体的数目和形态是恒定的,通过染色体形态特征和数目的分析,可以研究物种的起源、演化和分类,以及遗传病的诊断、基因定位、遗传图绘制、遗传标记筛选等。核小体是染色体或染色质的基本结构单位,由核心颗粒和连接丝两部分组成,核心颗粒含有一个由H2a、H2b、H3和H4各两个分子组蛋白所组成的八聚体。

细胞分裂当细胞分裂时,细胞必须精确维持染色体的组成,着丝粒在染色体分离过程中起着至关重要的作用,而端粒帮助保护和复制染色体末端。真核细胞精确地将染色体的复制和分离过程分开,染色体的分离有有丝分裂和减数分裂两种方式,在动物生活史中,经过有丝分裂和减数分裂,使染色体经历了“二倍体(2n)-单倍体(n)-二倍体(2n)”的循环过程。这一方面保持了染

色体在生物体内的一致性和稳定性;另一方面保证了各物种染色体数目在世代间的恒定性和遗传性状的稳定性。

性别决定性别作为许多单位遗传性状的综合体受遗传和环境两方面因素的影响,其表现形式和决定机制具有多样性。性染色体有XY、XO、ZW、ZO等4种构型。具有两条相同性染色体的性别称为同配性别,相反,带有不同性染色体的性别称为异配性别。在XY型中,雌性为同配性别(XX),雄性为异配性别(XY),而ZW型刚好与XY型相反,雌性为异配性别(ZW),雄性为同配性别(ZZ)。Y染色体对动物的性别决定起关键作用,具有强烈的雄性化基因系统;SRY基因是与性别决定相关的基因,动物的性别就是以SRY基因为主导,一系列其他基因参与作用而形成的。

第三章遗传的基本规律

重要概念

要求熟记本章的重要概念,例如F1、测交、纯合子和杂合子、共显性、基因型、显性、隐性、同源染色体、等位基因、显性上位、隐性上位、显性上位复等位基因、三点测验、重组型配子、Rf、双交换、伴性遗传、从性遗传等。

F1:杂种第一代。测交:被测的个体与隐性纯合个体间的杂交。用于检测被测个体基因型。

纯合子和杂合子:在二倍体生物中,基因座上是一对相同的等位基因,则该个体就是该基因座的纯合子。同理杂合子。

共显性:双亲的性状同时在F1个体上表现出来,即在杂合状态下两个等位基因都表达的现象。

基因型:一个生物体或细胞的遗传组成。

显性、隐性:由显性等位基因决定的,在杂合状态下性状得以表现的现象。同理隐性。

同源染色体:一条来自父本,一条来自母本,且形态、大小相同,在减数分裂前期相互配对的染色体。

等位基因:在一对同源染色体的同一基因座上的两个不同形式的基因。

显性上位:在上位效应中,一种对显性基因的产物抑制另一种显性基因的产物,孟德尔比率被修饰为12:3:1的现象。

隐性上位:在两对互作的基因中,其中一对隐性基因对另一对基因起上位性作用。孟德尔比率被修饰为9:3:4的现象。

复等位基因:二倍体群体中同一基因座上具有两个以上突变状态的基因。

三点测验:利用含有三个基因的杂合体和三隐性个体进行测交来估计这三个基因间的遗传距离。

重组型配子:在杂交时子代所表现的性状不同于父母代表现出的性状的个体,称为重组型个体。

Rf:重组率。

双交换:在一段染色体区域同时发生两次交换的现象。

伴性遗传:又称性连锁遗传,即某些性状的遗传与性别有一定的联系的一种遗传方式。

从性遗传:又称性影响遗传,控制从性遗传的基因位于常染色体上,由于内分泌等因素的影响,基因在不同性别中表达不同,在一个性别中为显性,另一个性别中隐性,即同样基因型的个体,在雌性和雄性的表现不同。

遗传的分离定律、自由组合定律以及连锁和交换三大规律是经典遗传学的基石。分离规律和自由组合定律是奥地利生物学家孟德尔得出的,连锁交换由美国生物学家摩尔根(T.H. Morgan)提出的。

知识点

分离定律分离定律是遗传学中最基本的一个定律。它从本质上阐明了控制生物性状的遗传物质是以自成单位的遗传粒子(基因)存在的。基因作为遗传单位在体细胞中是成双的,它在遗传上具有高度的独立性,因此,在减数分裂形成配子的过程中,成对的基因能够彼此互不干扰,独立分离,通过基因重组在子代继续表现各自的作用。这一规律从理论上说明了生物界由于杂交和分离所出现的变异的普遍性。

孟德尔在验证他所提出的因子分离假说时发明的测交,在生产实践及遗传实验中得到了广泛的应用,且测交方法目前仍然是遗传学实验及动植物育种工作中最基本也是最重要的手段之一。

自由组合定律自由组合定律的实质是(以两对非等位基因为例)位于不同对同源染色体上的两对非等位基因是互不联系独立存在的,当F1形成配子时,等位的基因分离,非等位的基因自由组合,两对基因分别进入不同的配子,形成四种类型的配子(见图3-8),且比例为1:1:1:1,假设配子全部成活,并且配子的结合是随机的,在F2形成9:3:3:1的表型分离比。

孟德尔自由组合定律可以解释生物多样性和生物进化的原因,非同源染色体上的基因自由组合,产生配子的多样性,从而导致生物的多样性。

根据独立分配规律,在育种工作中,采用杂交的手段,可以有目的地组合两个亲本的优良性状,育成优良品种,并可预测在杂交后代中出现的优良性状组合及其大致的比例,以便确定育种工作的规模。要求掌握根据自由组合原理推算杂交后代基因型和表型比例的分支法。

基因互作孟德尔之后的一些研究者,在其他动物植物遗传规律的探讨中,发现用孟德尔分离定律并不能完全解释所有的遗传现象。对于单基因决定的性状,一对基因中的显性基因有时不能完全掩盖等位的隐性基因,有时一对显隐性基因对表型的作用是共同的。当分析两对基因相互作用共同决定一个单位性状时,属于孟德尔规律的补充和发展的范围,其中可以分为以下几种类型:不完全显性、共显性、复等位基因、上位作用(包括显性和隐性上位)、重叠作用等,除了熟记这些互相作类型的基本概念,其中要求必须掌握复等位基因的特点和遗传机制,复等位基因是指在在群体中占据同源染色体上相同位点的两个以上的基因。如人类的ABO血型遗传,就是复等位基因遗传现象的典型例子。人类的ABO血型有A、B、AB、O 四种类型,这4种表现型是由3个复等位基因决定的,这3个复等位基因是I A、I B、和i。I A与I B之间表示共显性,而I A和I B对i都表现显性,所以这3个复等位基因组成6种基因型。

连锁与互换Morgan对遗传学的最大贡献就是连锁遗传规律的发现。同一染色体上的紧密

靠近的基因总是联系在一起遗传,不进行独立分配,它们的重组是染色体片段交换的结果。

重组率和交换值及其测定重组型配子数占总配子数的百分率称为重组率用Rf表示。在两个连锁基因之间的重组率通常也称为交换值。重组率的大小反映了基因之间的连锁程度,同时反映了基因在染色体上的相对距离的远近。估算重组率时候,首先要知道重组型配子数,测定重组型配子数的简易方法是测交法,通过两点测验和三点测验法估算重组率,从而进行基因定位和遗传作图。

两点测验两点测验是一种最基本的基因定位方法。它将双因子杂合体用双隐性纯合体测交,测交后代中的重组基因型频率的大小直接反映基因间的连锁关系和连锁程度。两点测验的具体过程是首先通过一次杂交和一次测交来确定两对基因是否连锁,然后再根据其重组率来确定它们在同一染色体上的位置。

三点测验三点测验可以把相互连锁的三个基因包括在一次测交中,即利用含有三个基因的杂合体与三隐性个体进行测交来估计这三个基因间的遗传距离。进行这种试验,一次就等于三次“两点测验”,另外还能够发现三个基因间是否有双交换发生,因而计算出的遗传距离更加准确。

伴性遗传伴性遗传又称性连锁遗传(sex-linked inheritance)。即某些性状的遗传和性别有一定联系的一种遗传方式。两性生物中,不同性别的个体所带有的性染色体是不同的,因此性染色体遗传和常染色体遗传也是不同的,常染色体遗传正反交结果是相同的,而伴性遗传正反交不同表现交叉遗传现象。性连锁基因是存在于X和Y染色体的非同源区域的基因。X连锁基因存在于X染色体的非同源区域并且可以通过获得X染色体而进行遗传。

伴性遗传具有三个特点:①性状的遗传与性别有关;②正反交的结果不同;③在特定的交配方式下表现交叉遗传。

伴性遗传的应用由于鸟类的性染色体携带方式与XY型相反,所以性连锁遗传的途径也与XY型相反,即ZZ为雄性,ZW为雌性。利用伴性遗传原理进行雏鸡雌雄在家禽生产上具有十分重要的实际意义,例如快慢羽,金银色羽已经普遍使用在雏鸡鉴别上。其根据的基本原理是:当带有纯合隐性基因的同配性别(如Z s Z s)与带有显性基因的异配性别(如Z+W)交配时,F1表现交叉遗传。

从性遗传从性遗传又叫性影响遗传,控制从性遗传性状的基因位于常染色体上,由于内分泌等因素的影响,基因在不同性别中表达不同,在一个性别中为显性,另一个性别中为隐性,即同样基因型的个体,在雌性和雄性的表现不同。

第四章遗传物质的改变

重要概念

要求掌握本章的重要概念,例如碱基替代、移码突变、颠换、缺失、重复、倒位和易位。

碱基替代、颠换:指在DNA分子中一个碱基被另一个碱基所替代的现象(A、G、C、T嘌呤之间,或者嘧啶之间的替换称为转换,嘧啶和嘌呤之间的转换成为颠换)

移码突变:基因组中增加或减少碱基对,使基因的阅读框发生改变,从而使该位点密码子都

发生改变的现象。

缺失:是指正常染色体上某区段的丢失。同理重复。

倒位和易位:倒位是指与正常的区段排列顺序发生180°的颠倒。易位,是指两对非同源染色体间某一区段的转移。

知识点

基因突变DNA水平的改变主要体现为基因突变。基因突变是在基因水平上遗传物质中可检测的能遗传的改变,基因突变具有重演性、可逆性、多方向性和低频性等特征。基因突变实际上都是DNA分子上碱基序列、成分和结构发生了改变,归纳起来有碱基替代、移码突变和DNA 链的断裂等类型。碱基替代是指在DNA分子中一个碱基对被另一个碱基对所代替的现象。在碱基替代中,如果一个嘌呤被另一个嘌呤所代替,或一个嘧啶被另一个嘧啶替代的现象称为转换;如果一个嘌呤被一个嘧啶多代替,或一个嘧啶被一个嘌呤所代替的现象称为颠换。碱基替代的遗传效应有错义突变、无义突变和同义突变3种。移码突变是指在基因组中增加或减少碱基对,使其该位点之后的密码子都发生改变的现象,移码突变的遗传效应比碱基替代所造成的突变要大得多,通常会产生没有功能的蛋白质。

染色体在数目与结构上的变异染色体水平的改变包括数目和结构的改变,染色体数目的改变分为倍数性变异与个别染色体的数目的增减。染色体结构的改变是指染色体的某区段发生改变,从而改变了基因的数目、位置和顺序。染色体结构变异是由于染色体断裂后或不接合或进行差错的接合而产生的,会造成染色体上基因数目和基因位置的变化,导致细胞学行为和遗传效应的异常。染色体结构变异可分为4种类型:缺失、重复、倒位和易位。

第八章动物遗传操作

重要概念

要求掌握本章重要概念,例如动物遗传操作、多能性干细胞、体细胞培养技术、内细胞团、胚胎干细胞(ES细胞)、基因打靶技术、动物克隆、转基因动物等。

动物遗传操作:是指在分子和细胞水平上对动物的遗传结构进行定向修饰和重组的技术总称。包括个体、细胞和分子水平上的遗传重组与修饰。途径有人工授精、胚胎移植、胚胎嵌合、细胞核移植、转基因技术。

多能性干细胞:具有分化成多种分化细胞潜能的干细胞系细胞。如胚胎干细胞和成体干细胞。

体细胞培养技术:是将动物组织或细胞从机体取出后分散成单个细胞,模拟体内生长环境,使其在体外继续生长与增殖的技术。体外培养的动物细胞可分为原代细胞和传代细胞。

内细胞团:滋养层包裹的内层细胞。可以发育成哺乳动物的胚体。

胚胎干细胞(ES细胞):是从早期胚胎卵裂球或囊胚内细胞团分离培养获得的,能在体外培养的一种高度未分化多能细胞。

基因打靶技术:是应用同源重组原理将外源DNA定点整合到宿主细胞基因组,替代靶序列整合在预定的基因位点,从而改变细胞甚至生物个体遗传特性的遗传操作方法。

动物克隆:是指动物不经过有性生殖的方式而直接获得与亲本具有相同遗传背景的后代的过程,包括孤雌激活生殖、卵裂球分离与培养、胚胎分割以及核移植等。

转基因动物:是指基因组中整合有外源基因的动物,将外源基因导入动物基因组的技术称为转基因技术。

知识点

动物遗传操作动物遗传操作是在分子和细胞水平上对动物的遗传结构进行定向修饰和重组的技术总称,包括个体、细胞和分子水平上的遗传重组与修饰。细胞水平的动物遗传操作包括体外培养体细胞、多能性的干细胞,通过转染将外源基因DNA整合到受体细胞的基因组,然后筛选获得转基因的细胞,通过核移植或构建嵌合体胚胎,移植后获得转基因动物或嵌合体。动物细胞的来源包括将动物组织或细胞从机体取出后分散成单个细胞,模拟体内生长环境,使其在体外继续生长与增殖的体细胞培养技术。从早期胚胎内细胞团分离出来的,能在体外培养的一种高度未分化的胚胎干细胞(embryonic stem cells,ES细胞)技术从性腺原始生殖细胞经分离培养后得到的一类具有多能性的原生殖多能干细胞。从睾丸曲细精管生精上皮内分离获得的可复制的多潜能双倍体精原干细胞。上述不同细胞类型广泛应用于动物克隆、转基因动物的生产、真核细胞基因的表达与调控、人类遗传病动物模型的创建等领域。

基因打靶技术基因打靶技术应用同源重组原理将外源DNA定点整合到宿主细胞基因组,替代靶序列整合在预定的基因位点,从而改变细胞甚至生物体遗传特性。

动物克隆技术动物克隆技术可以快速扩繁具有优良表型的个体,是胚胎水平动物遗传操作最重要的技术。动物克隆(animal cloning)是指动物不经过有性生殖的方式而直接获得与亲本具有相同遗传背景后代的过程,包括孤雌激活生殖、卵裂球分离与培养、胚胎分割以及核移植等。

转基因动物转基因动物是指基因组中整合有外源基因的动物,将外源基因导入动物基因组的技术称为转基因技术,目前常用的转基因动物技术有原核注射法、精子载体法、逆转录病毒介导法和转基因克隆技术。转基因克隆技术系将转基因事件在体外培养的细胞水平完成,具有其他转基因技术不可比拟的优点。

第九章群体遗传学

重要概念

要求掌握本章的重要概念,例如基因频率、基因型频率、孟德尔群体、基因库、平衡群体、哈代—温伯格定律等。

基因频率

基因型频率

孟德尔群体

基因库

平衡群体

哈代—温伯格定律

知识点

群体遗传学的中心任务就是研究基因频率、基因型频率及其关系。这里所指的群体就是指在一定的时间和空间范围内,具有特定的共同特征和特性的个体集合,它可以是一个种、一个亚种、一个变种、一个品种、一个品系或一个其它同类生物的类群所有成员的总和。它是同一物种生活于某一地区并能相互交配的个体总和。

孟德尔群体在群体遗传学中,所指的群体一般是孟德尔群体,孟德尔群体由一群可交配繁殖的个体组成,这些个体具有共同基因库中的某些基因。群体中每个个体的基因型只代表基因库的一小部分。群体的遗传结构与孟德尔群体的基因库相关,而不是单个成员的基因型。

基因频率和基因型频率群体演变是基因库中各个基因频率变动的过程。基因频率是指群体中某一基因占其同一位点全部基因的比率。基因型频率是指在二倍体生物群体中,某一基因型个体占群体总数的比率。由此可知,基因频率是基因数之间的比例,基因型频率是个体数间的比例。因而基因频率可以体现群体遗传组成的特征。

基因频率和基因型频率的关系基因频率和基因型频率的关系表现为一对常染色体上的等位基因A、a,基因A的频率p与显性纯合体基因型频率与杂合体基因型频率的半数之和相等,而基因a的频率q与隐性纯合体基因型频率与杂合体基因型频率的半数之和相等,公式表示为:p= D +1/2H,q= R +1/2H。对性染色体异型群体(XY,ZW)基因频率与基因型频率是相等的。在群体中同一位点的基因频率之和等于1,同一性状的各基因型频率之和为1。这一对关系适用于孟德尔群体,因此不论群体是平衡或不平衡的都有这种关系。

平衡群体所谓的平衡群体就是指在世代交替的过程中,遗传组成不发生变化的群体。具体来说具有以下5个特点:大群体、随机交配、无迁移、突变动态平衡、减数分裂正常。

哈代—温伯格定律哈代—温伯格定律是群体遗传学学习的重点内容。其内容要点是:1.在随机交配的大群体中,在没有其他因素影响的条件下,基因频率一代一代下去始终保持不变;

2.任何一个大群体,无论其基因频率如何,只要经过一代随机交配,一对常染色体基因的基因型频率就达到平衡状态,没有其他因素影响的情况下,以后一代一代随机交配下去,这种平衡状态保持不变;

3.在平衡状态下,基因频率与基因型频率的关系是:D=p2,H=2pq,R=q2。其中,第1要点说明平衡群体的稳定性;第2要点说明任意群体在一代随机交配后即为平衡群体;第3要点说明了哈代—温伯格定律的核心内容即平衡状态下基因频率与基因型频率的关系。有了哈代—温伯格定律的保证,群体的遗传性才能保持相对稳定。

哈代—温伯格定律揭示了在一个随机交配的大群体中,基因频率与基因型频率的遗传规律。生物的变异归根结底是基因和基因型的差异所引起的,同一群体内个体间的变异是由于等位基因的差异造成的,而同物种的不同群体间的变异是由于基因频率的差异引起的。因此基因频率的平衡对群体的稳定性起着保证作用。

影响群体的基因频率改变群体的基因频率的因素群体遗传变异的因素大体有突变、迁移、选择、遗传漂变、非随机交配五个因素。因此基因频率的平衡对群体的稳定性起着保证作用。目前改变群体的基因频率,仍是动植物育种工作中的主要手段之一。

哈代—温伯格定律的应用哈代—温伯格定律的应用主要是计算基因频率。在计算基因频率时,分为无显性或显性不完全时、完全显性时、伴性基因、复等位基因四种情况。其中复等位基因和伴性基因的基因频率的计算不在考试范围。

第十章数量遗传学

重要概念

要求掌握本章的重要概念,例如数量遗传学、数量性状、阈性状、等级性状、表型值、重复力、遗传力、遗传相关等。

数量遗传学:

数量性状:

阈性状:

等级性状:

表型值:

重复力:

遗传力:

遗传相关:

知识点

多基因学说的要点多基因学说的要点包括:

(1)数量性状是受许多对微效基因(Minor gene)控制;

(2)微效基因间无显隐性关系,其效应是累加的;

(3)单一的微效基因服从孟德尔遗传规律;

(4)微效基因不能被单独识别,而是从表现的性状作为整体来研究;

(5)由微效多基因决定的数量性状,易受环境影响。

现在对多基因学说已有发展,其要点是:

(1)控制数量性状的基因除了微效基因,也可以有主效基因;

(2)决定数量性状的基因有加性效应,也有显性效应和上位效应,更多的情况是几种基因效应同时存在;

(3)应用现代生物技术和统计方法,可以对控制数量性状的基因从整体到局部进行研究,如QTL。

表型值群体中一个数量性状的表型值(P)受基因型值(G)和环境效应(E)两个因素的影响。由于环境对群体中不同个体的影响有正有负,所以群体某性状的平均表型值就等于群体该性状的平均基因型值。

遗传参数遗传参数包括重复力、遗传力、遗传相关以及亲缘相关,前三个参数是从数量

性状方差剖分中推演出的,后一个是从全同胞-半同胞混合家系亲缘相关中推导得到的。对遗传参数的学习要求从概念、公式、计算方法以及在育种中的应用几个方面来掌握。

动物遗传学名词解释

显性性状:两亲本杂交时,能在F1代中表现出来的形状。 隐性纯合体:由纯合的隐性基因型构成的个体。 等位基因:一对同源染色体上占据同一位点,以不同的方式影响同一形状的一对基因。 互补作用:指两对基因互相作用,共同决定一个新性状的发育。 伴行基因:位于X染色体上与Z染色体非同源部分的基因。 相对性状:同一种单位性状的不同表现。 性状:生物体所表现的形态特征和生理特征。 性反转:生物个体从一种性别转变为另一种性别。 连锁遗传图:根据基因定位的方法,以及基因在染色体上呈线性排列的顺序,把一种生物的名连锁群内基因的排列顺序和基因遗传的距离给予标定,绘制出的图谱。 显性上位作用:两对基因共同影响一对相对性状,其中一对显性基因能够抑制另外一对基因的表现。从性遗传:指位于常染色体上的基因,它所抑制的形状的显隐关系因性别不同而异,受性激素的影响。基因突变:指在基因水平上遗传物质中任何可检测的能遗传的改变,不包括基因重组。 伴性性状:指伴性基因所控制的性状,位于性染色体非同源部分的基因所控制的性状。 返祖遗传:隔若干代以后,出项与祖先相似性状的遗传现象。 等显性:双亲性状同时在后代的同一个体表现出来,即等位基因同时得到表现。 表现度:由于内外环境的影响,一个外显基因或基因型其表型表型出来的程度。 限性遗传:有些性状仅局限于某一性别的这类限性性状的遗传方式。 完全连锁:亲本的两个性状完全紧密的联系在一起传给了后代的现象。 复等位基因:指在一个群体中,同源染色体上同一位点两个以上的等位基因,但在每一个个体的同源染色体上只能是一对基因。 隐性性状:虽在F1中并不表现,但经F1自交能在F2表现出来的性状。 性染色体:在多数二倍体真核生物中,决定性别的关键基因位于的一对染色体。 修饰基因:依赖主基因的存在而起作用,本身并不发生作用,只是影响主基因的作用的程度的一类基因。主基因:对某一性状发育起决定作用的一对基因。 表现型:基因和基因型所能表现出来的生物体的各类性状, 基因型:与生物某一性状有关的基因组成。 交叉遗传:儿子得到的X染色体必定来自母方,父亲的X染色体必传给女儿,X染色体的这种遗传方式称为交叉遗传。 不完全连锁:在连锁遗传的同时还表现出性状的交换和重组。 交换值:又称重组率,是指重组型配子数占总配子数的百分率。

动物遗传学试题集

一、名词解释 二、1.核型:把动物、植物、真菌等的某一个或谋一份类群的体细胞中的全部染色体按照他 们的相对恒定性特征排列起来的图像。 三、2.遗传多样性:在广义上是指种内或种间表现在分子、细胞核、个体三个水平的遗传变 异程度,狭义上则主要指种内不同群体和个体间的遗传变异程度。 四、3.剂量效应:某一基因对表型的作用效果随基因数目的增多而呈累加的增长或减少。 五、4.DNA复性:当温度减低后,变性的DNA分子有重新恢复双螺旋结构的过程 六、5.GT-AG法则:真核生物的基因在每个外显子和内含子的接头区,有一段高度保守的共 有序列,即每个内含子的5’端起始的两个核苷酸都是GT,3’端末尾的两个核苷酸都是AG,这种RNA剪接信号的形式称为GT-AG法则。 七、6.复等位基因:在一个群体中,同源染色体上同一位点有两个或两个以上的等位基因。 八、7.基因家族:真核生物基因组中,有许多来源相同、结构相似、功能相关一组基因称为 一个基因家族。 九、8.基因:是有功能的DNA片段,它含有合成有功能的蛋白质多肽链或RNA所必需的全 部核苷酸序列。 十、9.基因组印记:是指基因组在传递遗传信息的过程中,对基因或DNA片段打下标识、 烙印的过程。 十一、10.重组率又称交换率,是指重组型配子数占总配子数的百分率:重组率=重组型配子/总配子数=重组型个体数/(重组型个体数+亲本型个体数)×100%。 十二、11.基因定位:就是把已发现的某一突变基因用各种不同方法确定在该生物体某一染色体的一定位置上。 十三、二、选择题 十四、1.在DNA复制过程中,保护单链模板免遭侵害的物质是(D) 十五、A.引发酶连接酶聚合酶 D.单链结合蛋白 十六、2.公鸡的性染色体构型是(C) 十七、3.下列群体中,处于哈代-温伯格平衡的是(B) 十八、,2Aa,48aa ,42Aa,9aa ,10a ,50aa 十九、4.数量性状的表型值可以剖分为(B) 二十、A.基因型值、环境效应和加型效应 B.加性效应和剩余值 C.加性效应、显性效应和上位效应 D.加性效应和环境效应 二十一、 5.在有丝分裂过程中,最适合进行染色体形态和数目考察的时期是(B)A.前期 B.

细胞生物学常用研究方法

Southern杂交: 是体外分析特异DNA序列的方法,操作时先用限制性内切酶将核DNA或线粒体DNA切成DNA片段,经凝胶电泳分离后,转移到醋酸纤维薄膜上,再用探针杂交,通过放射自显影,即可辨认出与探针互补的特殊核苷序列。 将RNA转移到薄膜上,用探针杂交,则称为Northern杂交。 RNAi技术: 是指在进化过程中高度保守的、由双链RNA(double-stranded RNA,dsRNA)诱发的、同源mRNA高效特异性降解的现象。由于使用RNAi技术可以特异性剔除或关闭特定基因的表达,所以该技术已被广泛用于探索基因功能和传染性疾病及恶性肿瘤的基因治疗领域。可以利用siRNA或siRNA表达载体快速、经济、简便的以序列特异方式剔除目的基因表达,所以现在已经成为探索基因功能的重要研究手段。 Southern杂交一般利用琼脂糖凝胶电泳分离经限制性内切酶消化的DNA片段,将胶上的DNA变性并在原位将单链DNA片段转移至尼龙膜或其他固相支持物上,经干烤或者紫外线照射固定,再与相对应结构的标记探针进行杂交,用放射自显影或酶反应显色,从而检测特定DNA分子的含量]。 扫描电镜技术:是用一束极细的电子束扫描样品,在样品表面激发出次级电子,次级电子的多少与样品表面结构有关,次级电子由探测器收集,信号经放大用来调制荧光屏上电子束的强度,显示出与电子束同步的扫描图像。 细胞显微分光光度计:用来描述薄膜、涂层厚度超过1微米的物件的光学性能的显微技术。 免疫荧光技术:将免疫学方法(抗原抗体特异结合)与荧光标记技术结合起来研究特异蛋白抗原在细胞内分布的方法。由于荧光素所发的荧光可在荧光显微镜下检出,从而可对抗原进行细胞定位。 电镜超薄切片技术:超薄切片是为电镜观察提供极薄的切片样品的专门技术。用当代较好的超薄切片机,大多数生物材料,如果固定、包埋处理得合适,可以切成50-100微米的超薄切片。 Northern印迹杂交(Northern blot)。这是一种将RNA从琼脂糖凝胶中转印到硝酸纤维素膜上的方法。 放射自显影技术:放射自显影技术是利用放射性同位素的电离辐射对乳胶(含AgBr或AgCl)的感光作用,对细胞内生物大分子进行定性、定位与半定量研究的一种细胞化学技术。放射自显影技术(radioautography;autoradiography)用于研究标记化合物在机体、组织和细胞中的分布、定位、排出以及合成、更新、作用机理、作用部位等等。其原理是将放射性同位素(如14C和3H)标记的化合物导入生物体内,经过一段时间后,将标本制成切片或涂片,涂上卤化银乳胶,经一定时间的放射性曝光,组织中的放射性即可使乳胶感光。 核磁共振技术:可以直接研究溶液和活细胞中相对分子质量较小(20,000 道尔顿以下)的蛋白质、核酸以及其它分子的结构,而不损伤细胞。 DNA序列分析:在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信

遗传学(第二版) 刘庆昌 重点整理2

第九章 ★无性繁殖(Asexual reproduction) 指通过营养体增殖产生后代的繁殖方式,其优点是能保持品种的优良特性、生长快。★有性繁殖(Sexual reproduction) 指通过♀、♂结合产生的繁殖方式,其优点是可以产生大量种子和由此繁殖较多的种苗。大多数动植物都是进行有性生殖的。 ★近交(Inbreeding) 指血缘关系较近的个体间的交配,近亲交配。近交可使原本是杂交繁殖的生物增加纯合性(homozygosity),从而提高遗传稳定性,但往往伴随严重的近交衰退现象(inbreeding depression)。 ★杂交(crossing or hybridization) 指亲缘关系较远,基因型不同的个体间的交配。可以使原本是自交或近交的生物增加杂合性(heterozygosity),产生杂种优势。 一、近交的种类 ★自交(Selfing) 指同一个体产生的雌雄配子彼此融合的交配方式,它是近交的极端形式,一般只出现在植物中(自花授粉植物),又称自花受粉或自体受精(self-fertilization)。 ★回交(Back-crossing) 杂交子代和其任一亲本的杂交,包括亲子交配(parent-offspring mating)。 ★全同胞交配(Full-sib mating) 相同亲本的后代个体间的交配,又叫姊妹交。 ★半同胞交配(Half-sib mating) 仅有一个相同亲本的后代个体间的交配。 ★自花授粉植物(Self-pollinated plant) 天然杂交率低(1-4%):如水稻、小麦、大豆、烟草等; ★常异花授粉植物(Often cross -pollinated plant) 天然杂交率常较高(5-20%):如棉花、高粱等; ★异花授粉植物(Cross-pollinated plant): 天然杂交率高(>20-50%)如玉米、黑麦等,在自然状态下是自由传粉。 ★近交衰退(Inbreeding depression) 近交的一个重要的遗传效应就是近交衰退,表现为近交后代的生活力下降,产量和品质下降,适应能力减弱、或者出现一些畸形性状。 ★回交(Backcross)B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent) 未被用来回交的亲本。 B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent)

细胞生物学实验指导

细胞生物学实验指导

细胞生物学实验指导目录 一.显微镜的使用 实验一、几种光学显微镜的使用 实验二、参观电子显微镜及生物超薄切片标本制备 二.细胞形态结构 实验三、细胞大小的形态观察——测微尺的使用 实验四、细胞活体染色技术 实验五、植物细胞骨架光学显微观察 实验六、胞间连丝观察 三.细胞化学 实验七、鉴定RNA的细胞化学方法——Branchet反应 实验八、DNA显色的观察——Feulgen反应 实验九、固绿染色法鉴定细胞内酸性蛋白与碱性蛋白 实验十、多糖及过氧化酶的显示 实验十一、核仁组成区的银染显示与观察 四.细胞生理 实验十二、细胞膜的通透性 实验十三、细胞电泳 五.细胞和组织培养技术 实验十四、植物原生质体的分离和融合 实验十五、植物细胞的培养与观察 实验十六、动物细胞融合 实验十七、动物细胞的培养与观察 六.细胞化学成分的分离 实验十八、细胞器的分离、纯化——细胞分级分离 实验十九、荧光的细胞化学测定 实验二十、细胞活力的鉴别 实验一几种光学显微镜的使用

一、实验目的 了解几种光学显微镜的结构、工作原理、主要用途和使用方法;掌握使用普通显微镜提高分辨力的方法。 二、实验原理 (一)基本原理 一般实验室经常使用的光学显微镜都是由物镜、目镜、聚光器和光阑组成,普通显微镜它们的放大原理及光路图如下: AB物体.A1B l第一次成像,A2B2第二次成像,O l目镜.O2物镜, F1为O l的前焦点,F2为O2的前焦点 各种光学显微镜的光学放大原理基本相同,各种特殊用途的光镜不过只是在光源、物镜、聚光器等方面作了改动,或在其它方面增设了某些特殊的设备。 (二)几种光学显微镜 l、普通光学显微镜: 普通光学显微镜也叫复式显微镜,是最常见,最简单的显微镜。它适于观察一般固定的,有色的透明度较高的标本。其最大分辨力一般为0.2微米,从构造上可分光学、机械和电子三大系统。 2、暗视野显微镜: 暗视野显微镜是以丁达尔现象(Tyndall phenomenon)(即光的微粒散射现象)为基础设计的,它使用了特殊的聚光器进行斜射照明,因光源中心束不直入物镜,所以视野黑暗,而被检细胞器因斜射照明发生衍射和反射,所以发亮可见。暗视野显微镜可用增加光照方法增加物体与背景的反差,因而可观察到0.2—0.004微米直径的微小粒子,但它分不清被检物的细微构造,它常用于观察物体的存在与运动。而暗视野显微镜与普通光学显微镜的区别,主要在于聚光器的不同,致使照明方法有别。确切地说,称暗视野显微镜为暗视野照明更为贴切。它是照明光线仅照亮被检样品而不进入物镜。使视野背景暗黑,样品明亮的照明方法。 3、相差显微镜: 相差是指同一光线经过折射率不同的介质其相位发生变化并产生的差异。相位是指在某一时间上,光的波动所达到的位置。

安全人机工程学实验指导书

安全人机工程学实验指导书 安全人机工程学 验指导湖南工学院20XX年3月 实验六深度知觉测定实验八记忆广度测量实验 实验九动作速度测定实验 实验七手指灵活性、手腕动觉方位能力测定实验六深度知觉测定实验目的 深度知觉测试是测试人的视觉在深度上的视锐程度,通 过测试可以了解双眼对距离或深度的视觉误差,也可以比较双眼和单眼在辨别深度中的差异。 实验仪器简介 采用EP503A深度知觉测试仪。主要技术指标: 1比较刺激移动速度分快慢二档: 快档50mm/s慢档25mm/s 2比较刺激移动方向可逆。±200mm 3比较刺激移动范围:400mm 4比较刺激与标准刺激的横向距离为55mm 5工作电压

220V 50HE 工作原理: 1 EP503A深度知觉测试仪结构如图2所示: 图 2 EP503A深度知 觉测试仪结构移动比较刺激,使之与标准刺激三点成一直线,在 实验 过程中,可测出被试者视觉在深度上的差异性。 2遥控键如图3所示: 图3 EP503A深度知觉测试遥控器面板示意 3面板布置如图4所示: 图4 EP503A深度知觉测试面板示意三实 验步骤 1、被试在仪器前,视线与观察窗保持水平,固定头部, 能看到仪器内两根立柱中部。2、以仪器内其中根立柱为 标准刺激,距离被试2米,位置固定。另一根可移动的立柱为变异刺激,被试可以操纵电键前后移动。 3、正式实验时,先主试将变异刺激调至任意位置,然 后要求被试仔细观察仪器内两根立柱,自调整,直至被试认为两根立柱在同一水平线上,离眼睛的距离相等为止。被试 调整后,主试记录两根立柱的实际误差值,填入下表中 4、正式实验时,先进行双眼观察20次,其中:有10吃是变异刺激在前,近到远调整; 有10次是变异刺激在后,远到近调整。顺序和距离随 机安排。

动物遗传学复习试题

动物遗传学试题一 (一)、解释名词概念(每题 3 分,共24分) 1. mRNA信使(Message)RNA简称mRN,携带从DNA编码链得到的遗传信息,在核糖体上翻译产生多肽的RNA 2. 外显度:由于内外环境的影响,一个外显基因或基因型其表型表现出来的程度。 3. 多倍体:凡是体细胞中含有三个以上染色体组的个体。 4. 遗传漂变:这种由于抽样误差而引起的群体基因频率的偶然变化叫做遗传漂移,也称为遗传漂变。 5. 补体:是存在于人和脊椎动物血清与组织液中一组经活化后具有酶活性的蛋白质。 6. 转座:转座因子改变自身位置的行为,叫作转座。 7. 遗传图谱(Genetic map):又称连锁图谱(linkage map),依据测交试验所得重组值及其他方法确定连锁基因或遗传标记在染色体上相对位置的线性图。 8. 同义突变:由于密码子的简并性,碱基替换没有导致编码氨基酸的改变。 (二)、填空题(每空1 分,共16 分) 1 .基因突变具有许多特征,如具有有害性和有利性,此外,其他特征还包括多向性、可逆性、重复性、平行性。 2. 经典遗传学的三大基本定律分别为:孟德尔的基因分离和自由组合(或独立分配)定律,以及摩尔根的连锁与互换定律。 3. 动物体内的淋巴细胞有B、T 两种,其中细胞免疫依赖T 淋巴细胞介导,而体液免疫依赖B 淋巴细胞发挥作用。 4. 染色体数量具有物种特异性,如人的染色体有23对,猪的染色体有19对,鸡的染色体有39 对。 5. 染色体结构变异包括缺失、重复、倒位和易位四种类型。 (三)、选择题(每题2 分,共14 分) 1. 形成三色猫的遗传机制为(B) A.母体效应 B.剂量补偿效应 C.基因组印迹 D.核外遗传 2. 人的全基因组大小约为(C) X 10 C. 3.0 X 10 D. 3.0A .1.0 X 10 )以下有关遗传力的描叙错误的是(3.D广义的遗传力为遗 9696 X 1 0 B. 1.0 传方差与表型方差的比例; A. 狭义的遗传力指加性方差与表型方差的比例; B. 生长性状的遗传力普遍大于繁殖性状的遗传力;C.遗传力越大,表型选择的效果越弱。D.依据cDNA建立的图谱应该称为(C) 4. C. 转录图谱 D. 物理图谱.遗传图谱 A B. 序列图谱)紧急状况下采集毒蛇血清用于治疗患者的机理为(D5. D. 被动免疫体液免疫A.细胞免役 B. C. 主动免疫)C6.男人秃头的几率高于女人的原因是秃头性状表现为(从性遗传 B. 限性遗传 C. D. 性连锁遗传.伴性遗传AmRN表达的杂交技术为()A7.用于检测目的基因 B. Western 杂交.ANorthern杂交D.C. Southern杂交原位杂交10分)分,共(四)、简答题(每题5 1.说明杂种优势的含义及做出简单解释。)两个亲本杂交,子一代个体的某一数量性状并不等于两个亲本的平均,而是高于亲本的平均,答案:(1 甚至超出亲本范围,比两个亲本都高,叫做杂种优势。表现在生活力,繁殖力,抗逆性以及产量和品质上; (2)杂种优势的形成机制有三种假说:A.生活力假说,杂种在生活力上要优于两亲本; B.显性假说,杂合态中,隐性 有害基因被显性有利基因的效应所掩盖,杂种显示出优势; C.超显性假说:基因处于杂合态时比两个纯合态都好。 2. 请回答非孟德尔遗传的几种类型及其遗传机制。 答案:(1 )非孟德尔遗传包括母体效应、剂量补偿效应、基因组印迹和核外遗传等四种;(2)母体效应是母体基因型决 定后代表型的现象,其遗传机制是母体基因的延迟表达,如椎实螺外壳旋转方向的遗传;(3)在哺乳动物中,雌性个体 两条X染色体中的一条出现异染色质化,失去转录活性,使得雌雄动物间X染色体的数量虽然不同,但X染色体上的基 因产物的剂量是平衡的,整个过程称为剂量补偿效应。(4)与传统的孟德尔遗传方式不同,分别来自父母方的两个等位 基因中只有一方呈现表达,另一方被印迹,即不表达或表达甚微,这种遗传方式称为印迹遗传。(5)核外遗传主要指细胞质遗传,即细胞质基因所决定的遗传现象和遗传规律,如动物线粒体遗传。 (四)、计算题(每题8分,共16分) 1. 为检测三对基因间的连锁关系,进行以下杂交试验:

细胞生物学实验指导书09年

实验一普通光学显微镜的构造和使用 一、目的要求 1了解显微镜的基本构造和使用方法 2 掌握油镜的原理和使用方法 二、显微镜的基本结构及油镜的工作原理 1.显微镜的基本构造 光学部分:接目镜、接物镜、照明装置(聚光镜、虹彩光圈、反光镜等)。 机械部分:镜座、镜臂、镜筒、物镜转换器、载物台、载物台转移器、粗调节器、细调节器等部件。 2.显微镜的放大倍数和分辨率 放大倍数=接物镜放大倍数×接目镜放大倍数 显微镜的分辨率:表示显微镜辨析物体(两端)两点之间距离的能力3.油镜的使用原理 当光线由反光镜通过玻片与镜头之间的空气时,由于空气与玻片的密度不同,使光线受到曲折,发生散射,降低了视野的照明度。若中间的介质是一层油(其折射率与玻片的相近),则几乎不发生折射,增加了视野的进光量,从而使物象更加清晰。 三、器材 1.永久切片 2. 溶液或试剂:香柏油、二甲苯。 3. 仪器或其他用具:显微镜、擦镜纸等。 四、操作步骤 1.观察前的准备 (1)显微镜的安置,检查零件是否齐全,镜头是否清洁。 (2)调节光源 2.显微镜观察

(1)低倍镜观察 (2)高倍镜观察 (3)油镜观察:高倍镜下找到清晰的物象后,提升聚光镜,在标本中央滴一滴香柏油,使油镜镜头浸入香柏油中,细调至看清物象为止。3.显微镜用毕后的处理 观察完毕,上升镜筒,用擦镜纸和二甲苯清洗镜头,后将镜体全部复原。 五、思考题 1.用油镜观察时应注意哪些问题?在载玻片和镜头之间滴加什么油?起什么作用? 2.为什么在使用高倍镜及油镜时应特别注意避免粗调节器的误操作? 实验二胞间连丝的观察 一、实验目的 观察植物细胞的胞间连丝,加深对胞间连丝功能的认识. 二、实验原理 植物细胞的细胞壁上有许多原生质的细丝,称胞间连丝。相邻细胞的胞间连丝相互联接,在细胞间的物质运输与信息传递中起桥粱作用,并使细胞的各种生理活动协调一致,使植物体成为统一的有机体。用合适的植物细胞为材料,经简单处理,即能方便地看到胞间连丝。 三、实验材料 红辣椒表皮细胞临时装片、柿胚乳细胞间胞间连丝切片 四、实验步骤

人机工程学实验

实验一:双手调节器 1.实验目的 2.实验介绍和实验思路:双手调节器是一种典型的动作技能操作仪器。它是通过双手的操 作合作完成设定的曲线轨迹的运动,即是右手完成目标的上下移动,左手完成目标的左右移动。以被试完成任务所用的时间及偏离轨迹的次数,作为衡量其多次练习后的进步水平。 3.实验过程:分两项实验 第一种:自变量:同一个人的被实验次数即练习遍数。(每人四次,左右单程各两次)因变量:走完单程过程中个出错次数和时间 双手协调能力测试实验中的被试者完成实验的时间及错误次数数据统计分析如下:

根据实验结果绘制的练习曲线如下,用练习遍数作横坐标,用完成任务所用时间及出错次数为纵坐标,做出示意图为: 4.实验结论:完成任务所用的时间及每遍练习中的错误次数随着练习遍数的增加总体趋势 偶尔也会错误次数和时间略有增加。 实验二:瞬时记忆 1.实验目的:证实瞬时记忆的现象及其性质。 2.实验(方案一)思路:恒定变量设为1,自变量为设定秒数,因变量为报对码数目。 方案一数据:

根据图表可知,在设定时间不断减少的情况下,学生答对的图码数目不断减少。 (方案二)实验思路:恒定变量为时间(0.4秒),自变量为图码行数不同,因变量为记忆图码正确数量。 方案二数据:

根据图表可知,当被测试者接收一行图码信息时,思路清晰,记忆较快,当被测试者接收两行图码信息时,记忆速度不如一行图码快。 3.实验总结:1. 在设定时间不断减少的情况下,学生答对的图码数目不断减少。 2. 瞬间记忆在0.4秒情况下,记忆的合理码数在 3.2—3.5之间。 实验三:记忆广度 1.实验目的:学习测定光简单反应时的程序,比较光简单反应时的个体差异,通过测定闪光融合领率.学习使用阶梯法测定感觉阈限 2. 实验介绍和实验思路: 影响短时记忆广度的因素很多,组块的大小,熟悉性,复杂性等都会影响短时记忆的容量设自变量为计位数,因变量为正确个数,测试正确率: 3.根据数据分析结果: 随着计位数的不断增加,实验者按对的个数不断减少,正确率越来越低, 这说明人的记忆广度有限,所以在适当的记忆时间内,应设计相应的可记忆的内容,严防记忆过载。从另一方面讲了解短时记忆的特点,选择正确的方法加以训练,有助于个人记忆的

遗传学(第二版)刘庆昌-重点整理1

Heredity (遗传) 亲代与子代(上下代)之间相似的现象 遗传的特点:相对稳定性、保守性。 Variation (变异) 亲代与子代之间以及子代个体之间的差异。 变异的特点:普遍性和绝对性。 分为可遗传的变异(hereditable variation),和不可遗传的变异(non-hereditable variation), 变异的多态性(polymorphism of variation)。 Evolution (进化) 生物体在生命繁衍进程中,一代一代繁殖,通过遗传把物种特性传递下去。但不可避免地遭受自然和人为的干涉,即遗传—变异—选择(淘汰坏的,保留好的),后代优于亲代,称为进化。 进化的两种方式: 渐变式:积累变异成为新类型(continual variation),如适应性进化。 跃变式:染色体加倍成为新物种,如倍性育种和基因工程育种。 遗传与变异的关系 遗传与变异是矛盾对立统一的两个方面。即遗传是相对的,保守的;变异是绝对的,进步的;变异受遗传控制,不是任意变更的。具体如下: ★遗传与变异同时存在于生物的繁殖过程中,二者之间相互对立、又相互联系,构成生物的一对矛盾。每一代传递既有遗传又有变异,生物就是在这种矛盾的斗争中不断向前发展。选择所需要的变异,从而发展成为生产和生活中所需要的品种。因此,遗传、变异和选择是生物进化和新品种选育的三大要素。 3、遗传、变异与进化的关系 生物进化就是环境条件(选择条件)对生物变异进行自然选择,在自然选择中得以保存的变异传递给子代(遗传),变异逐代积累导致物种演变,产生新物种。 动、植物和微生物新品种选育(育种)实际上是一种人工进化过程,只是以选择强度更大的人工选择代替了自然选择,其选择的条件是育种者的要求。 摩尔根创立基因学说 克里克提出的“中心法则”。 Human Genome Project (HGP) Epigenetics 表观遗传学 1. 概念:基因的DNA序列不发生改变的情况下,基因的表达水平与功能发生改变,并产生可遗传的表型。 2. 特征: (1)可遗传;(2) 可逆性;(3) DNA不变 3. 表观遗传学的现象: (1) DNA甲基化 (2) 组蛋白修饰 (3) MicroRNA (4) Genomic imprinting (5)休眠转座子激活…

动物遗传学【试题+答案】

试题 21、肺炎双球菌的转化试验表明,起__转化_作用的物质是_DNA______而不是RNA。44、果蝇唾液腺含有 4 对染色体,在实验中加入1NHCl目的是对剥离出的唾液腺染色体进行解离。 47、在有DNA的生物,其遗传物质是DNA ,而在没有DNA的生物,则其遗传物质是RNA 。 48、染色体的化学组成是核酸蛋白,其中主要是DNA、非组蛋白和组蛋白,现已肯定DNA 是最主要的遗传物质。 65、据测定,一个核小体及其连接丝约含200 个碱基对的DNA,其中146 个碱基对盘绕在核小体表面 1.75 圈,其余50~60 个碱基对连接两个核小体。66、由染色质到染色体的四级结构是核小体、螺旋体、超螺旋体、___染色体___. 67、某生物有三对同源染色体,在减数分裂中能形成3 个二价体和12 个染色单体。 68、减数分裂前期Ⅰ可分为细线期、偶线期、粗线期、双线期和终变期五个时期。 69、许多生物染色体的次缢痕部位一般具有组成核仁的功能,因而称为核仁组织中心。 70、染色体经碱性染料处理后,它的臂部位被染色,而着丝粒部位几乎不被染色。 71、真核生物的染色体主要是有DNA 、组蛋白、非组蛋白和少量RNA 组成的。 80、在减数分裂形成配子时,每对同源染色体上的每一对等位基因发生分离,而位于非同源染色体上的基因之间可以重组。

112、DNA分子双螺旋结构是由沃森和克里克提出的。 114、DNA双螺旋的直径是20 ?,各对碱基上下之间的距离为 3.4 ?,每个螺旋距是34 ?,每个螺旋包括10 对碱基。 120、猪正常体细胞内含有19对染色体。其脑细胞中含有38 条染色体;初级精母细胞中含有38 条染色体;极体中含有19 条染色体;受精卵中含有38 条染色体;精子中含有19 条染色体。 121、电镜下观察细胞分裂中期染色体,根据着丝点位置和形态可呈V 、L 和棒形型。 134、细胞有丝分裂的后期,每个染色体的着丝点分裂,每个染色单体成为一个子染色体。 140、每条染色单体是由 2 条DNA分子,与蛋白质结合形成的染色质线。 141、基因的侧翼序列是指每个结构基因在(第一个外显子)和(最后一个外显子)的外侧,都有一段不被转录和翻译的非编码区。 142、某DNA的核苷酸中,A的含量为30%,则G的含量为20% 。 143、在染色体上可以转移的基因,称为跳跃基因。 144、减数分裂过程中时间持续最长的时期是分裂前期I ,这个时期被细分为 5 个时期。 146、细胞有丝分裂的分裂过程,一般以前期时期的时间最长。 147、信号肽序列是指在(分泌)蛋白基因的编码序列中,在(起始密码子)之后,有一段编码富含疏水氨基酸的多肽序列。 148、开放阅读框是指结构基因中从(起始密码子)到(终止密码子)这一段核苷酸区域,可编码完整的多肽链。

细胞生物学实验指导

实验一显微镜的结构及使用 [实验目的] (一)熟悉显微镜的结构及各部件性能。 (二)掌握显微镜的使用方法。 (三)了解显微镜的维护方法。 [实验原理] 虽然显微镜的目镜和物镜的结构很复杂,但它的作用相当于一个凸透镜,其成像原理和光路图如图1所示,被检物体AB放在物镜(O1)下方的1—2倍焦距之间,则在物镜(O1)后形成一个倒立的放大实像A1B1,这个实像正好位于目镜(O2)的下焦点之内,通过目镜后形成一个放大的虚像A2B2,这个虚像通过调焦装置使其落在眼睛的明视距离处,即25cm,使所看到的物体最清晰,也就是说虚像A2B2是在眼球晶状体的两倍焦距之外,通过眼球后在视网膜形成一个倒立的A2B2缩小像A3B3。 [实验器材]擦镜纸字母装片羊毛交叉擦片普通光学显微镜二甲苯香柏油 三内容与方法: 普通光学显微镜(Microscope)的外形和结构因类型不同略有差异,但基本结构和功能是相似的。(图2) (一)微镜的基本结构及功能:光学显微镜由机械部分、照明部分和光学部分构成。1.机械部分: (1)镜座:位于底部的金属座。一般为马蹄形,用以支持和稳定整个镜体。 (2)镜柱:镜座与镜臂相连的短柱。 (3)镜臂:镜柱上方弯曲部分,是取用显微镜时握拿的部位。 (4)镜筒:在镜臂的上方倾斜的金属园筒,上端装有目镜、下端转折处装有棱镜,使光线转折450。其上有一固定螺钉将镜筒连接于镜臂上方。 (5)调节器:在镜柱两侧有大小两个螺旋,大螺旋为粗调节器,转动时能使载物台快速升降。调节范围较大,适于低倍镜调焦用。小螺旋为细调节器,转动是载物台仅缓慢升降,调节范围较小,适于调节物象的清晰度。此外,在右侧粗调节器内侧有一窄环,称粗调松紧调节轮,用以调节粗调节器的松紧度。向外转时偏紧,向内转时偏松。左侧粗调节器内侧有一粗调限位调节环凸柄,向上推紧时,镜台上的最高点被固定(这两个环一般不需调节)。(6)旋转盘:又称物镜转换器,安装在镜筒下端,为一可旋转的圆盘,上有4个圆孔,

棒框仪实验报告

棒框仪实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

人机工程学 报告书 姓名:董思洋 班级:工业设计10-3班学号: 二零一二年

棒框仪实验指导书 陈亚明编 艺术与设计学院 二0一二年二月

棒框仪实验 一、实验目的 本仪器可测量一个倾斜的框对判断一根棒的垂直性影响的程度。被试的判断受倾斜的框的影响,相当于周围环境条件变化的影响,所以此 本仪器可以通过被试的认知方式来测量人格特性。 二、实验方法 两人一组,正确使用棒框仪进行测量: 1、一个放在平台上的观察筒被试观察面为圆白背景面板上有一个黑色正方形框和黑色棒。棒的倾斜度可由被试通过旋钮调节。 2、主试面有一个半圆形的刻度,圆弧内指针指示框的倾斜度,中央指针指示棒的倾斜度。主试调节面板上旋钮改变框与棒的倾斜度。 3、在平台上有一个水平仪,可通过旋转平台下面的螺丝将平台调整到水平的位置。此棒框仪的优点在于没有电源的条件下可以使用。 三、测量器具 人体形体测量尺350×165×215mm的棒框仪 四、实验内容 (1)将平台调到水平位置。 (2)根据实验的要求,主试将框和棒调到在一定的倾斜度。 (3)要求被试通过观察筒进行观察,并根据自己感觉将棒调整得与地面垂直。(4)从刻度上读出的棒的倾斜度,即记录下误差的度数和方向。 (5)主试调节不同的方框的倾斜度,即不同的场条件下,重复实验。由被试调整出的棒倾斜度总结出框对棒的影响,从而研究被试的场依存性。 五、实验要求 1.每位同学都要参与测量、被测量过程; 2.记录数据以度为单位 3.测量数据要准确,测量精确;

遗传学知识点归纳(整理)

遗传学教学大纲讲稿要点 第一章绪论 关键词: 遗传学 Genetics 遗传 heredity 变异 variation 一.遗传学的研究特点 1. 在生物的个体,细胞,和基因层次上研究遗传信息的结构,传递和表达。 2. 遗传信息的传递包括世代的传递和个体间的传递。 3. 通过个体杂交和人工的方式研究基因的功能。 “遗传学”定义 遗传学是研究生物的遗传与变异规律的一门生物学分支科学。 遗传学是研究基因结构,信息传递,表达和调控的一门生物学分支科学遗传 heredity 生物性状或信息世代传递的现象。 同一物种只能繁育出同种的生物 同一家族的生物在性状上有类同现象 变异variation 生物性状在世代传递过程中出现的差异现象。 生物的子代与亲代存在差别。 生物的子代之间存在差别。 遗传与变异的关系 遗传与变异是生物生存与进化的基本因素。遗传维持了生命的延续。没有遗传就没有生命的存在,没有遗传就没有相对稳定的物种。 变异使得生物物种推陈出新,层出不穷。没有变异,就没有物种的形成,没有变异,就没有物种的进化,遗传与变异相辅相成,共同作用,使得生物生生不息,造就了形形色色的生物界。 二. 遗传学的发展历史 1865年Mendel发现遗传学基本定律。建立了颗粒式遗传的机制。 1910年Morgan建立基因在染色体上的关系。 1944年Avery证明DNA是遗传物质。 1951年Watson和Crick的DNA构型。 1961年Crick遗传密码的发现。 1975年以后的基因工程的发展。 三. 遗传学的研究分支 1. 从遗传学研究的内容划分 进化遗传学研究生物进化过程中遗传学机制与作用的遗传学分支科学 生物进化的机制突变和选择 有害突变淘汰和保留 有利突变保留与丢失 中立突变 DNA多态性 发育遗传学研究基因的时间,空间,剂量的表达在生物发育中的作用分支遗传学。 特征:基因的对细胞周期分裂和分化的作用。 应用重点干细胞的基因作用。 转基因动物克隆动物 免疫遗传学研究基因在免疫系统中的作用的遗传学分支。 重点不是研究免疫应答的过程, 而是研究基因在抗体和抗 原形成和改变中的作用。 2. 从遗传学研究的层次划分 群体遗传学研究基因频率的改变的遗传学分支。

(完整word版)安全人机工程学综合实验指导书20131

《安全人机工程学》实验指导书 杨轶芙编 实验学时:6学时

目录 实验一手指灵活性测试 ................................................................... - 1 -实验二动觉方位辨别能力的测定 ..................................................... - 3 -实验三暗适应测试实验 ..................................................................... - 5 -实验四明度适应测试 ......................................................................... - 8 -实验五选择、简单反应时测定实验............................................... - 10 -实验六听觉实验 ............................................................................... - 15 -实验七动作稳定性测试 ................................................................... - 22 -

实验一手指灵活性测试 『实验目的』 测定手指、手、手腕灵活性以及手眼协调能力。 『实验仪器』 采用EP707A型手指灵活性测试仪。 该仪器的主要技术参数如下: 1、手指灵活性测试100孔 2、指尖灵活性测试M6、M5、M4、 M3螺栓各25个 3、计时范围0~9999.99秒 4、电源电压220V 50HZ 5、消耗功率10W 6、外形尺寸505×310×48 7、重量3.5千克(净重) 『实验内容』 (一)手指灵活性测试(插孔插板) 1、使用者接上电源打开电源开关,此时计时器即全部显示为0000. 00。然后插上手指灵活性插板(有100个φ 1.6mm 孔),按复位按键被试即可进行测试。 2、被试用优势手拿住镊子钳住φ1.5针,插入开始位,计时器开始计时 3、依次用镊子(从左至右,从上至下)钳住φ1.5针插满100个孔,最后插终止位,计时会自动结束,记录下插入100个棒所需要的时间; 4、每次重新开始需按“复位”键清零。 (二)指尖灵活性测试 1、使用者接上电源打开电源开关,此时计时器即全部显示为0000. 00。然后插上指尖灵活性插板(M6、M5、M4、M3螺栓各25个),按复位按键被试即可进行测试。 2、当被试用优势手放入起始点第一个M6垫圈起,计时器开始计时,然后

动物科学考试重点——动物遗传学

遗传:有血缘个体之间的相似性 变异:有血缘个体之间的非相似性 遗传和变异的关系:(1)遗传是相对的,变异是绝对的。(2)遗传是保守的,变异是变革的,发展的。(3)遗传和变异是相互制约又相互依存的。(4)遗传变异伴随着生物的生殖而发生。 核酸(nucleic acid):以核苷酸为基本结构单元组成的高分子化合物,是所有原核生物和真核生物的遗传物质。根据所含戊糖的不同,分为脱氧核糖核酸(DNA)核糖核酸(RNA) 信使RNA(message RNA, mRNA):单链RNA,蛋白质合成的模板,携有确定各种蛋白质中氨基酸序列的密码信息。在真核生物中,mRNA把遗传信息从细胞核中的基因传递到细胞质中的核糖体,通过翻译合成特定氨基酸序列的多肽。 转移RNA(transfer RNA,tRNA):负责解读mRNA所含遗传信息的RNA分子,在翻译过程中起着转运各种氨基酸至核糖体,按照mRNA的密码顺序合成多肽的功能。tRNA通过链内碱基配对形成“三叶草”型二级结构。 核糖体rRNA(ribosomal RNA,rRNA):由rRNA基因转录的单链RNA分子,为核糖体的主要组成成分。 原核生物如大肠杆菌含三种rRNA;动物含有四种rRNA。 基因(gene):是遗传的功能单位,含有合成有功能的蛋白质多肽链或RNA所必需的全部核苷酸序列。广义地说,基因也被认为是有功能的DNA片段。 基因组(genome):真核基因组是指一个物种单倍体的染色体所携带的一整套基因。 染色体(chromosome):真核生物染色体是细胞核中一种以核小体为基本结构单元,由DNA、组蛋白、非组蛋白和少量RNA组成的丝状物,含有染色体基因,是遗传的主要物质基础。 有丝分裂(mitosis):细胞分裂的主要方式,染色体复制一次,细胞分裂一次,遗传物质均分到两个子细胞中,使之具有与亲代细胞在数目和形态上完全相同的染色体。细胞的有丝分裂既维持了个体正常生长发育,又保证了物种的遗传稳定性。 减数分裂(meiosis):生殖细胞成熟时产生配子的细胞分裂形式,对于保证物种的遗传稳定性和创造物种的遗传变异具有重要的意义。在减数分裂中,染色体复制一次,细胞分裂两次,产生染色体数目减半的配子。 细菌的转化:1928年,肺炎双球菌转化实验。它有两种类型,一种是光滑型(S型),有夹膜,具有毒性,导致小鼠死亡。另一种为粗糙型(R型),无毒性。 感染性的RNA:有些病毒,只含有蛋白质和核糖核酸(RNA),没有DNA,这些RNA病毒则使用RNA作为遗传物质。 DNA和RNA的化学组成:核苷酸由碱基、戊糖和磷酸三部分构成。DNA和RNA所含戊糖的种类不同,DNA 中的戊糖为D-2-脱氧核糖,RNA所含的戊糖为D-核糖; DNA的一级结构:指4种核苷酸的连接方式和排列顺序=碱基序列。 DNA的二级结构:就是DNA光螺旋结构。 DNA的高级结构:指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。超螺旋结构是DNA高级结构的主要形式,超螺旋又可分为负超螺旋和正超螺旋两种。 RNA:原核生物和真核生物含有许多种不同的RNA分子,其中最主要的有信使RNA、核糖体RNA和转移RNA。基因的概念:是有功能的DNA片段,它含有合成有功能的蛋白质多肽链或RNA所必需的全部核苷酸序列 基因的一般结构特征: 1.外显子和内含子;翻译起始序列AUG,翻译终止序列TAA/TAG/TGA。2.信号肽序列;在起始密码子之后,运输蛋白质功能。3.侧翼序列- 调控序列,包括:启动子、增强子、终止子、核糖体结合位点、加帽和加尾信号等。 基因组(genome):一个物种单倍体的染色体所携带的一整套基因 C值:每一种生物中的单倍体基因组的DNA总量 C值矛盾: C值的大小与物种的结构组成和功能的复杂性没有严格的对应关系,这种现象称为-。 重复序列:高度重复序列,中度重复序列。卫星DNA分为小卫星DNA和微卫星DNA 基因家族:真核生物基因组中有许多来源相同、结构相似、功能相关的基因。 基因簇:若一个基因家族的基因成员紧密连锁,成簇状排列在一个染色体的某一个区域,则形成一个基因簇。染色质的化学组成:由DNA、组蛋白、非组蛋白及少量RNA组成。染色质蛋白质分为两类:组蛋白和非组蛋

动物遗传学试题(A答案)

甘肃农业大学成人高等教育(函授) 动物科学专业《动物遗传学》课程试卷A答案 一、名词解释 遗传学:研究生物遗传信息传递和遗传信息如何决定生物性状发育的科学。. Variation:(变异)子代与亲代不相同的性状。 染色体组型:由体细胞中全套染色体按形态特征和大小顺序排列构成的图形。 减数分裂:在真核生物性细胞形成过程中,染色体只复制一次而细胞连续进行两次分裂,使细胞的染色体数目减半的过程。 Character:(性状)生物体所表现的形态特征和生理生化特征的总称。 完全显性:杂合子表现的形状与亲本之一完全一样的现象。 Linkage group:(连锁群)在染色体中具有不同的连锁程度并按线性顺序排列的一组基因座位。 形态标记:以生物体的形态性状为特征的遗传标记。 物理作图:把基因组分解成为许多较小的DNA片段,然后再把这些DNA片段连接起来,构建一个由DNA片段重叠组成的物理图。 染色体畸变:染色体结构和树木改变. 基因库:一个群体中全部个体所有基因的总和. 缺失:染色体出现断裂并丢失部分染色体片段的一种染色体结构变异类型。 非孟德尔遗传:由于染色体外基因并不是随同染色体的复制和分裂均等的分配给两个字细胞而是在细胞质中随机地传递给子代,因而其遗传规律不符合孟德尔独立分配和自由组合规律,及正交和反交的子代性状表现不一致,或只表现父本性状,或只表现母本性状。 母体效应:也称母性影响,是指子代某一性状的表现性不受本身基因型的支配,而由母体的核基因型决定,导致子代的表现型相关的现象。 剂量补偿:男女之间X染色体连锁基因表达水平相等的现象,人类遗传学上称为剂量补偿。 表观遗传:基因表达的改变不依赖于DNA核苷酸序列的改变,而是受DNA的甲基化、组蛋白修饰以及非编码RNA等作用,而且这种改变能通过细胞的有丝分裂或减数分裂向后代遗传的现象。 基因组印记:后代中来自亲本的两个等位基因只有一个表达的现象。 基因频率:在一群体内,某个特定基因占该座位全部等位基因总数的比率。 二、填空题 1.染色体根据着丝粒位置分为中着丝粒染色体、近端着丝粒染色体和端着丝粒染色体 2.遗传标记有形态标记、细胞学标记、生化标记、和DNA标记四种类型 3.限制性片段长度多态性(RFLP)标记是最早出现的DNA标记 4.染色体变异包括染色体结构变异和染色体数目变异两大类型 5.细胞分裂方式包括有丝分裂、无丝分裂、减数分裂三种方式 6.染色体的结构变异可分为缺失、重复、倒位、异位四种类型 7.有丝分裂可分为G1、 S、 G2 、M 期四个时期 8.与性别有关的遗传包括伴性遗传、限性遗传、从性遗传三种方式。 9.基因突变的原因有自发突变、化学诱变、物理诱变三种途径 10.核外遗传包括线粒体、叶绿体、F因子、质粒四种体系 11.影响群体基因频率变化的因素有突变、迁移、选择、遗传漂变和随机交配的偏移等五种因素 12.数量遗传学中性状可根据复杂程度分为简单性状和复杂性状;根据遗传基因多少和表型连续与否可分为质量性状和数量性状。 13.两对自由组合基因的互作方式主要有互补作用、加黑作用、重叠作用、上位作用、抑制作用。 14.重组率计算公式:重组率(﹪)=(重组型配子数/配子总数)×100﹪或重组率(﹪)=(重组个体数/重组子代的个体总数)×100﹪ 15.脉冲场凝胶电泳突破了琼脂糖凝胶分离大分子DNA限制。 16.最常用的人工染色体有酵母人工染色体(YAC)和细菌人工染色体(BAC)两类 17.染色体的基本结构有着丝粒、端粒和复制起点三个 18.遗传作图的主要任务是测定基因座位在染色体上的排列顺序和相互间的遗传距离19.遗传分析有两点测验和三点测验两种方式 三、选择题 1.鸡的性染色体构型是(B) A.A.XY B.ZW C.XO D.ZO

相关文档
最新文档