微分几何-曲面

微分几何-曲面
微分几何-曲面

§3.1曲面及其相关概念

1. 曲面及其参数表示

曲面的坐标形式的参数方程:

.

曲面的向量形式的参数方程:

, .

简记为

, .

称为曲面的参数或曲纹坐标.也称是点的参数或曲纹坐标.

例1 (1) 圆柱面

cos,sin,z = z,

. 其中常数为截圆的半径.

当, 时, , , . 于是是点

的曲纹坐标.

(2) 球面

cos cos,cos sin,sin,

. 这里, 称为经度,称为纬度. 是球面的半径.当, 时, , , . 于是是点的曲纹坐标.

(3) 旋转面

把xz平面上一条曲线

:x =,

绕z轴旋转,得旋转面:

x =,y =,.

当, 时, , , . 于是是点

的曲纹坐标.

(4) 连续函数的图象

该曲面的参数方程为. 和是参数(曲纹坐标). 是点

的曲纹坐标.

坐标曲线

曲线:, 即.

曲线:, 即.

一般地, 通过每一点, 有唯一一条曲线和唯一一条曲线.

曲纹坐标网

例2 (1)圆柱面(例1(1)): cos,sin,z = z.

(2)球面(例1(2)): cos cos,cos sin,sin.

(3) 旋转面(例1(3)): x =,y =,.

(4) 连续函数的图象(例1(4))

2. 光滑曲面曲面的切平面和法线

在曲面上的(,)点处, u-曲线的切向量, v-曲线的切向量.

定义曲面的正则点(正常点) P0(,): r(,)和r(,)不平行.

正则曲面: 处处是正则点的曲面.

例在双叶双曲面的一叶(、和均为正的

常数, , )上, 经过点的曲线的方程为, 该曲线在点的切向量

;

经过点的曲线的方程为, 该曲线在点的切向量

.

由于在上的任何点处, 和不平行, 故上的点都是正则点, 从而是正则曲面.

定理3.1.1曲面在正则点的邻域中总可以有形如z = z(x, y)的参数表示.

曲面Σ上一点P0处的切方向(方向): Σ上的经过P的曲线Γ在P0的切方向.

曲面:r = r(u, v)上曲线Γ的(曲纹)坐标式参数方程----Γ: u = u(t),v = v(t).

Γ的向量式参数方程:

r = r(u(t), v(t)) = r(t).

其切方向

(t) = r+ r.

也可写为

d r = r u du + r v dv.

定理3.1.2曲面上正则点处的所有切向量都在经过该点的坐标曲线的切向量r和r所决定的平面上.称此平面为曲面在这一点的切平面.

曲面上一点的一个切方向的表示:

du:dv----表方向d r = r u du + r v dv, 也表方向 -d r = -r u du - r v dv. 二者视为同一方向.

例如, du:dv = (-2):3表方向d r = -2r u + 3r v , 也表方向 -d r = 2r u - 3r v . 二者视为同一方向.

例环面

(为常数, )上的点即

点. 该点处的切方向表示方向

曲面:r = r(u, v)上在点(,)的切平面的方程:

(m- r(,),r(,),r(,)) = 0,

或写成坐标的形式:

特例对曲面:r ={x,y,z(x, y)},有

r= {1,0,},r= {0,1,}.

所以曲面在点(,)的切平面的方程为:

.

法方向: 垂直于切平面的方向.

法线: 经过曲面上的一点并平行于法方向的直线.

法向量: n = r r.

单位法向量: n=.

曲面的法线方程:

m = r(,)+r(,)r(,).

若曲面的坐标形式的参数方程为, 则法线方程为特例对曲面:r ={x,y,z(x, y)},有

.

例3求圆柱面r = {}(为常数)上任意点的切平面

和法线的方程.

解因为

r=,r={0,0,1}.

所以,在任意点的切平面方程为

.

在任意点的法线方程为

§3.2曲面上的双参数活动标架

1. 曲面的双参数活动标架

定义曲面:r = r(u, v)的第一基本量

E(u, v) = r r,

F(u, v) = r r,

G(u, v) = r r.

,

.

根据Lagrange恒等式,有

( r r)( r r) = r r-(r r)= EG-F.

于是

由此得到曲面上的正交右手系标架[r(u ,v);(u ,v),e(u ,v),e(u ,v)]. 由于它依赖于两个参数u和v, 故称之为曲面的双参数活动标架.

注1 和e所张成的平面就是曲面在一点处的切平面.

注2 不要记e2的上述繁琐的表达式. 要计算e2, 首先计算e1和e3 , 然后用直接计算e2 .

注3 r和r也可由和e线性表示. 即

r=,r= + e.

例1 给出正螺面r ={}(b≠0为常数)上的一个双参数活动标架.

解因为

r={cos v, sin v, 0},r={ -u sin v, u cos v, b},

于是

E = r r= 1,

F = r r= 0,G= r r=.

r={cos v, sin v, 0},

e=(r r)={ b sin v , -b cos v , u},

={-u sin v, u cos v , b}.

2. 外微分形式

在平面上建立直角坐标系,点的坐标用(u, v)表示. du和dv是坐标的微分.用表示坐标微分之间的外乘运算. 规定

du dv = -dv du,

du du =0,

dv dv =0.

设f(u, v)是定义在平面区域D上的函数,则f(u, v)du dv称为D上的以du dv为基底的二次外微分形式.

设f(u, v)和g(u, v)都是定义在平面区域D上的函数. 则f(u, v)du + g(u,v)dv称为D上以du和dv 为基底的一次外微分形式,也称为发甫(Pfaff)形式.

区域D上的函数f(u, v)称为0次外微分形式.

对于两个一次外微分形式

,, 和的外乘规定为

=

.

它是一个二次外微分形式.

设都是一次外微分形式. 则

(为常数),

设D是平面上的一个区域,D上的两个Pfaff形式

分别对应D上的两个向量场a = {},b = {}. 若它们在D上的每一点处都是线性无关的,则称这两个Pfaff形式线性无关.

引理3.2.1设给定平面区域D上的两个Pfaff形式和. 若,,则存在D上的函数f(u, v),使得

.

引理 3.2.2(Cartan引理)设给定平面区域D上的两个线性无关的Pfaff形式和(即). 若另有D上的两个Pfaff形式和, 使得

,

则存在D上的函数(i,j = 1,2),使得

(i =1,2),

并且(i,j = 1,2).

外微分运算

对于0次外微分形式f(u, v),定义

df(u, v) =;

对于一次外微分形式, 定义

==

.

对于二次外微分形式,定义

=.注外微分把外微分形式的次数提高一次.

引理3.2.3(Poincaré引理) 设为平面区域D上的任意次外微分形式. 则

引理3.2.4设f和g都是0次外微分形式,和都是Pfaff形式. 则

d(fg)=(df)g + f(dg),

d(f)=df + fd,

d(f)=(d)f - df,

d()=0.

证明作为练习留给读者.

3 双参活动标架的基本方程

给定曲面: r = r(u,v)上的一个双参数活动标架为[r(u ,v);(u ,v),e(u ,v),e(u ,v)].设

其中和(i,j=1,2,3)都是关于du和dv的Pfaff形式,其系数为(u,v)的函数.

命题,.

证明.

.

引理3.2.5, (i,j=1,2,3).

根据引理3.2.5, 有

,

, , .

故有双参数活动标架的基本方程

其中本质的相对分量是、、、和. 其具体表达式可由下列关系式导出:

例2确定正螺面r ={u cos v, u sin v, bv}(b≠0为常数)上的双参数活动标架的基本方程中的本质分量.

解由例1, 可知

E=1, F=0, G=.

所以

r={cos v, sin v, 0},

=r={-u sin v, u cos v, b},

e=r r={b sin v, -b cos v, u}.

.

d=d{cos v, sin v, 0}={0,0,0}du +{-sin v, cos v, 0}dv,

d e=d sin v, -cos v,

={-u sin v, u cos v, b}du + {cos v, sin v, 0}dv.

,

注由于比简单, 所以在计算时, 不用公式.

4. 双参数活动标架的结构方程

5. 双参数活动标架的基本定理

6. 双参数活动标架结构方程的代数认识

引理3.2.9在曲面上, 处处有.

定理3.2.11

其中a、b和c都是和的函数.

例3 对正螺面r ={u cos v, u sin v, kv}, 将其相对分量和用和表示时的系数函数求出来.

,,.

, .

于是,由

,

可得

.

由, 可得

.

§3.3曲面上的第一、第二基本形式

定义3.3.1设给定曲面

: r = r(u, v).

选取双参数活动标架[r;,e,e]. 则

称为曲面的第一基本形式. 其中(i=1, 2)是与的通常乘积(不是外微分形式的外乘).

引理3.3.1 I . 其中、和为曲面的第一类基本量.

定义3.3.2设给定曲面:r = r(u, v). 则

Ⅱ= -d r d e

称为曲面的第二基本形式.

命题(第二基本形式的几种表达法)

Ⅱ=-d r d e=r e==.

证明微分等式两边, 得

r e= -d r d e.

微分几何第四版习题答案解析梅向明

§1曲面的概念 1.求正螺面r r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。

证 u-曲线为r r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r ρ =}cos ,sin sin ,cos sin {?????a a a -- ,?r ρ=}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此 曲面只有一个切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -=ρ , }1,0,0{=t r ρ 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。

微分几何习题全解(梅向明高教版第四版)

微分几何主要习题解答 第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × ) ('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ 'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意方 向平行;当λ≠ 0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使 )(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直 于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、 )(t μ,使''r = r λ +μ'r ①

微分几何课程教学大纲

“微分几何”课程教学大纲 英文名称: 课程编号: 学时:学分: 适用对象:理学院数学各专业本科生(二年级下) 先修课程:数学分析、高等代数与几何 使用教材及参考书: 陈维恒著,《微分几何初步》,北大出版社 梅向明著,《微分几何》 虞言林著,《微分几何》 一、课程性质、目的和任务 本课程主要介绍维芡氏空间中曲线和曲面的经典局部理论,使学生树立正确的几何观念,为进一步学习现代数学和物理提供基础和背景。 二、教学基本要求 本课程要求学生建立正确的几何概念、掌握描述和刻划曲线及曲面形状的方法和手段,会进行初步的曲率计算,并能理解绝妙定理的重要意义。 三、教学内容及要求 第一章预备知识 标架 向量值函数 第二章曲线论 参数曲线 曲线的弧长 曲线的曲率和标架 挠率和公式 曲线论基本定理 曲线在一点的标准展开 平面曲线 重点掌握:曲线的标架及公式 第三章曲面的第一基本形式 曲面的定义 切不面及切向量 曲面的第一基本形式 曲面上正交参数曲面网的存在性 保长对应和保角对应 可展曲面 重点掌握:第一基本形式的定义,计算及作用,可展曲面的三种基本形式。 第四章曲面的第二基本形式 第二基本形式 法曲率 映射和映射 主方向和主曲率的计算 标形和曲面在一点的近似展开 某些特殊曲面。

重点掌握:第二基本形式的定义,法曲率、主曲率、曲率、中曲率的计算。第五章曲面论基本定理 自然标架的运动公式 曲面一唯一性定理 曲面论基本议程 曲面的存在定理 定理。 重点掌握:自然标架的运动公司,曲面基本议程,曲率的内在计算(定理)。第六章测地曲率和测地线 测地曲率和测地挠率 测地线 测地坐标系 常曲率曲面 向量场的平行移动 公式 重点掌握:测地曲率的定义和测地线议程,平行移动和协变微分。 大纲制定者:李洪军执笔 大纲审定者:陈红斌 大纲批准者:张胜利 大纲校对者:李洪军 “数学分析”课程教学大纲 英文名称: 课程编号: 课程类型:必修课 学时:学分: 适用对象:理学院数学各专业一、二年级本科生 先修课程:高中数学 使用教材及参考书: .陈传璋等,《数学分析》,高等教育出版社。 .张筑生主编,《数学分析新讲》,北京大学出版社,年

第四版 微分几何 第二章课后习题答案

第二章 曲面论 §1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。

4.求椭圆柱面 222 2 1x y a b + =在任意点的切平面方程, 并证明沿每一条直母线,此曲面只有一个切平面 。 解 椭圆柱面 222 2 1x y a b + =的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----?? ??b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面 。 5.证明曲面},,{3 uv a v u r = 的切平面和三个坐标平面所构成的四面体的体积是常 数。 证 },0,1{23 v u a r u -= ,},1,0{23 uv a r v -= 。切平面方程为:33=++z a uv v y u x 。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0, uv a 2 3)。于是,四面体的体积为: 3 3 2 9| |3| |3||36 1a uv a v u V = =是常数。

微分几何课程大纲

《微分几何》课程大纲 一、课程简介 教学目标:经典曲线曲面论、少量的整体微分几何与二维内蕴几何学 主要内容:(见教学内容) 二、教学内容 第一章曲线的局部理论 主要内容:平面曲线与空间曲线的曲率、空间曲线的绕率、Frenet标架、曲线论基本定理、n维空间的推广 重点与难点:空间曲线的绕率、曲线论基本定理 第二章曲线的整体几何 主要内容:旋转数,旋转指标定理、凸曲线 重点与难点:旋转指标定理及其应用 第三章曲面的局部理论(外在形式) 主要内容:第一基本形式、第二基本形式、主曲率、高斯曲率、平均曲率、结构方程重点与难点:结构方程与曲面论基本定理 第四章曲面的局部理论(内在形式) 主要内容:向量场、共变导数、平行移动、测地线 重点与难点:共变导数和平行移动 第五章二维黎曼几何 主要内容:局部黎曼几何、切丛、指数映射、测地极坐标、Jacobi场、流形 重点与难点:指数映射和Jacobi场 第六章曲面的整体几何 主要内容:Gauss-Bonnet定理、完备性、共轭点和曲率、闭测地线和基本群 重点与难点:Gauss-Bonnet定理和共轭点 三、教学进度安排(抱歉这个目前还安排不了) 可以参照以下表格形式 教学内容教学形式作业 第一周 第二周

四、课程考核及说明 平时成绩与口试相结合的方式。平时20%,口试80%。 五、教材与参考书 Wilhelm Klingenberg, A Course in Differential Geometry Manfredo P.Do Carmo,Differential Geometry of Curves and Surfaces 陈维桓,微分几何

微分几何第四版习题答案梅向明

§1曲面的概念 1.求正螺面r ={ u v cos ,u v sin , bv }的坐标曲线. 解 u-曲线为r ={u 0cos v ,u 0sin v ,bv 0 }={0,0,bv 0}+u {0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv }为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ), b (u-v ),2uv }的坐标曲线就是它的直母线。 证 u-曲线为r ={ a (u+0v ), b (u-0v ),2u 0v }={ a 0v , b 0v ,0}+ u{a,b,20v }表示过点{ a 0v , b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ), b (0u -v ),20u v }={a 0u , b 0u ,0}+v{a,-b,20u }表示过点(a 0u , b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解 ?r =}cos ,sin sin ,cos sin {?????a a a -- ,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即 xcos ?cos ? + ycos ?sin ? + zsin ? - a = 0 ; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=- 。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此曲面只 有一个切平面 。 解 椭圆柱面22 221x y a b +=的参数方程为x = cos ?, y = asin ?, z = t , }0,cos ,sin {??θb a r -= , }1,0,0{=t r 。所以切平面方程为: 01 0cos sin sin cos =----????b a t z b y a x ,即x bcos ? + y asin ? - a b = 0 此方程与t 无关,对于?的每一确定的值,确定唯一一个切平面,而?的每一数值对应一条

微分几何 陈维桓 习题答案

习题答案2 p. 58 习题3.1 2. 在球面2222{(,,)|1}S x y z x y z =++=上,命(0,0,1)N =,(0,0,1)S =-. 对于赤道平面上的任意一点(,,0)p u v =,可以作为一的一条直线经过,N p 两点,它与球面有唯一的交点,记为p '. (1) 证明:点p '的坐标是 2 221u x u v =++,2221 v y u v =++,222211u v z u v +-=++, 并且它给出了球面上去掉北极N 的剩余部分的正则参数表示; (2) 求球面上去掉南极S 的剩余部分的类似的正则参数表示; (3) 求上面两种正则参数表示在公共部分的参数变换; (4) 证明球面是可定向曲面. 证明. (1) 设(,)r u v Op '=v . 如图,,,N p p '三点共线,故有t ∈R 使得 (1)Op tOp t ON '=+-u u u v u u v u u u v . (1) 由于21Op ON =='u u u v u u u v ,222 u v Op =+u u v ,0Op ON '?=u u u v u u u v ,0t ≠,取上式两边的模长平方, 得222/(1)t u v =++. 从而 22222221 (,,)(,,0)(0,0,1)11u v x y z Op u v u v u v +-'==+++++u u u v 22222222 221,,111u v u v u v u v u v ??+-= ?++++++?? ,2 (,)u v ∈R . (2) 由(1)可知 (,,1)(0,0,1)(,,1)r Op tNp ON t u v tu tv t '==+=-+=-u u u v u u u v u u u v v , 又2()dt t udu vdv =-+,所以 2(,,1)(1,0,0)u r t u u v t =--+v ,2(,,1)(0,1,0)v r t v u v t =--+v ,

最新微分几何答案

微分几何答案

第二章曲面论 §1曲面的概念 1.求正螺面={ u ,u , bv }的坐标曲线. 解 u-曲线为={u ,u ,bv }={0,0,bv}+u {,,0},为曲线的直母线;v-曲线为={,,bv }为圆柱螺线. 2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。 证 u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2}表示过点{ a, b,0}以{a,b,2}为方向向量的直线; v-曲线为={a(+v), b(-v),2v}={a, b,0}+v{a,-b,2}表示过点(a, b,0)以{a,-b,2}为方向向量的直线。 3.求球面=上任意点的切平面和法线方程。 解 = ,= 任意点的切平面方程为 即 xcoscos + ycossin + zsin - a = 0 ; 法线方程为。 4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面。 解椭圆柱面的参数方程为x = cos, y = asin, z = t , , 。所以切平面方程为: ,即x bcos + y asin - a b = 0 此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。 5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。 证,。切平面方程为:。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。于是,四面体的体积为: 是常数。 §2曲面的第一基本形式 1.求双曲抛物面={a(u+v), b(u-v),2uv}的第一基本形式. 解 , ∴ I = 2。 2.求正螺面={ u ,u , bv }的第一基本形式,并证明坐标曲线互相垂直。 解,,,,∴I =,∵F=0,∴坐标曲线互相垂直。 3.在第一基本形式为I =的曲面上,求方程为u = v的曲线的弧长。

微分几何第四版答案(三)曲面的第二基本形式

§3曲面的第二基本形式 1. 计算悬链面r r ={coshucosv,coshusinv,u}的第一基本形式,第二基本形式. 解 u r ={sinhucosv,sinhusinv,1},v r ={-coshusinv,coshucosv,0} uu r ={coshucosv,coshusinv,0},uv r ={-sinhusinv,sinhucosv,0}, vv r ={-coshucosv,-coshusinv,0},2u r E = cosh 2u,v u r r F =0,2v r G =cosh 2u. 所以错误!未找到引用源。 = cosh 2u 2du + cosh 2u 2dv . n = 2 F E G r r v u = }sin sinh ,sin cosh ,cos cosh {cosh 1 2 v u v u v u u , L=11 sinh cosh 2 u , M=0, N= 1 sinh cosh 2 u =1 . 所以错误!未找到引用源。 = -2du +2dv 。 2. 计算抛物面在原点的2 2212132452x x x x x 第一基本形式,第二基本形式. 解 曲面的向量表示为}22 5,,{22212121x x x x x x r , }0,0,1{}25,0,1{)0,0(211 x x r x ,}0,1,0{}22,1,0{)0,0(212 x x r x ,}5,0,0{11 x x r , }2,0,0{21 x x r ,}2,0,0{22 x x r , E = 1, F = 0 , G = 1 ,L = 5 , M = 2 , N =2 , 错误!未找到引用源。=2221dx dx , 错误!未找到引用源。=2 22121245dx dx dx dx . 3. 证明对于正螺面r r ={u v cos ,u v sin ,bv},-∞

《微分几何》教学大纲

《微分几何》课程教学大纲 课程名称:《微分几何》 课程编码:074112303 适用专业及层次:数学与应用数学(本科) 课程总学时:72学时 课程总学分:4 一、课程的性质、目的与任务等。 1、微分几何简介及性质 微分几何是高等院校数学和数学教育各专业主要专业课程之一,是运用微积分的理论研究空间的几何性质的数学分支学科。古典微分几何研究三维空间中的曲线和曲面,而现代微分几何开始研究更一般的空间----流形。微分几何与拓扑学等其他数学分支有紧密的联系,对物理学的发展也有重要影响,爱因斯坦的广义相对论就以微分几何中的黎曼几何作为其重要的数学基础。本课程的前导课程为解析几何、高等代数、数学分析和常微分方程。 2、教学目的: 通过本课程的教学,使学生掌握三维欧氏空间中的曲线和曲面的局部微分理论和方法,分析和解决初等微分几何问题,并为进一步学习微分几何的近代内容打下良好的基础。 3、教学内容与任务: 本课程主要应用向量分析的方法,研究一般曲线和曲面的局部理论,同时还采用了张量的符号讨论曲面论的基本定理和曲面的内蕴几何内容,并且讨论了属于整体微分几何的高斯崩尼(Gauss-Bonnet)公式。重点让学生把握理解本教材的前二章。 二、教学内容、讲授大纲与各章的基本要求 第一章曲线论 教学要点: 本章主要研究内容为向量分析,曲线的切线,法平面,曲线的弧长参数表示,空间曲线的基本三棱形,曲率和挠率的概念和计算,曲线论的基本公式和基本定理,从而对

空间曲线在一点邻近的形状进行研究,同时对特殊曲线特别是一般螺线和贝特朗曲线进行研究。通过本章的教学,使学生理解和熟记有关概念,掌握理论体系和思想方法,能够证明和计算有关问题 教学时数:22学时。 教学内容: 第一节向量函数 1.1 向量函数的极限 1.2 向量函数的连续性 1.3 向量函数的微商 1.4 向量函数的泰勒(TayLor)公式 1.5 向量函数的积分 第二节曲线的概念 2.1 曲线的概念 2.2 光滑曲线、曲线的正常点 2.3 曲线的切线和法面 2.4 曲线的弧长、自然参数 第三节空间曲线 3.1 空间曲线的密切平面 3.2 空间曲线的基本三棱形 3.3 空间曲线的曲率、挠率和伏雷内(Frenet)公式 3.4 空间曲线在一点邻近的结构 3.5 空间曲线论的基本定理 3.6 一般螺线 考核要求: 1、理解向量函数的极限、连续性、微商、泰勒(TayLor)公式和积分等概念,能

(整理)《微分几何》陈维桓第六章习题及答案.

§ 6.1 测地曲率 1. 证明:旋转面上纬线的测地曲率是常数。 证明: 设旋转面方程为{()cos ,()sin ,()} r f v u f v u g v =, 22222 ()()(()())()f v du f v g v dv ''I =++, 222(),()() E f v G f v g v ''==+ 纬线即u —曲线:0 v v =(常数), 其测地曲率为2 u g k == =为常数。 2、 证明:在球面S (cos cos ,cos sin ,sin )r a u v a u v a u =, ,0222 u v ππ π- <<<< 上,曲线 C 的测地曲率可表示成 ()()sin(())g d s dv s k u s ds ds θ=- , 其中((),())u s v s 是球面S 上曲线C 的参数方程, s 是曲线C 的弧长参数, ()s θ是曲线C 与球面上经线(即u -曲

线)之间的夹角。 证明 易求出2 E a =, 0 F =,2 2 cos G a u =, 因此 g d k ds θθθ= 221ln(cos )sin 2d a u ds a u θθ?=+? sin sin cos d u ds a u θθ= -, 而1sin cos dv ds a u θθ ==, 故 sin g d dv k u ds ds θ= -。 3、证明:在曲面S 的一般参数系(,)u v 下,曲线:(),()C u u s v v s ==的测地曲率是 ()()()()()())g k Bu s Av s u s v s v s u s ''''''''=-+-, 其中s 是曲线C 的弧长参数,2 g EG F =-, 并且 12 112 11 12 22 (())2()()(())A u s u s v s v s ''''=Γ+Γ+Γ, 2222 2111222(())2()()(())B u s u s v s v s ''''=Γ+Γ+Γ 特别是,参数曲线的测地曲率分别为 2 3 11(())u g k u s ',1322(()) v g k v s '= 。 证明 设曲面S 参数方程为12(,)r r u u =,1122:(),()C u u s u u s ==

微分几何练习题库及参考答案(已修改)

> 《微分几何》复习题与参考答案 一、填空题 1.极限232 lim[(31)i j k]t t t →+-+=138i j k -+. 2.设f ()(sin )i j t t t =+,2g()(1)i j t t t e =++,求0 lim(()())t f t g t →?= 0 . 3.已知{}42 r()d =1,2,3t t -?, {}6 4 r()d =2,1,2t t -?,{}2,1,1a =,{}1,1,0b =-,则 4 6 2 2 ()()a r t dt+b a r t dt=???? ?{}3,9,5-. 4.已知()r t a '=(a 为常向量),则()r t =ta c +. 5.已知()r t ta '=,(a 为常向量),则()r t = 212 t a c +. 6. 最“贴近”空间曲线的直线和平面分别是该曲线的___ 切线___和 密切平面____. 【 7. 曲率恒等于零的曲线是_____ 直线____________ . 8. 挠率恒等于零的曲线是_____ 平面曲线________ . 9. 切线(副法线)和固定方向成固定角的曲线称为 一般螺线 . 10. 曲线()r r t =在t = 2处有3αβ=,则曲线在t = 2处的曲率k = 3 . 11. 若在点00(,)u v 处v 0u r r ?≠,则00(,)u v 为曲面的_ 正常______点. 12. 已知()(2)(ln )f t t j t k =++,()(sin )(cos )g t t i t j =-,0t >,则4 ()d f g dt dt ?=?4cos 62-. 13.曲线{}3()2,,t r t t t e =在任意点的切向量为{}22,3,t t e . 14.曲线{}()cosh ,sinh ,r t a t a t at =在0t =点的切向量为{}0,,a a . \ 15.曲线{}()cos ,sin ,r t a t a t bt =在0t =点的切向量为{}0,,a b . 16.设曲线2:,,t t C x e y e z t -===,当1t =时的切线方程为 2111 -=-- =-z e e y e e x . 17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x . 18. 曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_ ______________. 19. u -曲线(v -曲线)的正交轨线的微分方程是 _____ E d u +F d v =0(F d u +G d v =0)__. 20. 在欧拉公式2212cos sin n k k k θθ=+中,θ是 方向(d) 与u -曲线 的夹角. 21. 曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I = . 22.已知{}r(,),,u v u v u v uv =+-,其中2,sin u t v t ==,则 dr d t ={}2cos ,2cos ,2cos t t t t vt u t +-+.

微分几何习题全解(梅向明高教版第四版)

第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ ≠ 0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2 'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使 )(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直 于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、 )(t μ,使''r = r λ+μ'r ①

微分几何第四版答案

微分几何第四版答案 第一部分曲线与曲面的局部微分几何 第一章欧氏空间 1.1 向量空间 1.2 欧氏空间 第二章曲线的局部理论 2.1 曲线的概念 2.2 平面曲线 2.3 E的曲线 2.4 曲线论基本定理 第三章曲面的局部理论 3.1 曲面的概念 3.2 曲面的第一基本形式 3.3 曲面的第二基本形式 3.4 法曲率与weingarten变换 3.5 主曲率与Gauss曲率 3.6 曲面的一些例子 第四章标架与曲面论基本定理 4.1 活动标架 4.2 自然标架的运动方程 4.3 曲面的结构方程 4.4 曲面的存在惟一性定理 4.5 正交活动标架 4.6 曲面的结构方程(外微分法) 第五章曲面的内蕴几何学 5.1 曲面的等距变换 5.2 曲面的协变微分 5.3 测地曲率与测地线 5.4 测地坐标系 5.5 Gauss-Bonnet公式 5.6 曲面的Laplace算子 5.7 Riemann度量 第二部分整体微分几何选讲 第六章平面曲线的整体性质 6.1 平面的闭曲线 6.2 平面的凸曲线 第七章曲面的若干整体性质 7.1 曲面的整体描述 7.2 整体的Gauss-Bonnet公式 7.3 紧致曲面的Gauss映射 7.4 凸曲面 7.5 曲面的完备性 第八章常Gauss曲率曲面

8.1 常正Gauss曲率曲面 8.2 常负Gauss曲率曲面与sine-Gordon方程8.3 Hilbert定理 8.4 Backlund变换 第九章常平均曲率曲面 9.1 Hopf微分与Hopf定理 9.2 Alexsandrov惟一性定理 9.3 附录:常平均曲率环面 第十章极小曲面 10.1 极小图 10.2 极小曲面的weierstrass表示 10.3 极小曲面的Gauss映射 10.4 面积的变分与稳定极小曲面 索引

微分几何陈维桓新编习题答案

习 题答案 2 p. 58 习题3.1 2. 在球面2222{(,,)|1}S x y z x y z =++=上,命(0,0,1)N =,(0,0,1)S =-. 对于赤道平面上的任意一点(,,0)p u v =,可以作为一的一条直线经过,N p 两点,它与球面有唯一的交点,记为p '. (1) 证明:点p '的坐标是 2221u x u v =++,2221 v y u v =++,222211u v z u v +-=++, 并且它给出了球面上去掉北极N 的剩余部分的正则参数表示; (2) 求球面上去掉南极S 的剩余部分的类似的正则参数表示; (3) 求上面两种正则参数表示在公共部分的参数变换; (4) 证明球面是可定向曲面. 证明. (1) 设(,)r u v Op '=. 如图,,,N p p '三点共线,故有t ∈R 使得 (1)Op tOp t ON '=+-. (1) 由于21Op ON ==',2 22u v Op =+,0Op ON '?=,0t ≠,取上式两边的模长平方,得222/(1)t u v =++. 从而 22222222221,,111u v u v u v u v u v ??+-= ?++++++??,2(,)u v ∈R . (2) 由(1)可知 (,,1)(0,0,1)(,,1)r Op tNp ON t u v tu tv t '==+=-+=-, 又2()dt t udu vdv =-+,所以 2(,,1)(1,0,0)u r t u u v t =--+,2(,,1)(0,1,0)v r t v u v t =--+, 22222(,,()1)(,,1)0t tu tv t u v t tu tv t t r =-+-=--=-≠. (3) 因此(,)r r u v =给出了2\{}S N 的正则参数表示. (2)令(,,0)q u v =是,S p '两点连线与赤道平面的交点. 同理,有 (1)(,,1)Op t Oq t OS t u t v t '=+-=-,222/(1)t u v =++, 22222222221(,,),,111u v u v r x y z Op u v u v u v ??--'=== ?++++++?? ,2(,)u v ∈R . (4) 2(,,1)(1,0,0)u r t u u v t =-+,2(,,1)(0,1,0)v r t v u v t =-+, 22222(,,1())(,,1)0t t u t v t u v t t u t v t t r =-+=-=≠. (5) 因此(4)给出了2\{}S S 的正则参数表示. (3) 由(2)和(4)式可得2222()()1u v u v ++=,从而上面两种正则参数表示在公共部分2\{,}S N S 上的参数变换公式为 22u u u v =+,22 v v u v =+. (6) 由(3)和(5)可知

微分几何练习题库及参考答案(已修改)

《微分几何》复习题与参考答案 一、填空题 1.极限232 lim[(31)i j k]t t t →+-+=138i j k -+. 2.设f ()(sin )i j t t t =+,2g()(1)i j t t t e =++,求0 lim(()())t f t g t →?=0. 3.已知{}4 2 r()d =1,2,3t t -? ,{}6 4 r()d =2,1,2t t -?,{}2,1,1a =,{}1,1,0b =-,则 4 6 ()()a r t dt+b a r t dt=???{}3,9,5-. 452 6.贴近”空间曲线的直线和平面分别是该曲线的___切线___ 7.曲率恒等于零的曲线是_________________. 8. 9.切线(副法线)和固定方向成固定角的曲线称为一般螺线3αβ=,则曲线在0≠,则(,u v 12.()(2)(ln )f t t j t k =++,()(sin )(cos )g t t i t j =-,0t >,则 曲线{}3()2,,t r t t t e =在任意点的切向量为{}22,3,t t e . 曲线{()cosh r t a =曲线{()cos r t a =设曲线:C x e =17.设曲线t t t e z t e y t e x ===,sin ,cos ,当0t =时的切线方程为11-==-z y x . 18.曲面的曲纹坐标网是曲率线网的充要条件是____F =M =0_______________. 19.u -曲线(v -曲线)的正交轨线的微分方程是_____E d u +F d v =0(F d u +G d v =0)__. 20.在欧拉公式2212cos sin n k k k θθ=+中,θ是方向(d)与u -曲线的夹角. 21.曲面的三个基本形式,,I II III 、高斯曲率K 、平均曲率H 之间的关系是20H K III -II +I =. 22.已知{}r(,),,u v u v u v uv =+-,其中2,sin u t v t ==,则 dr d t ={}2cos ,2cos ,2cos t t t t vt u t +-+.

微分几何曲面doc

§3.1曲面及其相关概念 1. 曲面及其参数表示 曲面的坐标形式的参数方程: . 曲面的向量形式的参数方程: , . 简记为 , . 称为曲面的参数或曲纹坐标.也称是点的参数或曲纹坐标. 例1 (1) 圆柱面 cos,sin,z = z, . 其中常数为截圆的半径. 当, 时, , , . 于是 是点的曲纹坐标.

(2) 球面 cos cos,cos sin,sin, . 这里, 称为经度,称为纬度. 是球面的半径. 当, 时, , , . 于是 是点的曲纹坐标. (3) 旋转面 把xz平面上一条曲线 :x =, 绕z轴旋转,得旋转面: x =,y =,. 当, 时, , , . 于是 是点的曲纹坐标. (4) 连续函数的图象

该曲面的参数方程为. 和是参数(曲纹坐标). 是点的曲纹坐标. 坐标曲线 曲线:, 即. 曲线:, 即. 一般地, 通过每一点, 有唯一一条曲线和唯一一条曲线. 曲纹坐标网

例2 (1)圆柱面(例1(1)): cos,sin,z = z. (2)球面(例1(2)): cos cos,cos sin,sin. (3) 旋转面(例1(3)): x =,y =,. (4) 连续函数的图象(例1(4)) 2. 光滑曲面曲面的切平面和法线 在曲面上的(,)点处, u-曲线的切向量, v-曲线的切向量.

定义曲面的正则点(正常点) P0(,): r(,)和 r(,)不平行. 正则曲面: 处处是正则点的曲面. 例在双叶双曲面的一叶(、和均为正的常数, , )上, 经过点的曲线的方程为, 该曲线在点的切向量 ; 经过点的曲线的方程为, 该曲线在点的切向量 . 由于在上的任何点处, 和不平行, 故上的点都是正则点, 从而是正则曲面. 定理3.1.1曲面在正则点的邻域中总可以有形如z = z(x, y)的参数表示. 曲面Σ上一点P0处的切方向(方向): Σ上的经过P的曲线Γ在P0的切方向. 曲面:r = r(u, v)上曲线Γ的(曲纹)坐标式参数方程----Γ: u = u(t),v = v(t). Γ的向量式参数方程: r = r(u(t), v(t)) = r(t). 其切方向 (t) = r+ r. 也可写为 d r = r u du + r v dv.

微分几何第四版习题答案梅向明,DOC

§1曲面的概念 1.求正螺面r ={u v cos ,u v sin ,bv}的坐标曲线. 解u-曲线为r ={u 0cos v ,u 0sin v ,bv 0}={0,0,bv 0}+u{0cos v ,0sin v ,0},为曲线的直母线;v-曲线为r ={0u v cos ,0u v sin ,bv}为圆柱螺线. 2.证明双曲抛物面r ={a (u+v ),b (u-v ),2uv }的坐标曲线就是它的直母线。 证u-曲线为r ={a (u+0v ),b (u-0v ),2u 0v }={a 0v ,b 0v ,0}+u{a,b,20v }表示过点{a 0v ,b 0v ,0}以{a,b,20v }为方向向量的直线; v-曲线为r ={a (0u +v ),b (0u -v ),20u v }={a 0u ,b 0u ,0}+v{a,-b,20u }表示过点(a 0u ,b 0u ,0)以{a,-b,20u }为方向向量的直线。 3.求球面r =}sin ,sin cos ,sin cos {?????a a a 上任意点的切平面和法线方程。 解?r =}cos ,sin sin ,cos sin {?????a a a --,?r =}0,cos cos ,sin cos {????a a - 任意点的切平面方程为00 cos cos sin cos cos sin sin cos sin sin sin cos cos cos =------? ?? ????? ??????a a a a a a z a y a x 即xcos ?cos ?+ycos ?sin ?+zsin ?-a=0; 法线方程为 ? ? ????????sin sin sin cos sin cos cos cos cos cos a z a y a x -=-=-。 4.求椭圆柱面22 221x y a b +=在任意点的切平面方程,并证明沿每一条直母线,此 曲面只有一个切平面。 解 椭 圆 柱 面 22 22 1x y a b +=的参数方程为

微分几何课后习题解答

第二章曲面论 §1曲面的概念 1.求正螺面={ u ,u , bv }的坐标曲线. 解 u-曲线为={u ,u ,bv }={0,0,bv}+u {,,0},为曲线的直母线;v-曲线为={,,bv }为圆柱螺线. 2.证明双曲抛物面={a(u+v), b(u-v),2uv}的坐标曲线就是它的直母线。 证 u-曲线为={ a(u+), b(u-),2u}={ a, b,0}+ u{a,b,2} 表示过点{ a, b,0}以{a,b,2}为方向向量的直线; v-曲线为={a(+v), b(-v),2v}={a, b,0}+v{a,-b,2}表示过点(a, b,0)以{a,-b,2}为方向向量的直线。 3.求球面=上任意点的切平面和法线方程。 解=, = 任意点的切平面方程为 即 xcos cos + ycos sin + zsin - a = 0 ; 法线方程为。 4.求椭圆柱面在任意点的切平面方程,并证明沿每一条直母线,此曲面只有一个切平面。

解椭圆柱面的参数方程为x = cos, y = asin, z = t , , 。所以切平面方程为: ,即x bcos + y asin- a b = 0 此方程与t无关,对于的每一确定的值,确定唯一一个切平面,而的每一数值对应一条直母线,说明沿每一条直母线,此曲面只有一个切平面。 5.证明曲面的切平面和三个坐标平面所构成的四面体的体积是常数。 证,。切平面方程为:。 与三坐标轴的交点分别为(3u,0,0),(0,3v,0),(0,0,)。于是,四面体的体积为: 是常数。 §2曲面的第一基本形式 1.求双曲抛物面={a(u+v), b(u-v),2uv}的第一基本形式. 解 , ∴ I = 2。 2.求正螺面={ u ,u , bv }的第一基本形式,并证明坐标曲线互相垂直。

相关文档
最新文档