磁场中几个物理量及电磁力

磁场中几个物理量及电磁力
磁场中几个物理量及电磁力

高考物理磁场知识点

2019高考物理磁场知识点 2019高考物理磁场知识点 1.磁场 (1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。 (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。 (3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流) 之间通过磁场而发生的相互作用。 (4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。 (5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。 2.磁感线 (1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。 (2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。 (3)几种典型磁场的磁感线的分布: ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。

②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场。 ③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。 ④匀强磁场:磁感应强度的大小处处相等、方向处处相同。匀强磁场中的磁感线是分布均匀、方向相同的平行直线。 3.磁感应强度 (1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。单位T,1T=1N/(A·m)。 (2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。 (3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。 (4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。 4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:

磁场、电磁感应要点

一、 选择题:(每小题3分,共6) 磁场 1 一个带电粒子以速度v 垂直进入匀强磁场B 中,其运动轨迹是一半径为R 的圆。要使半径变为 2R ,磁感应强度B 应变为:( ) (A) 2B (B) B/2 (C) 2 B (D) 2 B/2 2. 磁场的高斯定理说明了稳恒磁场的某些性质。下列说法正确的是 ( ) (A) 磁场力是保守力; (B) 磁场是无源场; (C) 磁场是非保守力场; (D) 磁感应线不相交。 3 如图所示,1/4圆弧导线 ab,半径为r,电流为I ,均匀磁场为B, 方向垂直ab 向上,求圆弧ab 受的安培力的大小和方向( ) (A 垂直纸面向外 (B 垂直纸面向里 (C )2BIr π 垂直纸面向外 (D )2BIr π 垂直纸面向里 4. 如图所示,圆型回路L 内有电流1I 、2I ,回路外有电流3I ,均在真空中,P 为L 上的点,则( )

(A )012()L d I I μ?=-+?B l (B )0123()L d I I I μ?=++?B l (C )0123()L d I I I μ?=+-?B l (D )012()L d I I μ?=+?B l 5 匀强磁场B 中有一半径为r ,高为L 的圆柱面,B 方向与柱轴平行,则穿过圆柱面的磁通量为:( ) (A) B R 2π (B) 0 (C) B R 22π (D) B R 221π 6 载有电流I 的导线如图放置,在圆心O 处的磁感应强度B 为:( ) (A)μ0I/4R+μ0I/4πR (B)μ0I/2πR+ 3μ0I/8R (C) μ0I/4πR -3μ0I/8R (D) μ0I/4R+ μ0I/2πR

磁场的基本物理量

河北经济管理学校教案 序号:1 编号:JL/JW/ 河北经济管理学校教案

为了描述不同物质的导磁能力,引入了磁导率这个物理量,磁导率的大小反映了物质导磁能力的强弱。物质导磁性能的强弱用磁导率来表示。磁导率的单位是:亨利/米(H/m)。不同的物质磁导率不同。在相同的条件下,磁导率值越大,磁感应强度 B 越大,磁场越强;磁导率值越小,磁感应强度 B 越小,磁场越弱。 4.磁场强度(重难点) 磁场中某点的磁场强度等于该点磁感应强度与介质磁导率的比值,用字母H 表示。 磁场强度 H 也是矢量,其方向与磁感应强度 B 同向,国际单 位是:安培/米 (A/m)。 必须注意:磁场中各点的磁场强度H 的大小只与产生磁场的电流I 的大小和导体的形状有关,与磁介质的性质无关。 计算举例(15min ) 1.如图所示是某磁场磁感线的分布,由图可知关于A 、B 两点的 磁场方向的说法中正确的是(BD) A .A 处的磁场比 B 处的强 B .A 处的磁场比B 处的弱 C .A 处的磁场方向与B 处的磁场方向相同 D .A 处的磁场方向与B 处的磁场方向不同 2.将条形磁铁从中间切断分成两半,然后再拉开一小段距离,如下图所示.如果在其空隙处O 点放置一个小磁针,小磁针的N 极将(A) 向左偏转 B .向右偏转 C .不会偏转 D .向上或向下偏转 3.磁铁在高温下或者受到敲击时会失去磁性,根据安培 的分子电流假说,其原因是(C) A .分子电流消失 B .分子电流取向变得大致相同 C .分子电流取向变得杂乱 D .分子电流减弱 解析:根据安培的分子电流假说,当分子电流取向变得大致相同时,对外显示磁性;当温度升高或者受到敲击时,分子运动加剧,分子电流变得紊乱无序,对外不显示磁性. 课堂小结(15min ) 本节课学习了磁场的基本物理量。 磁通:用来定量描述在磁场中一定面积上磁力线的分布情况 磁感应强度:是描述某一空间各点磁场的强弱和方向的物理量 磁导率:为了描述不同物质的导磁能力,引入了磁导率这个物理量 磁场强度:磁场中某点的磁场强度等于该点磁感应强度与介质磁导率的比值 五、布置作业(10min ) 课本P85自我测评2、3题 μ B H =

磁场的主要物理量教案

《磁场的主要物理量》课程教案

三、磁导率 μ 1.表示媒介质导磁性能的物理量。 μ 的单位是:亨利/米(H/m)。 不同的物质磁导率不同。在相同的条件下,μ 值越大,磁感应强度 B 越大,磁场越强;μ 值越小,磁感应强度 B 越小,磁场越弱。 2.真空中磁导率:μ0 = 4π ? 10-7 H / m 。 相对磁导率:μr = 0 μμ 3.根据相对磁导率 μr 的大小,可将物质分为三类: μr < 1 反磁性物质; μr > 1 顺磁性物质; μr >> 1 铁磁性物质。 前面两种为非铁磁性物质 μr ≈1,铁磁性物质 μ 不是常数。 四、磁场强度H 1.表示磁场的性质,与磁场内介质无关。 2.H = μ B 或 B = μ H = μ0 μr H 3.(1)磁场强度是矢量,方向和磁感应强度的方向一致。 (2)单位:安 / 米(A / m ) (3)磁场中各点的磁场强度H 的大小只与产生磁场的电流I 的大小和导体的形状有关,与磁介质的性质无关。 【例题1】如图,在磁感应强度大小为B 的磁场中垂直放置1根长为5m 的载流直导体,测得受到的电磁力为2N ,求磁感应强度B 。 极性 讲结合启学利所解实问题

解:B=F/IL=2/(2×5)=0.2T 【例题2】在磁感应强度为0.05T 的均匀磁场中,放置一个长、宽各为30cm 、20cm 的矩形线圈,试求线圈平面与磁场方向垂直时的磁通量。 解: Φ=BS=0.05×(0.3×0.2)=0.003Wb 1.描述磁场的四个主要物理量是____、____、______、和_____;它们的表示字母分别是____、____、_____和_____;它们的单位分别是____、____、____和____。 2.判断: (1)由B=F/IL 可知,B 与F 成正比,与IL 成反比. ( ) (2)由B=F/IL 可知,一小段通电导体在某处不受磁场力,说明此处一定无磁场. ( ) (3)通电导线在磁场中受力越大,说明磁场越强. ( ) 3.有关磁感应强度的方向,下列说法正确的是( ) A .B 的方向就是小磁针N 极所指的方向 B .B 的方向与小磁针在任何情况下N 极受力方向一致 C .B 的方向与小磁针在任何情况下S 极受力方向一致 D .B 的方向就是通电导线的受力方向 4.如图所示,套在条形磁铁外的三个线圈,其面积S 1>S 2= S 3,且 “3”线圈在磁铁的正中间。设各线圈中的磁通量依次为φ1、φ2、φ3则它们的大小关系是( ) A 、φ1>φ2>φ3 B 、φ1>φ2=φ3 C 、φ1<φ2<φ3 D 、φ1<φ2=φ 3 5.铁磁物质的相对磁导率是_______。 (A )μr <1 (B )μr >1 (C )μr >>1 (D )μr <<1 1、磁感应强度(磁通密度) B=F/IL 2、磁通量 Ф = BS 学思考讨论教进适点播让生纳结结论

第三章--磁场及电磁感应

课题 ※第三章磁场及电磁感应 ※第一节磁场课型 新课授课班级授课时数 1 教学目标 1.了解磁场及电流的磁场。 2.了解安培力的大小及方向。 教学重点 1.磁场。 2.安培力的大小及方向。 教学难点 安培力的大小及方向。 学情分析 教学效果 教后记

新授课 A、新授课 ※第一节磁场 一、磁场 1.磁体 某些物体具有吸引铁、钴、镍等物质的性质叫磁性。具有磁性的物体叫磁体。磁体 分为天然磁体和人造磁体。常见的条形磁铁、马蹄形磁铁和针形磁铁等都是人造磁体, 如下图所示。 3-2 常见人造磁铁 2.磁极 磁体两端磁性最强,磁性最强的地方叫磁 极。任何磁体都有一对磁极,一个叫南极,用S 表示;另一个叫北极,用N表示,如右图所示。 N极和S极总是成对出现并且强度相等,不存在 独立的N极和S极。 当用一个条形磁铁靠近一个悬挂的小磁针(或条形磁铁)时,如下图所示。我们发现: 当条形磁铁的N极靠近小磁针的N极时, 小磁针N极一端马上被排斥;当条形磁铁 的N极靠近小磁针的S极时,小磁针S极 一端立刻被条形磁铁吸引。说明磁极之间 存在相互作用力,同名磁极互相排斥,异 名磁极互相吸引。 3.磁场 力是物质之间相互作用的结果。用手推门,门就会转动打开,这是因为力直接作用 于门。上述实验中,磁极之间存在的作用力并没有直接作用,到底是什么神密的物质使 得它们之间有力的作用呢?这种神密的物质就是磁场。磁极之间相互作用的磁力就是通 过磁场传递的。磁场是磁体周围存在的特殊物质。磁极在自己周围的空间里产生磁场, 磁场对它里面的磁极有磁场力的作用。 4.磁场方向 把小磁针放在磁场中的任一点,可以看到小磁针受磁场力的作用。静止时它的两 极不再指向南北方向,而指向一个别的方向。在磁场中的不同点,小磁针静止时指的 方向一般并不相同。 这个现象说明,磁场是有方向性的。一般规定,在磁场中某点放一个能自由转动的 (展示磁 铁) (对照实 物形进行 说明) (演示) (讲解)

中职教学精品教案磁场的基本物理量

【课题名称】 5.2 磁场的基本物理量 【课时安排】 1课时(45分钟) 【教学目标】 1.了解磁通的物理概念,了解其在工程技术中的应用。 2.了解磁感应强度、磁导率和磁场强度的基本概念及其相互关系。【教学重点】 重点:磁通、磁感应强度、磁导率和磁场强度的基本概念 【教学难点】 难点:磁场强度的基本概念 【关键点】 磁通在工程技术中的应用 【教学方法】 多媒体演示法、讲授法、谈话法、理论联系实际法 【教具资源】 多媒体课件、大小磁铁 【教学过程】 一、导入新课 教师可现场演示或利用多媒体展示大小电磁铁吸引力比较的场景,并设置问题情境:巨大的电磁铁能吸起成万吨的钢铁,而小的磁铁只能吸起小铁钉,你知道这是为什么呢?进而引出本课的学习内容——磁场的基本物理量。 二、讲授新课 教学环节1:磁通的物理概念 教师活动:教师可利用多媒体展示大小电磁铁吸引力比较的场景,讲解磁场不仅有方向,而且有强弱,让学生明白磁通的物理概念,并介绍磁通在工程技术中的应用。 学生活动:学生在教师的引导与讲解下,学习、了解磁通的物理概念,了解其在工程技术中的应用。

知识点: 磁通:通过与磁场方向垂直的某一面积上的磁感线的总数,叫做通过该面积的磁通量,简称磁通,用字母Φ表示。 教学环节2:磁感应强度、磁导率和磁场强度的基本概念及其相互关系 教师活动:教师可利用多媒体展示,引导学生明白磁感应强度、磁导率和磁场强度的基本概念及其相互关系。 学生活动:学生在教师的引导下,认识、学习磁感应强度、磁导率和磁场强度的基本概念及其相互关系。 知识点: 1.磁感应强度。与磁场方向垂直的单位面积上的磁通,叫做磁感应强度,也称为磁通密度,用字母B 表示。 磁感应强度与磁通的关系:S B φ = 2.磁导率。磁导率就是一个用来表示媒介质导磁性能的物理量,用字母μ表示。任一物质的磁导率μ与真空磁导率0μ比值称为相对磁导率,用r μ表示。铁磁性物质的r μ远远大于1。 3.磁场强度。磁场中某点的磁场强度等于该点的磁感应强度与媒介质的磁导率μ的比值,用字母H 表示。即μB H = 。 三、课堂小结 1.磁通的物理概念。 2.磁感应强度、磁导率和磁场强度的基本概念及其相互关系。 四、课堂练习 教材中思考与练习第1、2题 五、课后作业 “学习辅导与练习”同步训练中的5.2

电磁铁计算公式

第一章常用低压电器 电器:电能的生产、输送、分配与应用起着控制、调节、检测和保护的作用。 根据外界的信号和要求,自动或手动接通或断开电路,断续或连续地改变电路参数,以实现对电路或非电路对象的切换、控制、保护、检测、变换和调节用的电气设备。 定义:一种能控制电能的器件。 第一节电磁式低压电器的结构和工作原理 ●低压电器:用于交流1200V、直流1500V以下电路的器件 ●高压电器:用于交流1200V、直流1500V以上电路的电器。 电力传动系统的组成: 1)主电路:由电动机、(接通、分断、控制电动机)接触器主触点等电器元件所组成。 特点:电流大 2)控制电路:由接触器线圈、继电器等电器元件组成。 特点:电流小 ●任务:按给定的指令,依照自动控制系统的规律和具体的工艺要求对主电路进行控制。 一、低压电器的分类 1、按使用的系统

1)低压配电电器 用于低压供电系统。电路出现故障(过载、短路、欠压、失压、断相、漏电等)起保护作用,断开故障电路。(动动稳定性、热稳定性) 例如:低压断路器、熔断器、刀开关和转换开关等。 2)低压控制电器 用于电力传动控制系统。能分断过载电流,但不能分断短路电流。(通断能力、操作频率、电气和机械寿命等) 例如:接触器、继电器、控制器及主令电器等。 2、按操作方式 1)手动电器:刀开关、按钮、转换开关 2)自动电器:低压断路器、接触器、继电器 3、按工作原理 1)电磁式电器:电磁机构控制电器动作 2)非电量控制电器:非电磁式控制电器动作 ◆电磁式电器由感测和执行两部分组成。 感测部分(电磁机构):接受外界输入的信号,使执行部分动作,实现控制的目的。 执行部分:触点系统。 二、电磁机构

最新高考物理磁场知识总结

最新高考物理磁场知识总结 高考物理磁场知识总结如下: 1.磁场 (1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。 (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。 (3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流)之间通过磁场而发生的相互作用。 (4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。 (5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。

2.磁感线 (1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。 (2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。 (3)几种典型磁场的磁感线的分布: ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。 ②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场。 ③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。 ④匀强磁场:磁感应强度的大小处处相等、方向处处相同。匀强磁场中的磁感线是分布均匀、方向相同的平行直线。

3.磁感应强度 (1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。单位T,1T=1N/(A·m)。 (2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。 (3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。 (4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。 4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:

电工基础第四章磁场与电磁感应教(学)案

第四章 磁场和电磁感应 第一节 电流的磁效应 一、 磁场 1.磁场:磁体周围存在的一种特殊的物质叫磁场。磁体间的相互作用力是通过磁场传送的。磁体间的相互作用力称为磁场力,同名磁极相互排斥,异名磁极相互吸引。 2.磁场的性质:磁场具有力的性质和能量性质。 3.磁场方向:在磁场中某点放一个可自由转动的小磁针,它N 极所指的方向即为该点的磁场方向。 二、磁感线 1.磁感线 在磁场中画一系列曲线,使曲线上每一点的切线方向都与该点的磁场方向相同,这些曲线称为磁感线。如图所示。 2.特点 (1) 磁感线的切线方向表示磁场方向,其疏密程度表示磁场的强弱。 (2) 磁感线是闭合曲线,在磁体外部,磁感线由N 极出来,绕到S 极;在磁体部,磁感线的方向由S 极指向N 极。 (3) 任意两条磁感线不相交。 说明:磁感线是为研究问题方便人为引入的假想曲线,实际上并不存在。 图5-2所示为条形磁铁的磁感线的形状。 3.匀强磁场 在磁场中某一区域,若磁场的大小方向都相同,这部分磁场称为匀强磁场。匀强磁场的磁感线是一系列疏密均匀、相互平行的直线。 三、电流的磁场 1.电流的磁场 条形磁铁的磁感线 磁感线

直线电流所产生的磁场方向可用安培定则来判定,方法是:用右手握住导线,让拇指指向电流方向,四指所指的方向就是磁感线的环绕方向。 环形电流的磁场方向也可用安培定则来判定,方法是:让右手弯曲的四指和环形电流方向一致,伸直的拇指所指的方向就是导线环中心轴线上的磁感线方向。 螺线管通电后,磁场方向仍可用安培定则来判定:用右手握住螺线管,四指指向电流的方向,拇指所指的就是螺线管部的磁感线方向。 2.电流的磁效应 电流的周围存在磁场的现象称为电流的磁效应。电流的磁效应揭示了磁现象的电本质。

第一节磁场基本物理量何铁磁性材料

第一节磁场基本物理量和铁磁性材料 一、电磁场的基本物理量 为了更好地理解磁场的基本性质,介绍四个常用的基本物理量,即磁感应强度B、通Φ、磁导率μ、磁场强度H。 1、磁感应强度B 磁感应强度B是反映磁场性质的参数.它的大小反映磁场强弱,它的方向就是磁场的方向. 若在磁场中某一区域,磁力线疏密一致,且方向相同,则称该区域为匀强磁场或均匀磁场.在均匀磁场内,磁感应强度处处相同。场 内某点磁力线的方向即磁感应强度的方向,磁力线的多少就表示磁感应强度的大小。 一载流导体在磁场中受电磁力的作用,如图3-1所示。电磁力的大小就与磁感应强度B、电流I、垂直于磁场的导体有效长度L成正比。公式为 F=BILsinα(3一1) 式中,α为磁场与导体的夹角;B为磁感应强度,单位是特斯拉(T),工程上也曾用高斯(Gs)。两个单位的大小关系是:1 Gs=10-4 T。 若α=90°,则 F=BIL (3一2) 电磁力的方向可用左手定则来确定。 2、磁通Φ

磁感应强度B和垂直于磁场方向的某一面积S的乘积称为该截面的磁通Φ。若磁场为匀强磁场,Φ的大小为: Φ= BS (3-3) 磁通Φ的单位为韦伯(Wb), 工程上过去常用麦克斯韦(Mx), 两个单位的大小关系是:1Mx=10-8Wb。 磁力线垂直穿过某一截面, 磁力线根数越多,就表明磁通越大; 磁通越大就表明在一定范围中磁场越强。由于磁力线是首尾闭合的曲线,所以穿入闭合面的磁力线数,必等于穿出闭合面的磁力线数,这就是磁通的连续性。 3、磁导率μ 磁导率μ是用来衡量磁介质磁性性能的物理量。 如图3-2所示一直导体,通电后在导体周围产生磁场,在导体附近一处X点的磁感应强度B与导体中的电流I及X点所处空间几何位置、磁介质μ有关。公式为: (3-4) 由式(3-4)可知磁导率μ越大,在同样的导体电流和几何位置下,磁场越强,磁感应强度B越大,磁介质的导磁性能越好。 不同的介质,磁导率μ也不同,例如真空中的磁导率μ0=4π×10-7H/m,一般磁介质的磁导率μ与真空中磁导率μ0的比值,称为相对磁导率,用表示μr表示,即 (3-5) 磁导率μ的单位为亨/米(H/m)。 根据相对磁导率不同,我们往往把材料分成三大类,第一类μr略小于1,称为逆磁材料,如铜、银等,第二类μr略大于1,如各类气体、非金属材料、铝等,这两类的的相对磁导率μr约等于1,所以常统称为非铁磁性材料;第三类为铁磁性物质,如铁、钴、镍及其合金等,它们的磁导率很高,相对磁导率μr远远大于1,可达几百到上万,所以电气设备如变压器、电机都将绕组套装在用铁磁性材料制成的铁心上。 需要注意的是,铁磁性物质的磁导率μ是个变量,它随磁场的强弱而变化。 4、磁场强度H 磁场强度H也是磁场的一个基本物理量。磁场内某点的磁场强度H等于该点磁感应强度B除以该点的磁导率μ,即 (3-6) 式中,H为磁场强度,单位为安/米(A/m) 由图3-2可知X点的磁场强度H为

电磁铁电磁力计算方法

电磁铁电磁力计算方法 1磁动势计算(又叫安匝数)IN E = 匝数2 2)12(212d D D L d L d D D N -=-= 其中: -L 绕线宽度)(mm -2D 绕线外径)(mm -1D 绕线内径)(mm -d 漆包线直径)(mm 绕线长度 2 22322121(21)=222(21)10()4D D D D L D D l DN N d L D D m d ππππ-++-==-=?绕

根据电阻公式 222223324(21)(21)41010()d 4L D D l L D D d R d S πρρρπ----==?=?Ω绕其中: 20.0178./mm m ρ-Ω铜的电阻率 2S mm -漆包线的截面积() 根据4322224 10(21)(21)d U U Ud I L D D R L D D ρρ===?-- 故磁动势 23102(21) d U IN D D ρ=?+ 2磁感应强度计算(磁动势在磁路上往往有不同的磁降,但每一圈的磁降和应等于磁动势) 即:()IN HL = ∑ 其中: H -磁场强度(A/m) L m -该段磁介质的长度() 一般情况下,电磁阀除气隙处外,其余部分均采用导磁性能

很好的材料,绝大部分磁动势降是在气隙处, 即0()IN HL H δ= ≈?∑ 其中: 0H -气隙处磁场强度(A/m) mm δ-气隙长度()即行程 而0 00=B H μ 其中: 0B -气隙中的磁感应强度(特斯拉) -70μπ-?导磁率,410亨/米 所以:30 00=10B IN H δδμ-≈?? 又因为23102(21) d U IN D D ρ=?+ 故:2600102(21)d U B D D μρδ=?+ 3电磁力的计算 根据26000 1102F B S μ=? 其中:

5磁场的主要物理量

第5章 第二节 磁场的主要物理量 使用班级:14单招1 考纲要求:理解磁场主要物理量(磁感应强度、磁通、磁场强度和磁导率)的物理意义、单位和它们之间的相互关系。 一、课前预习 1、磁场的主要物理量有哪些?写出他们的意义、表达式和单位。 二、课堂练习 1、预复习练习 (1)磁感应强度是一个既有大小,又有方向的量,所以是 量,符号是 ,单位是 。 (2)磁通计算公式S B ?=Φ的前提条件要求:磁场方向和平面 ,磁通的单位是 ,这个公式也可以写成S B Φ =,所以磁感应强度也叫做 ,单位 也可以写成 。 (3)磁场强度就是 与 的比值,可用符号 表示,它的大小与媒介质 ,所以它不可以直接反映磁场强弱。 (4)真空中的磁导率是一个常数,其大小为 。其他物质磁导率与之比值称为 。 2、课堂典例 (1)有一磁感应强度为0.6T 的匀强磁场,磁场中有一面积为100平方厘米的平面,如果磁感应强度B 与平面夹角α分别为0度、30度、90度时,求通过该平面的磁通各是多少? (2)已知硅钢片中,磁感应强度为2.8T ,磁场强度为10A/cm ,求硅钢片的相对磁导率。

三、课后巩固 1、直导体的磁感应强度是沿轴线均匀分布的。() 2、磁通越大的地方,磁场就越强,磁通为零的地方,磁场也为零。() 3、在磁感应强度为B的匀强磁场中,放入一面积为S的线框,通过线框的磁通一定为 B? S = Φ。() 4、磁场强度与媒介质的磁导率无关,而磁感应强度与媒介质的磁导率有关。()、 5、下列与磁导率无关的物理量是() A.磁感应强度 B.磁场强度 C.磁通 D.磁场力 6、以下是磁场强度单位的有() A.特斯拉/米 B.安培/米 C.伏特/米 D.特斯拉.米/亨 7、下列说法正确的是() A.磁力线越密的地方磁场就大 B.一段通电导体,在磁场中收到的力大,该处的磁感应强度就大 C.通电导体在磁场中受到的力为零,则磁感应强度一定为零 D.在磁感应强度为B的匀强磁场中,放入面积为S的线圈,通过线圈的磁通量为B? S Φ = μ一般是() 8、铁磁性物质的相对磁导率 r μ>1且是常数 A. r μ<1且是常数 B. r μ》1且是常数 C. r μ《1但不是常数 D. r

第十章 电磁系统的吸力计算和静特性

L O G O 本章讲授内容 (其中红色内容是重点)1.磁场的能量磁场能量的计算方法。 2.能量转换与电磁力的普遍公式 虚位移原理、实用的电磁吸力计算公式。 3.麦克斯韦电磁吸力公式 4.恒磁势与恒磁链条件下的吸力特性 恒磁势与恒磁链条件下的吸力计算公式。 5.交流电磁吸力的特点与分磁环原理 交流电磁吸力的计算方法、分磁环的参数计算。 6.静态吸力特性与反力特性的配合第十章电磁系统的吸力计算和静特性 第十章

L O G O 教学目的与要求: 1、掌握麦克斯韦电磁吸力公式,熟悉能量转换与 电磁力的普遍公式,了解恒磁势与恒磁链条件下的吸力。 2、掌握交流电磁吸力与分磁环的原理,熟悉静态 吸力特性与反力特性的配合。 第十章电磁系统的吸力计算和静特性 第十章

L O G O 教学基本内容: 1、磁场的能量; 2、能量转换与电磁力的普遍公式; 3、麦克斯韦电磁吸力公式; 4、恒磁势与恒磁链条件下的吸力; 5、交流电磁吸力与分磁环的原理; 6、静态吸力特性与反力特性的配合。 第十章电磁系统的吸力计算和静特性 第十章

L O G O 教学重点与难点: 1、能量转换与电磁力的普遍公式,麦克斯韦电磁吸力公 式; 2、交流电磁吸力与分磁环的原理和特性配合。 通过本章节的学习,学生应掌握能量平衡电磁吸力计算公式和麦克斯韦电磁吸力计算公式各自的适用范围,从实用的观点出发,后者较前者更有意义;还应掌握交流电磁吸力的计算与分磁环所解决的问题;熟悉静态吸力特性与反力特性的配合,是决定电磁系统特性指标与工作性能优劣的重要因素。 第十章电磁系统的吸力计算和静特性 第十章

电磁铁的吸力计算

我将有关电磁铁吸力的计算方法稍作整理,如下: 1、凡线圈通以直流电的电磁铁都称之为直流电磁铁。通常,直流电磁铁的衔铁和铁心均由软钢和工程纯铁制成。当电磁线圈接上电源时,线圈中就有了激磁电流,使电磁铁回路中产生密集的磁通。该磁通作用于衔铁,使衔铁受到电磁吸力的作用产生运动。 从实践中发现,在同样大小的气隙δ下,铁心的激磁安匝IW越大,作用于衔铁的电磁吸力Fx就越大;或者说,在同样大小的激磁安匝IW下,气隙δ越小,作用于衔铁的电磁吸力Fx就越大。通过理论分析可知,电磁吸力Fx与IW和δ之间的关系可用下式来表达: Fx=5.1×I2×(dL/dδ)(其中L—线圈的电感) (1~1) 在电磁铁未饱和的情况下,可以近似地认为线圈电感L=W2Gδ(式中Gδ—气隙的磁导)。 于是式(1~1)又可写为Fx=5.1×(IW)2×d Gδ/dδ(1~3)这就是说,作用于衔铁的电磁吸力Fx是和电磁线圈激磁安匝数IW的平方以及气隙磁 导随气隙大小而改变的变化率d Gδ/dδ成正比。 气隙磁导Gδ的大小是随磁极的形状和气隙的大小而改变的。如果气隙中的磁通Φδ为均匀分布,则气隙磁导可以表示为: Gδ=μ0×(KS/δ)(亨)(1~4) 式中:μ0—空气的磁导率,=1.25×10-8(亨/厘米); S-决定磁导和电磁吸力的衔铁面面积(厘米2); δ—气隙长度,即磁极间的距离(厘米); K—考虑到磁通能从磁极边缘扩张通过气隙的一个系数,它大于1,而且δ值越大,K值也就越大。 可以推导出:d Gδ/dδ=-μ0×(S/δ2) 于是有:F x=-5.1×{μ0 (IW)2S/δ} 式中的负号表示随着气隙δ的减小,电磁吸力Fx随之增大,若不考虑磁极边缘存在的扩散磁通的影响(K≈1),则气隙磁感强度为: B=Φ/S={(IW)Gδ}/S={(IW)μ0S}/Sδ=(IWμ0)/δ 所以电磁吸力的公式还可写为:F x=5.1B2S/μ0

电磁铁吸力的有关公式

电磁铁吸力的有关公式 这里的所有的对象都应该是铁. 1.F=B^2*S/(2*u0) 此式中,F=焦耳/厘米,B=韦伯/平方厘米,S= 平方厘米 该式改变后成为:F=S*(B/5000)^2 此式中,F=Kg,B=高斯,S= 平方厘米 当加入气隙后,F=(S*(B/5000)^2)/(1+aL) a是一个修正系数,一般是3--5,L是气隙长度. 2.F=u0*S0*(N*i)^2/8(L^2) S0:空气隙面积 m^2 N :匝数 i :电流 L :气隙长度 3.F=(B^2*S*10^7)/(8*PI) 这个式子和第一个式子是相等的. 当不存在气隙的时候,就应该是电磁铁在端面处所产生的力. 1. u0就是μ0吧? 2. 有这句话:“当加入气隙后...”,就意味着,原公式不是针对“空心线圈”?是吗? 3. 我的理解是:上述公式是应用于“气隙比较于磁链长度相对较短的铁心线圈”。 如果不是针对"空心线圈",那么线圈内部的材质是什么呢?能在公式的哪里体 现出来? 应该在B里面体现出来. 那么,我们是否可以这样做个假定,来匹配现在的情况? 假定,悬浮体是一个通电圆导线,电流I,半径R.匀强磁场B垂直通过其所在平面.那么它所受到的力应该如何计算? 由通电圆导线所形成的磁场,是否可以类比于悬浮磁体?假设电流I足够大,两者的半径R相等,从而达到两者所在平面的磁感应强度相等.

那你的意思是:上述公式是针对"空心线圈"?若是,气隙如何定义?你的这个思路非常有趣。让我慢慢来画一个图,配合这个思路。 (原文件名:思路非常有趣1.JPG) 引用图片 是这个意思吧?

差不多就是这个意思. 只不过两个线圈所产生的B不一样.而且右边线圈的半径要小于左边的线圈. 作为第一步,我们可以将题目中的“磁铁”改成“铁块”,“电磁线圈”改成“无铁心电磁线圈”。 ---------------------------------------------- 这样似乎更复杂了,因为“铁块”是被电磁线圈磁化产生磁性,才和电磁线圈产生力的,那“铁块被磁化”如何量化? 下面说说我找的资料: 库仑磁力定律: (原文件名:18864f550ffc2c29f8b9d79da17f2fa2.png) 引用图片 其中m1 m2是两个磁极的磁通量,单位韦伯,d是两磁极距离。 这个公式即我们常说的“磁力和距离的平方成反比”概念。 通过这个公式,F和L(d)的关系就出来了吧。 不过这个公式好像不常用,一般计算磁的相互作用力都等效成电流环来算,有个台湾教授说这个公式是假设磁单级子存在的情况,难道因为磁单级子不存在,因此这个公式没有实际意义?从公式的形式上看很明显和库仑电力定律是一个样的,点电荷 => 磁单级子,是这个原因吗? 别的还在看,水越来越深了,微积分、向量、相对论量子力学都提到了,越看越迷糊,现在很晕。 我要回到“浅水区”去了,从H-B学起。 “浅水区”在:“■从“烧结型铷铁硼的磁性能参数表”中学一些磁的基础知识”。 圆电流全空间磁感应强度B 的分布 https://www.360docs.net/doc/8c2741360.html,/xuebao/download.ashx?filePath=~/UpLoadFolder/ OtherFile/200601/060126.pdf 直导线旁的磁感应强度和载流圆线圈轴线上磁感应强度 https://www.360docs.net/doc/8c2741360.html,/teacherweb/uploadfile/tonghua/20071206105603443. ppt 安培力 https://www.360docs.net/doc/8c2741360.html,/view/115015.html

§8-1 磁场的主要物理量

第八章磁路和铁心线圈§8-1 磁场的主要物理量

一、磁感应强度 磁感应强度是反映磁场中某点磁场强弱和方向的物理量。用符号B 表示,它是矢量。其方向可用小磁针N 极在该点所指的方向来确定,即为该点的磁场方向。其大小为 L I F B ??=如果磁场内各点的磁感应强度的大小相等,方向相同,这样的磁场称为匀强磁场。 式中:ΔL 为磁场中导体的长度;I 为通电导体的电流;ΔF 为导体所受的电磁力。 磁感应强度B 的SI 单位为特斯拉(简称特),符号为T 。在工程上还常采用电磁制单位高斯(GS ),1T =104GS 。磁感应强度B 可用专门的仪器来测量,如高斯计。

二、磁通 磁感应强度矢量的通量称为磁通,用符号Φ表示。磁通为标量。在磁场中有一个曲面S,在曲面上取一面积元dS,设dS处的磁感应强度值为B、方向与dS法线的夹角为α,则此面积元的磁通 dΦ=BdScosα 在匀强磁场中,与磁场方向垂直、面积为S的平面的磁通为 Φ=BS 由此可见, B=Φ/S,磁感应强度在数值上可以看成为与磁场方向相垂直的单位面积所通过的磁通,故又称为磁通密度。 磁通的SI单位为韦伯(Wb)。在工程上有时用电磁制单 位麦克斯韦(Mx),1Wb=108Mx。

三、磁导率 磁导率是用来表示媒介质导磁性能的物理量,用μ表示。不同的媒介质有不同的磁导率。它的SI单位为亨/米(H/m)。 表示, 由实验可测定,真空中的磁导率是一个常数,用μ μ =4π×10-7H/m 空气、木材、玻璃、铜、铝等物质的磁导率与真空的磁导率非常接近。

相对磁导率 任意一种物质的磁导率与真空的磁导率的比值,称为该物质的相对磁导率,用μr 表示, 相对磁导率没有单位,它表明在相同条件下,媒介质中的磁感应强度是真空中的多少倍。 按导磁特性来分,物质可分为两类:铁磁性物质和非铁磁性物质。铁磁物质(亦称为高导磁性能物质) 的μr >>1;非铁磁物质的μr ≈1。 μμ=μr

高三物理磁场知识点梳理

竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除 高三物理磁场知识点梳理 以下是为大家整理的高三物理磁场知识点梳理的相关范文,本文关键词为高三,物理,磁场,知识点,梳理,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在高三作文中查看更多范文。 篇一:高中物理磁场知识点(详细总结) 磁场基本性质 一、磁场 1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用. 2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用. 二、磁感线 为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方

向的曲线. 1.疏密表示磁场的强弱. 2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向. 3.是闭合的曲线,在磁体外部由n极至s极,在磁体的内部由s极至n极.磁线不相切不相交。 4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场. 5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·*熟记常用的几种磁场的磁感线: 【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是:(A) A.带负电;b.带正电; c.不带电;D.不能确定 解析:因在地球的内部地磁场从地球北极指向地球的南极,根据右手螺旋定则可判断出地球表现环形电流的方向应从东到西,而地球是从西向东自转,所以只有地球表面带负电荷才能形成上述电流,故选A. 三、磁感应强度 1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,

极化电磁机构的电磁力计算

极化电磁机构的电磁力计算 播雨 1 前言 磁力研磨是一种零件研磨和光整加工的新方法,它是利用磁性磨料,在磁场力作用下对工件表面进行研磨和抛光的加工技术。在外圆磁力研磨中,工件一边旋转,研磨头与工件之间还要有轴向摆动或振动。实现轴向摆动或振动的机构有多种方式。常见的有工件连同夹具一起往复运动,或者磁感应器连同研磨头一起往复运动。但是这两种运动方式都存在体积大,重量大难以实现高频振动,而研究表明,强力研磨需要25~50H Z或更高频率的运动。为此,研究者们提出了让磁极头单独运动的振动方式,其中,最有效的就是极化电磁机构。 本文介绍极化电磁机构的结构及工作原理,进行电磁力分析计算,以供参考。 2 极化电磁机构的结构及原理 2.1极化电磁机构的结构 极化电磁机构,如图1所示。它是由小型 交流电磁铁和直流电磁铁组成。交流电磁铁由 马蹄型轭铁3和线圈2组成。振动磁极头4 通过弹簧片5与铁心1相连接,并与铁心之 间留有0.3mm左右间隙。振动磁极头连同弹 簧片、电磁铁组成一个“质量—弹簧振动器”, 这个装置一般叫极化电磁机构。弹簧片具有 两个作用,一是起弹性元件作用,一是起导向 作用,使振动平稳。 交流电磁铁的轭铁用包裹铜皮的低碳钢丝图1 极化电磁机构 制造,铁丝直径Φ2mm,轭铁直径Φ16mm。通过计算或实验确定弹簧片尺寸参数,本装置的弹簧片厚度为3mm,弹簧片的悬臂伸出长度为120mm。 2.2 极化电磁机构的工作原理 在极化电磁机构中,工作气隙内同时存在两个独立的磁通,其一为极化磁通,由直流电磁铁的极化线圈提供,其二为工作磁通,由交流电磁铁提供,其大小和方向取决于工作线圈 2的电流大小和方向。 极化机构电气原理图,如图2所示。当工作线圈 没有电流时,只有极化磁通Φ0(严格说应是磁极头 侧面的漏磁或散磁磁通),产生吸力,大小相等方向 相反,(电磁铁磁极头与振动磁极头气隙δ1=δ2,即 Φ01=Φ02=Φ0左右相等),不会使振动磁极头产生振 动,磁极头停留在原处不动。 若假定极化磁极为N极,当工作线圈通电后,在图2 极化电磁机构电气原理图一个半周期,电流的方向使右侧电磁铁磁极为N极,左侧为S极,如图2所示。由于同性相斥异性相吸,右侧气隙产生推力左侧气隙产生吸力,磁极头向左移动。在下一个半周期,电流方向相反,则电磁铁磁极面极性相反,磁极头向右移动,从而使磁极头产生振动运动。 如图2所示,右侧气隙δ2内的交流磁通Φm和极化磁通Φ0方向相同,合成磁通为Φm+Φ0,而在左侧气隙δ1内交流磁通和极化磁通方向相反,磁通为Φm-Φ0。 就是说,向线圈通入交变电流后,产生交变磁场,与固定磁场作用,磁极头从此得到了

电磁学常用公式

电磁学常用公式 库仑定律:F=kQq/r2 电场强度:E=F/q 点电荷电场强度:E=kQ/r2 匀强电场:E=U/d 电势能:E? =qφ 电势差:U??=φ?-φ? 静电力做功:W??=qU?? 电容定义式:C=Q/U 电容:C=εS/4πkd 带电粒子在匀强电场中的运动 加速匀强电场:1/2*mv2=qU v2 =2qU/m 偏转匀强电场: 运动时间:t=x/v? 垂直加速度:a=qU/md 垂直位移:y=1/2*at? =1/2*(qU/md)*(x/v?)2偏转角:θ=v⊥/v?=qUx/md(v?)2 微观电流:I=nesv 电源非静电力做功:W=εq 欧姆定律:I=U/R 串联电路 电流:I? =I? =I? = …… 电压:U =U? +U? +U? + …… 并联电路 电压:U?=U?=U?= …… 电流:I =I?+I?+I?+ …… 电阻串联:R =R?+R?+R?+ …… 电阻并联:1/R =1/R?+1/R?+1/R?+ …… 焦耳定律:Q=I2Rt P=I2 R P=U2 /R 电功率:W=UIt 电功:P=UI 电阻定律:R=ρl/S 全电路欧姆定律:ε=I(R+r) ε=U外+U内 安培力:F=ILBsinθ 磁通量:Φ=BS 电磁感应 感应电动势:E=nΔΦ/Δt 导线切割磁感线:ΔS=lvΔt E=Blv*sinθ 感生电动势:E=LΔI/Δt

高中物理电磁学公式总整理 电子电量为库仑(Coul),1Coul= 电子电量。 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、电路学 1.理想电池两端电位差固定为。实际电池可以简化为一理想电池串连内电阻r。实际电池在放电时,电池的输出电压,故输出之最大电流有限制,且输出电压之最大值等于电动势,发生在输出电流=0时。 实际电池在充电时,电池的输入电压,故输入电压必须大于电动势。 2.若一长度d的均匀导体两端电位差为,则其内部电场。导线上没有电荷堆积,总带电量为零,故导线外部无电场。理想导线上无电位降,故内部电场等于0。 3.克希荷夫定律 a.节点定理:电路上任一点流入电流等于流出电流。 b.环路定理:电路上任意环路上总电位升等于总电位降。 三、静磁学 1.必欧-沙伐定律,描述长的电线在处所建立的磁场 ,, 磁场单位,MKS制为Tesla,CGS制为Gauss,1Tesla=10000Gauss,地表磁场约为0.5Gauss,从南极指向北极。 由必欧-沙伐定律经过演算可推出安培定律 2.重要磁场公式

相关文档
最新文档