费马原理

费马原理
费马原理

2011年8月17日,是费马(Pierre de Fermat)诞辰410周年。今天,谷歌推出新涂鸦——费马大定理以纪念这位最专业的业余数学家。

除了费马大定理,相信大家也一定都听说过费马原理。它通常被表述为过空间中两定点的光,实际路径总是光程(或者时间)最短。费马原理是一条十分令人着迷的原理,从它可以推导出光的直线传播定律、反射定律和折射定律,几乎包含了几何光学的全部内容。然而,对于这个原理,很多人都存在着或多或少的误解,这是由于费马原理表述有误造成的。在今天这个有纪念意义的日子里,本文就来一一澄清。

首先说明一点,在费马原理的表述中,光程和光传播所用的时间是等效的,因为这两个量之比就是真空中的光速c。所以本文中后面只说光程而不说时间。

百度百科的不靠谱说法

不妨先看看百度百科给出的费马原理的定义:光波在两点之间传递时,自动选取费时最少的路径。这是一种很常见的错误表述,只要看下面这个平面镜反射的例子就知道了。

从A发出的光线,经过平面镜的反射到达B点,这条光线必然是可以真实存在的。可是这是光程最短的路径吗?显然不是,从A发出直接到达B的光线光程更短。所以使用“最小”一词是绝对错误的,费马原理其实是个局域性的原理,所有诸如最小的词均应当替换为极小。只要光程取极小值,无论是否是最小,它都是真实存在的光线。

用“极值”表述正确吗

那如果费马原理表述成:过两个定点的光总走光程极小的路径,是不是就正确了呢?其实这仍是一种错误的表述。光程取极小值只是一种常见情形,也存在其他情形。

首先举一个光程是定值的例子,如下图的椭圆形反射镜。

从椭圆的一个焦点A出发的光线,经过椭圆形镜子上任意一点的反射,一定会汇聚到另一个焦点B。这是因为椭圆的数学性质保证了这样光线的反射角一定等于入射角。在这个例子当中,任何一条真实光线都不是极小值了,因为不管反射点是椭圆上的哪个点,光程都是定值(是椭圆的定义:到两定点的距离之和为常值的点的轨迹)。

再举一个光程取极大值的例子,如下图:

图中A、B是蓝色椭圆的两个焦点,在椭圆内任取一条黑色曲线为镜面。假设椭圆对称轴上的O点为黑色曲线和蓝色椭圆的切点。根据椭圆的性质,我们可以知道过O点的黑色光线确为真实光线。而在镜面上随意选取O’作为反射点形成的红色光线,则比黑色光线光程更短(只要记得椭圆的定义并注意到黑色曲线在椭圆内部即可知道这一点)。然而红色光线却并不满足反射角等于入射角,也就说它并非真实的光线。因此在这个例子中,光选取的路径实际上取了极大值。

什么是最正确的表述

那如果费马原理表述成:过两个定点的光总走光程为极大值、极小值或者定值的路径,是不是就正确了呢?这是物理专业课本中的表述,但仍然不够准确。仍以上图为例,说黑色光线取了极大值,其实是不准确的。因为只要本该是直线的光线稍微一弯曲,光程就会变得更长,从这个角度来讲,这又是一种极小值了。所以单说它是极大值还是极小值都不够准确。理解这种既极大又极小的函数也很简单,看看双曲抛物面的形状就可以了

上图的P点,就既是极大值点又是极小值点(也可以说它二者都不是)。而费马原理中的光程,往往和这种情形类似。

因此如果把以上种种情形都考虑进去的话,费马原理将被叙述得很长。但其实在数学上有一种表述方法既准确又精炼,那就是:过两个定点的光总走光程的一阶变分为零的路径。

至于什么是变分,可以做如下理解:变分之于泛函,就相当于微分之于函数。而泛函则是函数的函数(以函数为自变量的特殊的函数),因为光线的路径本身是函数,而光程又是路径这个函数的函数,因此光程是泛函。所谓一阶变分为零,其实就和一阶导数为零意思相近。这种表述就自动包括了取极小值、极大值、定值、鞍点这些种种情况了。

最后,为了更加严谨,突出费马原理的充分必要性,其实费马原理的最准确表述应该是:过两个定点的光走且仅走光程的一阶变分为零的路径。

费马原理最早由费马在1660年提出,阐述了光沿着所需时间为平稳的路径传播这一重要事实。但现在由于表述的不严谨,让人们对它的理解出现了很多偏差。

“我发现了一个美妙的证明,但由于空白太小而没有写下来。”——谨以此文纪念伟大的业余数学家之王——皮埃尔德费马。

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

6.第二章利用费马原理对光的反射与折射这两个实验定律进行推证

第二章利用费马原理对光的反射与折射这两个实验 定律进行推证 2.1 反射定律和折射定律 在教材中我们早就学习了折射定律和反射定律]1[,反射定律的传统表达为:入射光线与反射光线在同种介质中,且对称分居于法线两侧,即入射角i 等于反射角i ',或i =i '。折射定律的传统表达为:光折射时,折射光线、入射光线、法线在同一平面内,折射光线和入射光线分别位于法线的两侧。折射角随入射角的改变而改变:入射角增大时,折射角也增大;入射角减小时,折射角也减小。这两个定律通俗易懂,但它们在教材中都是通过实验推出,并没有从理论的角度进行推证。本章利用费马原理从理论角度对反射定律和折射定律进行推导。 我们已经学过nds 称为光程,并且当两列波在同一点相遇并叠加时,其光强取决于相位差,而相位差又取决于光程差。可以证明,几何光学中,有关光线的实验事实也可以归结为光程问题,即不考虑光的波动性,而只从光线的观点出发通过光程的概念。 2.2费马原理 费马原理是费马在1650年概括光线传播的实验定律提出的[2],其内容为:连结给定两点P 和Q 可以有许多路径,而光线只遵循两点间光程为极值的路径,数学表达形式为: Q P nds =?极值(极小值、极大值或恒值) (2-1) 费马原理要求光程为极值,可以是最小值,这是最常见的,也可以是最大值,还可以是稳定值。 几何光学的核心就是费马原理,虽然几何光学被看作是波动光学的近似,但现在光学设计中的光线追迹及光学成像等还是利用由费马原理推出的几何光学的知识,费马原理是物理学和数学的精妙结合。 2.3 折射定律的推导 设光线由P 点传播到Q 点, P 和Q 两点分别在折射率为1n 和2n 的均匀媒质中,首先建立笛卡儿空间直角坐标系,选两种介质的分界面为x y 平面,选过P 和Q 两点并与媒质分界面垂直的平面为yz 平面,如果P 和Q 两点的连线与分界

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

费马原理

费马原理的运用 王瑞林(03010425) (东南大学能源与环境学院,南京 210010) 摘要:本文介绍了几何光学的基本定理——费马原理的定义、传统表述及运用波动光学对其本质的介绍。并且运用费马原理证明了几何光学的三大定律,并求出了最速降线。 关键词:费马原理;折射定律;圆锥曲线光学性质;最速降线;最小作用量原理 The use of Fermat’s principle Wangruilin (The college of environment and energy , Southeast University, Nanjing 210096 ) Abstract: We introduced the Fundamental theorem of geometrical optics- Fermat’s principle. We introduced the definition and presentation of Fermat's principle, analysis its essemce . we also got the three basic laws of geometrical optics, and find the brachistochrone with proof of Fermat's principle. key words: Fermat’s principle;Law of ref raction;Optical properties of coni c;Brachistochrone;Principle of least action 我们之前在初高中就已经学习过几何光学,并了解了其中的一些重要定律,但是都只是一些经验的描述和一些实验的简单验证,本文我们运用几何光学的基础原理——费马原理对已学过的几何定律做一个简单的梳理并简单介绍一下运用费马原理对最速降线问题的求解。 费马原理简介 一、费马定理的表述 关于费马原理的定义,教科书上的表述如下:“过空间中两定点的光,实际路径总是光程最短、最长或恒定值的路径。”其实表述并不足够准确,因为对于某些路程,不能简单的以光程极值来加以限定,最为准确而精炼的表述要利用到数学上的泛函知识,具体描述为:“过两个定点的光走且仅走光程的一阶变分为零的路径。”其中光程的定义为光通过的介质对光的折射率与光通过的路程的乘积。费马原理的数学表述形式为 其中,δ是变分符号,p1、p2表示空间中两个固定点,n为介质的折射率,s表示路程。我们将路径视为一个函数,而变分则是对泛函求导,其结果类似于我们函数求导,我们可以用函数求导来类似理解变分的求解。 费马定理还有另外一种表述:“过空间中两定点的光,实际路径总是时间最短、最长或恒定值的路径。”其实就是把光程换成了时间t

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

费马大定理的简单证明

费马大定理的简单证明 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 令 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((22333y zy z y z y z x ++-=-= (2) 令 323)(m y z =- 则 323m y z +=代入(2)得 ] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某正整数的三次幂,即 363322)33(l m y m y =++ ∴ )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ 则必有 )33(3)3(4222322m l m l m y m l y ++=+-=和,而y,m,l 都取正整数时,这两等式是不可能同时成立的。所以363322)33(l m y m y =++不成立。即x 不可能取得正整数。所以,当n=3时,方程333y x z +=无正整数解。 当n>3时,同理可证方程n n n y x z +=无正整数解。 定理得证。

费马大定理是怎么证明的

费马大定理是怎么证明的 已故数学大师陈省身说道,20世纪最杰出的数学成就有两个,一个是阿蒂亚—辛格指标定理,另一个是费马大定理。当然,20世纪的重大数学成就远不止这两个,不过这两大成就却颇具代表性,特别是从科普的角度来看。 说实在的,数学虽然总是居于科学之首,可是一般人对数学可以说几乎一无所知,尤其是说到数学有什么成就、有什么突破的时候。理、化、天、地、生,门门都有很专门的概念、知识、技术,可不久之前的大成绩很容易就可以普及到寻常百姓家。激光器制造出来还不到50年,激光唱盘早已尽人皆知了,克隆出现不到10年,克隆这字眼已经满天飞了。即使人们不太懂黑洞的来龙去脉,一般人理解起来也不会有太大障碍。可是有多少人知道最新的数学成就呢?恐怕很难很难。数学隔行都难以沟通,更何况一般人呢。正因为如此,99%的数学很难普及,成百上千的基本概念就让人不知所云,一些当前的热门,如量子群、非交换几何、椭圆上同调,听起来就让人发晕。幸好,还有1%的数学还能对普通的人说清楚,费马大定理就是其中的一个。 费马大定理在世界上引起的兴趣就正如哥德巴赫猜想在中 国引起的热潮差不多。之所以受到许多人的关注,关键在于它们不需要太多的准备知识。对于费马大定理,人们只要知道数学中头一个重要定理就行了。这个定理在中国叫勾股定

理或商高定理,在西方叫毕达哥拉斯定理。它的内涵丰富,从数论的角度看就是求不定方程(即变元数多于方程数的方程)X2+Y2=Z2的正整数解。中国在很早已知(3,4,5)是这个方程的一个解,也就是32+42=52,其后也陆续得到其他解,最后知道它的所有解。这样,一个不定方程的问题得到圆满解决。 数学家的思想方向是推广,这个问题到了17世纪数学家费马的手中,就自然问,当指数变是3,4……时,又会怎样?这样费马的问题就变成不定方程Xn+Yn=Znn=3,4,……是否有正整数解的问题。费马误以为自己证明了对于所有n≥3的情形,这个方程(不妨称为费马方程)都没有正整数解,实际上,他的方法只证明n=4的情形。不过,这个他没有证明的定理还是被称为费马大定理。 这样一个叙述简单易懂的定理对于后来的数学家是一大挑战,其后200多年,数学家只是部分地解决了这个问题,可是却给数学带来丰富的副产品,最重要的是代数数论。原来的问题却成为一个难啃的硬骨头。20世纪初,有人悬赏10万德国马克,征求费马大定理的证明,成千上万的错误证明寄到评审机构那里,其中几乎没有什么真正的数学家。本书的第四章生动地描写了其中的故事。 有时我们把这些人称为业余数学爱好者,近来称之为民间科

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

费马原理与光的反射和折射

费马原理与光的反射和折射 福建省石狮市石光中学 陈龙法 1650年法国数学家费马对光的传播传播原理作了一个概括性的叙述:光从空间一点A 到另一点B,光沿着所需的时间为极值的路径传播。 1.光的反射 光线由A 点入射,经介面MN 反射到B 点(如图)。试求光线以最短时间所通过的路径。 分析 建立如图坐标系。A 点B 点是已知的, C 为界面上的任一点。设光的传播速度是V ,光线 由A 点经C 到B 经历时间 )(1 )(CB AC V x t += ()? ? ? ? ?+-++=2222121h x a h x V 式中V 、h 1、h 2及a 都是已知的,现在的问题是:光线AC 有怎样的一个已知方向(或x 取何值),才能使它由A 点出发到B 点的时间为最短。 为了求得最短时间,我们求t 对x 的导数: ()()???? ??+--- +='22221 21h x a x a h x x V x t 令()0='x t ,则 () 22 2 2 1 2 h x a x a h x x +--= + 若C 点的法线为CC ’,则由图知, Sin α=Sin β 所以,α=β,即入射角等于反射角。 又因为 ()() ()()()?????? ????? ?? ?+-+--+ +-- - ++- += ''2 2 2 2 2 22 22 2 2 122 12221 2 1h x a h x a x a h x a h x h x x h x V x t () ()[ ] ??? ??? ? ? +-+ +=2 /32222 2 2 /32 12211h x a h h x h V 式中所有值都是正的,所以()0>''x t ,故当α=β时,光线由A 点到B 点所需要的时间为最短。 2.光的折射 光线由A 点入射,经介面MN 折射到B 点(如图)。试求光线以最短时间从A 射到B 发生折射所通过的路径。 分析 建立如图坐标系。A 点B 点是已知的,C 为界面上的任一点。设光在第一介质中的传播速度 2)

用爱森斯坦判别法证明费尔马大定理 - 黄河之滨

用爱森斯坦判别法证明费尔马大定理 ——用费尔马不定方程直接证明费尔马大定理的讨论之(Ⅴ) 熊启钊 利用爱森斯坦判别法,可使费尔马大定理的证明大大简化。不过,要用到笔者提出的、即将予以证明的π猜想(何谓“π猜想”请见下段)。本文稿关于大定理的简化证明可陈述为:㈠费尔马不定方程x n+y n=z n,可以改写成一元n次整系数不完全方程x n-(b n-a n)=0(需设:n>2为奇素数;a、b为互素的已知任意正整数,但奇偶性相异,b>a;假设未知数x 有正奇数解);㈡对这个一元n次首1方程,某素数p必然不能整除其首项系数1,能够整除从x n-1到x各项的0系数;㈢根据π猜想,p能够整除常数项(b n-a n)、而p2不能够整除该项;㈣那么,根据爱森斯坦判别法(它只要求不完全方程有整系数,以及p的除法性质,本文稿不赘述),x便无正整数解,于是费尔马大定理就得到证明。如果π猜想是熟知的,方才的几句话就完成了本稿的论证任务。 下文只需证明π猜想:“正整数b n-a n(n为奇素数,a、b为互素的、奇偶性相异的任何正整数,b>a)至少含有一个不等于n的、≥2的素因数p(于此强调一下,素因数p系指p 的一次幂而言)”。猜想如成立,其结论当然是:p│(b n-a n),而p2?(b n-a n);其结果当然是费尔马大定理成立。不过,证明的过程很长,于是不可能数语证明费尔大定理。 §1.b n-a n的分解与分析 令b-a=d。先证明a、d互素(b、d亦然)。设a、d不互素,则a=md(m正整数)。于是b=d+a=d+md=(1+m)d;即a、d如不互素则导致b、a不互素,而与所设b、a互素矛盾。故a、d互素。[设d=ma,同样可证a、d互素。] 再代b=a+d入不完全方程, x n=b n-a n=(a+d)n-a n=na n-1d+C n2a n-2d2+C n3a n-3d3+…+C n n-2a2d n-2+nad n-1+d n =d(na n-1+C n2a n-2d+C n3a n-3d2+…+C n n-2a2d n-3+nad n-2+d n-1) =d[n a n-1+d(C n2a n-2+C n3a n-3d+…+C n n-2a2d n-4+nad n-3+d n-2)]=d[…]。 上式中,㈠如果n?d,因a、d互素,则d、[…]互素;在此情况下,由于d中常含素数的高次幂,因此可以放弃它,只在[…]中寻找素因数p。㈡如果n│d,则d、[…]不互素,即有共同因数n,而且n2│(d[…])=b n-a n。此时[…]中含n(而且仅含此n),但是易见[…]中必有异于n的因数,因为[…]>n之故。这个结论很重要,就是说:当n│d时,仍可能在[…]中寻找异于n的、与d无关的素因数p。总起来说,无论n能否整除d,总可在[…]中寻找异于n的素因数p。 为了方便探讨,b n-a n还可按常用形式分解: b n-a n=(b-a)(b n-1+b n-2a+…+ba n-2+a n-1)=(b-a){…}。 显然[…]={…},即两者实质一样,对{…}的讨论与结论,亦即对[…]者。 §2π猜想证明之一 先了解一下{…}=(b n-1+…+a n-1)的性质。{…}中只有两个正整的元素b、a(请注意b、a的任意性),没有0元,没有单位元1(a可以=1,但不恒等于1);运算方式只有加法和乘法;无正整的常数系数。正整数{…}的表现形式是b、a的n-1次齐次式。 如果{…}是素数,π猜想就不需证明了。如果{…}不是素数,上文已经说明总可在[…]中“寻找”异于n的素因数p。现在设{…}中至少含有一个非n因数P。首先说,因为a、b互素,两者(以及各自的因数)都不能整除齐次表达式{…}=(b n-1+b n-2a+…+ba n-2+a n-1),而P能整除它,那么P不是a、b的幂积b x a y(x、y为正整数,或0),而是a、b的幂积b x a y 之和P=Σx,y b x a y(只能想象其存在,不能目睹)。这个和P应该是齐次的,{…}的其它因数

费马大定理的初等巧妙证明(完全版)

费马大定理的初等巧妙证明(完全版) 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程 n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 2 2 2 y x z += ∴ ))((2 2 2 y z y z y z x +-=-= (1) 设 2 2)(m y z =- 则 2 2m y z += 代入(1)得 2 22222222 2 2 2)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 2 2 m l y -= 2 2m l z += 当n=3时,有 3 33y x z += ∴ ))((2 2 3 3 3 y zy z y z y z x ++-=-= (2) 设 3 2 3)(m y z =- 则 3 2 3m y z +=代入(2)得 ][2 3 2 2 3 2 3 2 3 3 3 )3()3(3y y m y m y m y z x ++++=-= )3333(364322 3 2 m y m y m +?+=)33(36 3322 33m y m y m ++= 设 3 6 3 3 2 2 )33(l m y m y =++ (3) 则 ml x 3= (4) 3 2 3m y z += (5) 若z,y 的公约数为k,即 (z,y)=k ,k>1时,方程3 3 3 y z x -=两边可以除以3 k ,下面 分析k=1 即(z,y )=1 , 方程3 33y z x -=的正整数解 因为(z,y )=1,分析(2),(3),(4),(5)式,只有m,l 为正整数时,x,y,z 可能有正整数解,由(3)得 )33)(3(3)3(4 222 26 33 3 2 m l m l m l m l m y y ++-=-=+ (6) ∵ y, m, l 都取正整数, ∴)3(3 2 m y y +< )33()3(4 2 2 2 2 m l m l m l ++<-

费马原理

2011年8月17日,是费马(Pierre de Fermat)诞辰410周年。今天,谷歌推出新涂鸦——费马大定理以纪念这位最专业的业余数学家。 除了费马大定理,相信大家也一定都听说过费马原理。它通常被表述为过空间中两定点的光,实际路径总是光程(或者时间)最短。费马原理是一条十分令人着迷的原理,从它可以推导出光的直线传播定律、反射定律和折射定律,几乎包含了几何光学的全部内容。然而,对于这个原理,很多人都存在着或多或少的误解,这是由于费马原理表述有误造成的。在今天这个有纪念意义的日子里,本文就来一一澄清。 首先说明一点,在费马原理的表述中,光程和光传播所用的时间是等效的,因为这两个量之比就是真空中的光速c。所以本文中后面只说光程而不说时间。 百度百科的不靠谱说法 不妨先看看百度百科给出的费马原理的定义:光波在两点之间传递时,自动选取费时最少的路径。这是一种很常见的错误表述,只要看下面这个平面镜反射的例子就知道了。 从A发出的光线,经过平面镜的反射到达B点,这条光线必然是可以真实存在的。可是这是光程最短的路径吗?显然不是,从A发出直接到达B的光线光程更短。所以使用“最小”一词是绝对错误的,费马原理其实是个局域性的原理,所有诸如最小的词均应当替换为极小。只要光程取极小值,无论是否是最小,它都是真实存在的光线。 用“极值”表述正确吗 那如果费马原理表述成:过两个定点的光总走光程极小的路径,是不是就正确了呢?其实这仍是一种错误的表述。光程取极小值只是一种常见情形,也存在其他情形。

首先举一个光程是定值的例子,如下图的椭圆形反射镜。 从椭圆的一个焦点A出发的光线,经过椭圆形镜子上任意一点的反射,一定会汇聚到另一个焦点B。这是因为椭圆的数学性质保证了这样光线的反射角一定等于入射角。在这个例子当中,任何一条真实光线都不是极小值了,因为不管反射点是椭圆上的哪个点,光程都是定值(是椭圆的定义:到两定点的距离之和为常值的点的轨迹)。 再举一个光程取极大值的例子,如下图: 图中A、B是蓝色椭圆的两个焦点,在椭圆内任取一条黑色曲线为镜面。假设椭圆对称轴上的O点为黑色曲线和蓝色椭圆的切点。根据椭圆的性质,我们可以知道过O点的黑色光线确为真实光线。而在镜面上随意选取O’作为反射点形成的红色光线,则比黑色光线光程更短(只要记得椭圆的定义并注意到黑色曲线在椭圆内部即可知道这一点)。然而红色光线却并不满足反射角等于入射角,也就说它并非真实的光线。因此在这个例子中,光选取的路径实际上取了极大值。 什么是最正确的表述 那如果费马原理表述成:过两个定点的光总走光程为极大值、极小值或者定值的路径,是不是就正确了呢?这是物理专业课本中的表述,但仍然不够准确。仍以上图为例,说黑色光线取了极大值,其实是不准确的。因为只要本该是直线的光线稍微一弯曲,光程就会变得更长,从这个角度来讲,这又是一种极小值了。所以单说它是极大值还是极小值都不够准确。理解这种既极大又极小的函数也很简单,看看双曲抛物面的形状就可以了

费尔马大定理——怀尔斯的证明

费尔马大定理——怀尔斯的证明 提要: 三个多世纪的著名数学难题,费尔马大定理,已被普林斯顿大学的怀 尔斯证明, 并已获大奖. 震撼数学界的历史事件引起世界各界广泛热烈关注. 本文浅要地介绍整个事件的概况与传奇历史, 获奖情况与各家评论及影响意义, 怀尔斯的生平和特点, 历尽曲折的八年证明中的故事, 也在最后介绍有关的现 代数学知识和怀尔斯的证明思路,并附较全的资料信息源. 历史大难题费尔马大定理的证明已被确认,论文已在1995年发表[1-2]. 给出证明的数学家安德鲁·怀尔斯(Andrew J. Wiles)1953年生于英国, 现为美国普林斯顿大学教授. 已获得沃尔夫奖和国家科学院奖.世界性的费尔马热向更深入的层次发展.许多地方纷纷举行有关的学术研讨班. 本文将介绍最终的证明情况和获奖评论等情况,并在最后适当解释一些数学. 有关历史及1985年前情况可见文[3-4]. 1. 概述 费尔马大定理又称费尔马最后定理(Fermat's Last Theorem),是著名法国数学家费尔马在约1637年写下的一个猜想:对于任意大于2的整数n , 不可能有非零的整数 a, b, c满足 . 这是他写在古希腊数学家丢番图的名著?算术?的页边上的.猜想提出后二百年间,只解决了n=3, 4, 5, 7这四种情形.在约1847年,库木尔(事实上)创立了代数数论,可以发展出对于许多n的证明.但经350多年无数人的努力,直到1993年终不能完全证明。 此次的转机始于1985-86年. 福雷(G. Frey)1985年断言, 谷山丰-志村五 郎(Taniyama-Shimura)猜想(即椭圆曲线都是模的)包含费尔马大定理. 1986年夏,瑞拜特(K.Ribet)用塞尔(Serre)的设想证明了福雷的断言.因此从1986年起,要想证明费尔马大定理就只要证明谷山丰-志村五郎猜想即可. 这里的数学关系其实可简述成这样(即反证法): 先假设费尔马大定理不正确, 即对某三个整数a, b, c成立,那么福雷建议考虑方程所表示的曲线E (这是一条半稳椭圆曲线). 瑞拜特证明了E不是模的; 只要能再证明E是模的, 就导致了矛盾.就说明原来的假设不对,即得费尔马大定理正确. 怀尔斯得知瑞拜特的结果后,立刻决心研究. 潜心七年. 终于在1993年6 月23日上午10点半左右在英国剑桥大学牛顿研究所, 在连续三天的讲演的最后, 概述证明了谷山丰-志村五郎猜想的一大部分,从而证明了费尔马大定理. 这立刻震动了世界.一片节日欢庆. 但数月后,怀尔斯的证明逐渐被发现有问题. 怀尔斯在1993年12月4日发出电子信, 称证明的最后部分不完全, 但相信可修复. 一时间, 漏洞能否最终 修复,世界注目,历史走到了一个关键时刻. 大多数专家相信漏洞不久可修复, 并且高度评价怀尔斯工作的正确部分. 但也有各种议论. 著名专家伐尔廷斯(G.Faltings)1994年3月在《科学美国人》期刊上说:"如果它是容易的, 他到 现在就该已经解决过了.严格地说, 它被宣布的时候还不是一个证明."威耳 (A.Weil)也在该期刊写到:"我相信他曾有过好的想法去尝试作出证明, 但是证 明不在那里. 在某种程度上, 证明费尔马大定理象爬埃佛勒斯峰(即珠穆朗玛峰—作者注). 如果一个人想要爬上埃佛勒斯峰而在离它百码之近倒下了, 那他没有爬上埃佛勒斯峰." 怀尔斯的研究非常艰苦. 多种尝试, 包括他的学生泰勒(K.Taylor, 英国剑桥大学)1994年春起的协助, 均告失败. 1994年8月11日下午他在苏黎世"国际数学家大会"作大会最后报告时, 未有任何新进展, 会下笔者见他异常憔悴. 九

变分原理与变分法

第一章 变分原理与变分法 1、1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总就是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理就是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也就是光传播最短路径(Heron); ③ 光线折射遵循时间最短的途径 CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上就是势能最小的原理。 二、变分法就是自然界变分原理的数学规划方法(求解约束方程系统极值的数学 方法),就是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映 射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A

② 函数的积分: 函数空间 D ?=?n b a n f dx x f J )( Note : 泛函的自变量就是集合中的元素(定义域);值域就是实数域。 Discussion : ① 判定下列那些就是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i 、 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii 、 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii 、 外力位能: ?-=∏l l qwdx 0 iv 、 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统 势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 与B ,A 高于B ,要求在两点间连接一条曲线,使得有 重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i 、 通过A 与B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii 、 建立泛函: x

费马原理的最新表达形式及其应用

费马原理的最新表达形式及其应用 马国梁 (山东省章丘市第一职业中专明水250200 ) 《中国当代思想宝库》2006/6/发表 网上发表时间: 2006/10/31 08:10 点击:178次 摘要本文从另一角度提出了费马原理的表达形式,并据此推出了球面平行介质和平面平行介质的折射方程. 关键词费马原理折射方程 在一般教科书和报刊中,常将费马原理写成如下的微分形式 d(∫n d l )= 0 (积分区间A→B) (1) 式中n为介质的折射率,A、B是空间中固定的两点,d l为连接A、B两点空间曲线上的微元段。然而在实用上,这个公式却极不方便。它使推导过程及结果往往都变得非常复杂。 笔者经研究发现,费马原理还有另外一种表达形式,其微分式是 d (n r sinα) = 0 (2) 式中α是光线与介质中微元面法线的夹角,在该微元面上折射率处处相等;r是在由光线与法线决定的平面内微元面的曲率半径。虽然n、r和sinα都在随地点变化,但其乘积却始终保持不变。该公式适用于光在所有不均匀介质中的折射情况。在有些情况下用起来特别方便。 1. 在球面平行介质中,因每个微元面的法线都在其半径方向上,此时折射率只是其半径的函数。 n = n(r) (3) 设光线的出发点仍然是A,则根据(2)式得 n r sinα= n A r A sinαA(4) 在球心极坐标系中,设极角为φ 因为dφ= dr tanα/r = dr sinα/ r sqrt (1- sinαsinα) 所以将(4)式代入此式可求得得 dφ= dr / r sqrt [ (nr/ n A r A sinαA )^2 – 1 ] (5) 这就是光线在球面平行介质中的折射方程。它适用于宇宙中所有星球表面的大气折射。例如在地球表面上,沿地平线穿过大气层发射到太空中的光线偏折角可这样计算. 设n = 1+(n。-1)e ^ [- (r-r。) / H ] (6) 其中n o = 1.0002926 r o = 6371 km H = 8 km 那么利用(5)式积分,r的积分区间是从r o→∞ 可得光线所对的地心角是φ= 90°39.7′ 光线的偏转角为39.7′,这与实际情况是相符的。 2. 在平面平行介质中,因为各微元面的曲率半径都相等且为无穷大,所以(2)式变为 d(n sinα) = 0 (7) 由此可以推出现在最为常见的形式 n1 sinα1 = n2 sinα2(8) 此公式不仅适用于折射率渐变的介质,也适用于折射率突变(有分界面)的两种介质间的光折射。

相关文档
最新文档