高考热点复习:圆锥曲线中的定点、定值、存在性问题(大题)练习题

高考热点复习:圆锥曲线中的定点、定值、存在性问题(大题)练习题
高考热点复习:圆锥曲线中的定点、定值、存在性问题(大题)练习题

第4讲圆锥曲线中的定点、定值、存在性问题(大题)

热点一定点问题

解决圆锥曲线中的定点问题应注意

(1)分清问题中哪些是定的,哪些是变动的;

(2)注意“设而不求”思想的应用,引入参变量,最后看能否把变量消去;

(3)“先猜后证”,也就是先利用特殊情况确定定点,然后验证,这样在整理式子时就有了明确的方向.

例1已知P(0,2)是椭圆C:x2

a2+

y2

b2=1(a>b>0)的一个顶点,C的离心率e=

3

3.

(1)求椭圆的方程;

(2)过点P的两条直线l1,l2分别与C相交于不同于点P的A,B两点,若l1与l2的斜率之和为-4,则直线AB是否经过定点?若是,求出定点坐标;若不过定点,请说明理由.

).

跟踪演练1(2019·攀枝花模拟)已知抛物线C:y2=2px(p>0)上一点P(4,t)(t>0)到焦点F的距离等于5.

(1)求抛物线C的方程和实数t的值;

(2)若过F的直线交抛物线C于不同的两点A,B(均与P不重合),直线PA,PB分别交抛物线的

准线l 于点M ,N .试判断以MN 为直径的圆是否过点F ,并说明理由.

热点二 定值问题

求定值问题常见的方法有两种

(1)从特殊情况入手,求出定值,再证明这个定值与变量无关; (2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

例2 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为1

2,左、右焦点分别为F 1(-c ,0),

F 2(c ,0).

(1)求椭圆C 的方程;

(2)P ,N 是C 上异于M 的两点,若直线PM 与直线PN 的斜率之积为-3

4,证明:M ,N 两点的横

坐标之和为常数.

跟踪演练2 (2019·四川百校冲刺卷)已知椭圆C :x 24+y 2

3=1的左、右焦点分别为F 1,F 2,点P (m ,

n )在椭圆C 上.

(1)设点P 到直线l :x =4的距离为d ,证明:

d

|PF 2|

为定值; (2)若0<m <2,A ,B 是椭圆C 上的两个动点(都不与点P 重合),且直线PA ,PB 的斜率互为相反数,求直线AB 的斜率(结果用n 表示).

热点三 存在性问题 存在性问题的求解策略

(1)若给出问题的一些特殊关系,要探索一般规律,并证明所得规律的正确性,通常要对已知关系进行观察、比较、分析,然后概括一般规律;

(2)若只给出条件,求“不存在”“是否存在”等语句表述问题时,一般先对结论给出肯定存在的假设,然后由假设出发,结合已知条件进行推理,从而得出结论.

例3 (2019·乐山、峨眉山联考)已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)过点A ????1,6

3和点B (0,-1).

(1)求椭圆G 的方程;

(2)设直线y =x +m 与椭圆G 相交于不同的两点M ,N ,记线段MN 的中点为P ,是否存在实数m ,使得|BM |=|BN |?若存在,求出实数m ;若不存在,请说明理由.

跟踪演练3 (2019·凉山模拟)椭圆长轴右端点为A ,上顶点为M ,O 为椭圆中心,F 为椭圆的右焦点,且MF →·FA →

=2-1,离心率为22.

(1)求椭圆的标准方程;

(2)直线l 交椭圆于P ,Q 两点,判断是否存在直线l ,使点F 恰为△PQM 的垂心?若存在,求出直线l 的方程;若不存在,请说明理由.

真题体验

(2019 ·全国Ⅲ,理,21)已知曲线C:y=x2

2,D为直线y=-

1

2上的动点,过D作C的两条切线,

切点分别为A ,B .

(1)证明:直线AB 过定点;

(2)若以E ????0,5

2为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.

押题预测

已知抛物线E :y 2=4x ,圆C :(x -3)2+y 2=1.

(1)若过抛物线E 的焦点F 的直线l 与圆C 相切,求直线l 的方程;

(2)在(1)的条件下,若直线l 交抛物线E 于A ,B 两点,x 轴上是否存在点M (t,0)使∠AMO =∠BMO (O 为坐标原点)?若存在,求出点M 的坐标;若不存在,请说明理由.

A 组 专题通关

1.已知点(1,2),

????22,-3都在椭圆C :y 2a 2+x 2b 2=1(a >b >0)上. (1)求椭圆C 的方程;

(2)过点M (0,1)的直线l 与椭圆C 交于不同的两点P ,Q (异于顶点),记椭圆C 与y 轴的两个交点分别为A 1,A 2,若直线A 1P 与A 2Q 交于点S ,证明:点S 恒在直线y =4上.

2.在平面直角坐标系xOy 中,已知椭圆E 的中心在原点,长轴长为8,椭圆在x 轴上的两个焦点与短轴的一个顶点构成等边三角形. (1)求椭圆的标准方程;

(2)过椭圆内一点M (1,3)的直线与椭圆E 交于不同的A ,B 两点,交直线y =-14x 于点N ,若NA →

mAM →,NB →=nBM →

,求证:m +n 为定值,并求出此定值.

3.(2019·内江模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为2

2,直线x +y -1=0被圆x 2+y 2

=b 2截得的弦长为 2. (1)求椭圆C 的方程;

(2)过点(1,0)的直线l 交椭圆C 于A ,B 两点,在x 轴上是否存在定点P ,使得PA →·PB →

为定值?若存在,求出点P 的坐标和PA →·PB →的值;若不存在,请说明理由.

B 组 能力提高

4.(2019·桂林模拟)已知A (x 1,y 1),B (x 2,y 2)是抛物线C :x 2=2py (p >0)上不同的两点.

(1)设直线l:y=p

4与y轴交于点M,若A,B两点所在的直线方程为y=x-1,且直线l:y=

p

4恰好

平分∠AMB,求抛物线C的标准方程;

(2)若直线AB与x轴交于点P,与y轴的正半轴交于点Q,且y1y2=p2

4,是否存在直线AB,使得

1

|PA|

1

|PB|=

3

|PQ|?若存在,求出直线AB的方程;若不存在,请说明理由.

5.如图已知椭圆C:x2

a2+

y2

b2=1(a>b>0),点P1(1,1),P2(0,3),P3(-2,-2),P4(2,2)中

恰有三点在椭圆C上.

(1)求椭圆C的方程;

(2)设R(x0,y0)是椭圆C上的动点,由原点O向圆(x-x0)2+(y-y0)2=2引两条切线,分别交椭圆于点P,Q,若直线OP,OQ的斜率存在,并记为k1,k2,试问△OPQ的面积是否为定值?若是,求出该值;若不是,请说明理由.

高考文科数学真题大全圆锥曲线老师版

试题解析:(Ⅰ)椭圆C 的标准方程为2 213x y +=.所以3a =,1b =,2c =.所以椭圆C 的 离心率6 3 c e a = = . (Ⅱ)因为AB 过点(1,0)D 且垂直于x 轴,所以可设1(1,)A y ,1(1,)B y -. 直线AE 的方程为11(1)(2)y y x -=--.令3x =,得1(3,2)M y -. 所以直线BM 的斜率11 2131 BM y y k -+= =-. 17.(2015年安徽文)设椭圆E 的方程为22 221(0),x y a b a b +=>>点O 为坐标原点,点A 的坐标 为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 的斜率为510 。 (1)求E 的离心率e; (2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB 。 ∴a b 3 231=5525451511052 222222=?=?=-?=?e a c a c a a b (Ⅱ)由题意可知N 点的坐标为(2,2b a -)∴a b a b a a b b K MN 56 65232213 1==-+=

a b K AB -= ∴1522-=-=?a b K K AB MN ∴MN ⊥AB 18.(2015年福建文)已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线 :340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于 4 5 ,则椭圆E 的离心率的取值范围是( A ) A . 3(0, ]2 B .3(0,]4 C .3[,1)2 D .3[,1)4 1 19.(2015年新课标2文)已知双曲线过点() 4,3,且渐近线方程为1 2 y x =±,则该双曲线的标 准方程为 .2 214 x y -= 20.(2015年陕西文)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( B ) A .(1,0)- B .(1,0) C .(0,1)- D .(0,1) 【解析】试题分析:由抛物线22(0)y px p =>得准线2 p x =- ,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程. 21.(2015年陕西文科)如图,椭圆22 22:1(0)x y E a b a b +=>>经过点(0,1)A -,且离心率为22. (I)求椭圆E 的方程;2 212 x y +=

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

高考圆锥曲线典型例题(必考)

椭 圆 典例精析 题型一 求椭圆的标准方程 【例1】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为45 3 和 25 3 ,过P 作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程. 【解析】故所求方程为x 25+3y 2 10=1或3x 210+y 2 5 =1. 【点拨】(1)在求椭圆的标准方程时,常用待定系数法,但是当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx 2+ny 2=1(m >0,n >0且m ≠n );(2)在求椭圆中的a 、b 、c 时,经常用到椭圆的定义及解三角形的知识. 【变式训练1】已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ).由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下: 据此,可推断椭圆C 1的方程为 . x 212+y 2 6 =1.

题型二 椭圆的几何性质的运用 【例2】已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°. (1)求椭圆离心率的范围; (2)求证:△F 1PF 2的面积只与椭圆的短轴长有关. 【解析】(1)e 的取值范围是[12,1).(2)2 1 F PF S =12mn sin 60°=3 3 b 2, 【点拨】椭圆中△F 1PF 2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范围时,要特别注意椭圆定义(或性质)与不等式的联合使用,如|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2 ,|PF 1|≥a -c . 【变式训练2】 已知P 是椭圆x 225+y 2 9=1上的一点,Q ,R 分别是圆(x +4)2 +y 2 =1 4 和圆 (x -4)2+y 2=1 4上的点,则|PQ |+|PR |的最小值是 .【解析】最小值 为9. 题型三 有关椭圆的综合问题 【例3】(2010全国新课标)设F 1,F 2分别是椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的 左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;

最新圆锥曲线近五年高考题(全国卷)文科

4.已知双曲线)0(13 2 22>=-a y a x 的离心率为2,则=a A. 2 B. 2 6 C. 25 D. 1 10.已知抛物线C :x y =2的焦点为F ,()y x A 00,是C 上一点,x F A 045=,则=x 0( ) A. 1 B. 2 C. 4 D. 8 20.已知点)2,2(P ,圆C :082 2=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点. (1)求M 的轨迹方程; (2)当OM OP =时,求l 的方程及POM ?的面积 2014(新课标全国卷2) (10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A )3 (B )6 (C )12 (D )(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是 (A )[]1,1- (B )1122??-????, (C )?? (D ) ???? 20.设F 1 ,F 2分别是椭圆C :122 22=+b y a x (a>b>0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N 。 (I )若直线MN 的斜率为4 3,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN|=5|F 1N|,求a ,b 。

4.已知双曲线C :22 22=1x y a b -(a >0,b >0) 的离心率为2,则C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =12x ± D .y =±x 8.O 为坐标原点,F 为抛物线C :y 2 =的焦点,P 为C 上一点,若|PF | =,则△POF 的面积为( ). A .2 B . ..4 21.已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切, 圆心P 的轨迹为曲线C . (1)求C 的方程; (2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |. 2013(新课标全国卷2) 5、设椭圆22 22:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=o ,则C 的离心率为( ) (A )6 (B )13 (C )12 (D )3 10、设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。若 ||3||AF BF =,则l 的方程为( ) (A )1y x =-或!y x =-+ (B )1)y x =- 或1)y x =- (C )1)y x =- 或1)y x =- (D )1)y x = - 或1)y x =- (20)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为y 轴上截得线 段长为 (Ⅰ)求圆心P 的轨迹方程; (Ⅱ)若P 点到直线y x = 的距离为2 ,求圆P 的方程。

新课标高考《圆锥曲线》大题专题含答案

新课标高考《圆锥曲线》大题专题含答案

全国高考理科数学试题分类汇编9:圆锥曲线 一、选择题 1 .(2013年高考江西卷(理)) 过点2,0) 引直线l 与曲线2 1y x = +相交于 A,B 两点,O 为坐标原点,当?AOB 的面积取最大值时,直线 l 的斜 率 等 于 ( ) A .y E B B C CD =++3 B .3 C .3± D .32 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版)) 双曲线 2 214 x y -=的顶点到其渐近线的距离等于 ( ) A .25 B .4 5 C 25 D 453 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版)) 已知中心在原 点的双曲线C 的右焦点为()3,0F ,离心率等于3 2 ,在双曲线C 的方程 是 ( ) A .22 145 x -= B .22 145 x y -= C . 22 125 x y -= D . 22 125 x -=

4 .(2013年高考新课标1(理)) 已知双曲线C : 22 2 21x y a b -=(0,0a b >>)的离心率为52 ,则C 的渐近 线 方 程为 ( ) A .14y x =± B .13 y x =± C . 12 y x =± D .y x =± 5 .(2013年高考湖北卷(理)) 已知04π θ<<,则双曲线 22 122:1 cos sin x y C θθ -=与22 2222 :1sin sin tan y x C θθθ -=的 ( ) A .实轴长相等 B .虚轴长相等 C .焦 距相等 D .离心率相等 6 .(2013年高考四川卷(理)) 抛物线2 4y x =的焦点到双曲线 2 21 3 y x -=的渐近线的距 离 是 ( ) A .12 B .3 2 C .1 D 3

2019年高考试题汇编理科数学--圆锥曲线

(2019全国1)10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =, ||||1BF AB =,则C 的方程为( ) A.1222=+y x B. 12322=+y x C.13422=+y x D.14 522=+y x 答案: B 解答: 由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又Θ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则 m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 2 1 = ,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程122 22=+b y a x ,得32=a , 22 22=-=c a b ,∴椭圆C 的方程为12 32 2=+ y x . (2019全国1)16.已知双曲线C:22 221(0,0)x y a b a b -=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的 两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =?=u u u r u u u r u u u r u u u r ,则C 的离心率为 . 答案: 2 解答: 由112,0F A AB F B F B =?=u u u r u u u r u u u r u u u r 知A 是1BF 的中点,12F B F B ⊥uuu r uuu r ,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1FOA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=?,221()1tan 602b e a =+=+?=.

2016年高考文科圆锥曲线大题

1. (新课标I 文数) 在直角坐标系xOy 中,直线l:y t t 0 交y 轴于点M ,交抛物线 (II )除H 以外,直线 MH 与C 是否有其它公共点说明理由 2. (新课标n 文数) 2 2 已知A 是椭圆E — 1的左顶点,斜率为k k >0的直线交E 于A , M 两点, 4 3 点 N 在 E 上, MA NA. (I) 当AM AN 时,求 AMN 的面积 (II) 当 2 AM AN 时,证明:V3 k 2. c :y 2 2px p 0 于点 P , H . OH (I )求- ■; ONI M 关于点P 的对称点为N 连结ON 并延长交C 于点

3.(新课标川文数) 已知抛物线C:y2 2x的焦点为F,平行于x轴的两条直线h, *分别交C于B 两点,交C的准线于P,Q两点? (I)若F在线段AB上, R是PQ的中点,证明ARPFQ ; (n)若PQF的面积是ABF的面积的两倍,求AB中点的轨迹方程? 4. (2016年北京文数) 2 2 已知椭圆C:笃与1过点A(2,0) , B 0,1)两点? a b (I)求椭圆C的方程及离心率; (II)设P为第三象限内一点且在椭圆C 上,直线PA与y轴交于点M ,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值

2 2 已知椭圆C:笃爲 1 a b 0的长轴长为4,焦距为2三. a b (n )过动点M(0, m) m 0的直线交x 轴与点N ,交C 于点A, P (P 在第一象限), 且M 是线段PN 的中点?过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点 B . k' (i)设直线PM 、QM 的斜率分别为k 、k',证明 为定值. k (ii)求直线AB 的斜率的最小值

(完整word版)2018年高考圆锥曲线大题

2018年高考圆锥曲线大题 一.解答题(共13小题) 1.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=.证明:||,||,||成等差数列,并求该数列的公差. 2.已知斜率为k的直线l与椭圆C:+=1交于A,B两点,线段AB的中点为M(1,m)(m>0).(1)证明:k<﹣; (2)设F为C的右焦点,P为C上一点,且++=,证明:2||=||+||.

3.双曲线﹣=1,F1、F2为其左右焦点,C是以F2为圆心且过原点的圆. (1)求C的轨迹方程; (2)动点P在C上运动,M满足=2,求M的轨迹方程. 4.设椭圆C:+y2=1的右焦点为F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).(1)当l与x轴垂直时,求直线AM的方程; (2)设O为坐标原点,证明:∠OMA=∠OMB.

5.已知椭圆M:+=1(a>b>0)的离心率为,焦距为2.斜率为k的直线l与椭圆M有 两个不同的交点A,B. (Ⅰ)求椭圆M的方程; (Ⅱ)若k=1,求|AB|的最大值; (Ⅲ)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点Q(﹣,)共线,求k. 6.设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点. (1)用t表示点B到点F的距离; (2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积; (3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题 知识整合: 直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能. 1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线 分别交于A 、B 两点(A 在y 轴左侧),则 AF FB = .1 3 2 (2008年安徽卷)若过点A(4,0)的直线l 与曲线 22 (2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C. 33[33- D. 33 (,33- 3(2008年海南---宁夏卷)设双曲线22 1916x y -=的右顶点为A,右焦点为F,过点F 平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究: 考点一:直线与曲线交点问题 例1.已知双曲线C :2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点. 解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l

的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=± 2 时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k2≠0,即k ≠±2 时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即 3-2k=0,k=23 时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23 ,又 k ≠± 2 ,故当k <- 2 或-2 <k < 2 或 2<k <2 3 时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即 k >23 时,方程(*)无解,l 与C 无交点. 综上知:当k=±2,或k=23 ,或 k 不存在时,l 与C 只有一个交点; 当2<k <23 ,或-2<k <2,或k <- 2 时,l 与C 有两个交点; 当 k >23 时,l 与C 没有交点. (2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB= 2 121x x y y --=2 但渐近线斜率为±2,结合图形知直线 AB 与C 无交点,所以假设不正确,即以 Q 为中点的弦不存在.

圆锥曲线大题归类

圆锥曲线大题归类 一.定点问题 例1.已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M : (x -3)2+(y -1)2=3相切. (1)求椭圆C 的方程; (2)若不过点A 的动直线l 与椭圆C 交于P ,Q 两点,且AP →·AQ → =0,求证:直线l 过定点,并求该定点的坐标. [解析](1)圆M 的圆心为(3,1),半径r = 3. 由题意知A (0,1),F (c,0), 直线AF 的方程为x c +y =1,即x +cy -c =0, 由直线AF 与圆M 相切,得|3+c -c |c 2+1 =3, 解得c 2=2,a 2=c 2+1=3, 故椭圆C 的方程为x 23+y 2=1. (2)方法一:由·=0知AP ⊥AQ ,从而直线AP 与坐标轴不垂直, 故可设直线AP 的方程为y =kx +1,直线AQ 的方程为y =-1k x +1. 联立??? y =kx +1, x 23+y 2=1,整理得(1+3k 2)x 2+6kx =0,

解得x =0或x =-6k 1+3k 2 , 故点P 的坐标为(-6k 1+3k 2,1-3k 2 1+3k 2 ), 同理,点Q 的坐标为(6k k 2+3,k 2-3k 2+3 ) ∴直线l 的斜率为k 2-3k 2+3-1-3k 2 1+3k 26k k 2+3--6k 1+3k 2 =k 2-14k , ∴直线l 的方程为y =k 2-14k (x -6k k 2+3)+k 2-3k 2+3 , 即y =k 2-14k x -12. ∴直线l 过定点(0,-12). 方法二:由·=0知AP ⊥AQ ,从而直线PQ 与x 轴不垂直,故可设直线l 的方程为y =kx +t (t ≠1), 联立????? y =kx +t ,x 23+y 2=1, 整理得(1+3k 2)x 2+6ktx +3(t 2-1)=0. 设P (x 1,y 1),Q (x 2,y 2)则????? x 1+x 2=-6kt 1+3k 2, x 1x 2=3(t 2-1)1+3k 2, (*) 由Δ=(6kt )2-4(1+3k 2)×3(t 2-1)>0,得 3k 2>t 2-1.由·=0,

专题08 圆锥曲线(第01期)-决胜2016年高考全国名校试题文数分项汇编(浙江特刊)(原卷版)

第八章 圆锥曲线 一.基础题组 二.能力题组 1.(浙江省嘉兴市2015届高三下学期教学测试(二),文7)设1F 、2F 分别为双曲线C :122 22=-b y a x 0(>a , )0>b 的左、右焦点,A 为双曲线的左顶点,以21F F 为直径的圆交双曲线一条渐近线于M 、N 两点,且 满足?=∠120MAN ,则该双曲线的离心率为 A .3 21 B . 3 19 C . 3 5 D .3 2.(浙江省2015届高三第二次考试五校联考,文7)如图,已知椭圆C 1:112x +y 2=1,双曲线C 2:22a x —22 b y =1 (a >0,b >0),若以C 1的长轴为直径的圆与C 2的一条渐近线交于A 、B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为 ( ) A .5 B .5 C .17 D . 7 14 2

3.(绍兴市2015届高三上学期期末统考,文6)曲线2 2 30x y -=与双曲线C :22 221x y a b -=(0a >,0b >) 的四个交点与C 的两个虚轴顶点构成一个正六边形,则双曲线C 的离心率为( ) A B C D .8 3 4.(宁波市鄞州区2015届高考5月模拟,文6)已知,,A B P 是双曲线22 221x y a b -=上不同的三点,且,A B 连线经过坐标原点,若直线,PA PB 的斜率乘积3PA PB k k ?=,则该双曲线的离心率为(▲) A B C .2 D 5.(嵊州市2015年高三第二次教学质量调测,文6)已知双曲线22 22C :1(00)x y a b a b -=>>,的左、右焦 点分别为1F ,2F ,过2F 作平行于C 的渐近线的直线交C 于点P .若12PF PF ⊥,则C 的离心率为( ) A B C .2 D 6.(衢州市2015年高三4月教学质量检测,文13)12,F F 分别是双曲线 22 1169 -=x y 的左右焦点,P 为双曲线右支上的一点, A 是12?PF F 的内切圆, A 与x 轴相切于点(,0)M m ,则m 的值为 . 7.(东阳市2015届高三5月模拟考试,文13)点P 是双曲线 222 2 1(00)x y a b a b =>>- , 上一点, F 是右焦点,且OPF ?是120OFP ∠=?的等腰三角形(O 为坐标原点),则双曲线的离心率是 ▲ . 三.拔高题组 1.(衢州市2015年高三4月教学质量检测,文8)设点(,)P x y 是曲线1(0,0)a x b y a b +=≥≥上任意一 点,其坐标(,)x y ≤b +取值范围为( ) A. (]0,2 B. []1,2 C. [)1,+∞ D. [)2,+∞ 2.(浙江省杭州第二中学2015届高三仿真考,文7)如图,已知双曲线22 22:1(0,0)x y C a b a b -=>>的右顶点 为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某渐近线交于两点P ,Q .若∠P AQ = 60°且3OQ OP =,

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

全国卷高考数学圆锥曲线大题集大全

全国卷高考数学圆锥曲线大题集大全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: (R); AG AD λλ=∈2; GE GF GH +=0.GH EF ?= 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23 = e ,已知点)3,0(P 到 这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是 , 425=x 其左、右顶点分别 B A D M B N l 2 l 1

是A、B;双曲线 1 : 2 2 2 2 2 = - b y a x C 的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若AM=. 求证:.0 = ?AB MN 4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa. (1)用半焦距c表示椭圆的方程及tanα; (2)若2

全国一卷圆锥曲线高考题汇编含标准答案

圆锥曲线部分高考试题汇编(椭圆部分) 1、(2016全国Ⅰ卷)(20)(本小题满分12分) 设圆2 2 2150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程; (II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.

2、(2015全国Ⅰ卷)(14)一个圆经过椭圆 22 1164 x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。 3、(2014全国Ⅰ卷) 20.(本小题满分12分)已知点A (0,-2),椭圆E :22221(0)x y a b a b +=>>F 是椭圆 的焦点,直线AF 的斜率为3 ,O 为坐标原点. (Ⅰ)求E 的方程; (Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ?的面积最大时,求l 的方程.

4、(2016山东卷)(21)(本小题满分14分) 平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>> 3,抛物线E :22x y =的焦点 F 是C 的一个顶点. (I )求椭圆C 的方程; (II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M. (i )求证:点M 在定直线上; (ii )直线l 与y 轴交于点G ,记PFG V 的面积为1S ,PDM V 的面积为2S ,求1 2 S S 的最大值及取得最大值时点P 的坐标.

2020年高考圆锥曲线部分大题解析

1.【2018浙江21】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线 2:4C y x =上存在不同的两点,A B 满足,PA PB 的中点均在C 上。 (1) 设AB 中点为M ,证明:PM 垂直于y 轴; (2) 若P 是半椭圆2 2 1(0)4 y x x +=<上的动点,求PAB ?面积的取值范围。 解析:(1)设2200112211(,),(,),(,)44 P x y A y y B y y AP 中点满足:2 2 102014( )4()22 y x y y ++= BP 中点满足:2 2 202024:( )4()22 y x y y BP ++= 所以12,y y 是方程2 2 0204()4()22 y x y y ++=即22000 280y y y x y -+-=的两个根,所以 12 02 y y y +=,故PM 垂直于y 轴。 (2)由(1)可知212012002,8y y y y y x y +=?=- 所以222 1200013||()384 PM y y x y x =+-= - ,12||y y -= 因此,3 2212001||||4)24 PAB S PM y y y x ?=?-=- 因为2 2 0001(0)4 y x x +=<,所以2200004444[4,5]y x x x -=--+∈ 因此,PAB ? 面积的取值范围是

1. 距离型问题 2.【2018全国3 理20】已知斜率为k 的直线l 与椭圆22 :143 x y C +=交于,A B 两点,线段AB 的中点为(1,)(0)M m m > (1)证明:1 2 k <- ; (2)设F 为C 的右焦点,P 为C 上一点且0FP FA FB ++=,证明:,,FP FA FB 为等差数列,并求出该数列的公差。 解析:(1)由中点弦公式22OM b k k a ?=-,解得34k m =- 又因为点M 在椭圆内,故302m << ,故1 2 k <- (2)由题意知2,2FA FB FM FP FM +==-,故(1,2)P m - 因为点P 在椭圆上,代入可得3,14m k = =-,即3||2 FP = 根据第二定义可知,1211||2,||222 FA x FB x =- =- 联立22 212121114371402,4287 4 x y x x x x x x y x ?+=???-+=?+==? ?=-+?? 即121 ||||4()32 FA FB x x +=- += 故满足2||||||FP FA FB =+,所以,,FP FA FB 为等差数列 设其公差为d ,因为,A B 的位置不确定,则有

高考圆锥曲线大题

圆锥曲线经典大题 1.已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当 直线l 的斜率是12 时,AC →=4AB →. (1)求抛物线G 的方程; (2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围. 2.如图,已知(10)F ,,直线:1l x =-,点P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP QF FP FQ ?=?. (Ⅰ)求动点P 的轨迹C 的方程。 (Ⅱ)过点F 的直线交轨迹C 于A B ,两点,交直线l 于点M . (1)已知1MA AF λ=,2MB BF λ=,求12λλ+的值; (2)求MA MB ?的最小值. 3.设点F 是抛物线G :x 2=4y 的焦点. (1)过点P (0,-4)作抛物线G 的切线,求切线的方程; (2)设A ,B 为抛物线G 上异于原点的两点,且满足 0·=FB FA ,分别延长 AF ,BF 交抛物线G 于C ,D 两点,求四边 形ABCD 面积的最小值. 4.设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,. (Ⅰ)求证:A M B ,,三点的横坐标成等差数列; (Ⅱ)已知当M 点的坐标为(22)p -, 时,AB =

5.设椭圆22 2:12 x y M a +=(a >的右焦点为1F ,直线2 :2 2-= a a x l 与x 轴交于点 A ,若112OF AF +=0(其中O 为坐标原点) . (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆 ()12:2 2=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求?的 最大值. 6.已知双曲线C 的方程为22221(0,0)y x a b a b -=>>,离心率e =顶点到渐近线 (I ) (II ) 求双曲线C 的方程; (II)如图,P 是双曲线C 上一点,A ,B 两点在双曲线C 的两条渐近线上,且分 别位于第一、二象限,若1 ,[,2]3 AP PB λλ=∈,求AOB ?面积的取值范围。 7.一条双曲线2 212 x y -=的左、右顶点分别为A 1,A 2,点11(,)P x y ,11(,)Q x y -是双 曲线上不同的两个动点。(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程式;(2)若过点H(0, h)(h>1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且12l l ⊥ ,求h 的值。 8.已知:椭圆122 22=+b y a x (0>>b a ),过点)0,(a A -,),0(b B 的直线倾斜角 为 6 π ,原点到该直线的距离为23.(1)求椭圆的方程;(2)斜率大于零的直线 过)0,1(-D 与椭圆交于E ,F 两点,若2=,求直线EF 的方程;(3)是否存在实数k ,直线2+=kx y 交椭圆于P ,Q 两点,以PQ 为直径的圆过点 )0,1(-D ?若存在,求出k 的值;若不存在,请说明理由.

圆锥曲线高考题汇编(带详细解析)

第八章 圆锥曲线方程 ●考点阐释 圆锥曲线是解析几何的重点内容,这部分内容的特点是: (1)曲线与方程的基础知识要求很高,要求熟练掌握并能灵活应用. (2)综合性强.在解题中几乎处处涉及函数与方程、不等式、三角及直线等内容,体现了对各种能力的综合要求. (3)计算量大.要求学生有较高的计算水平和较强的计算能力. ●试题类编 一、选择题 1.(2003京春文9,理5)在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( ) 2.(2003京春理,7)椭圆?? ?=+=? ? sin 3cos 54y x (?为参数)的焦点坐标为( ) A.(0,0),(0,-8) B.(0,0),(-8,0) C.(0,0),(0,8) D.(0,0),(8,0) 3.(2002京皖春,3)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线的一支 D.抛物线 4.(2002全国文,7)椭圆5x 2+ky 2 =5的一个焦点是(0,2),那么k 等于( ) A.-1 B.1 C. 5 D. - 5 5.(2002全国文,11)设θ∈(0,4 π),则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值范围为 ( ) A.(0,2 1) B.( 2 2 ,21) C.( 2,2 2 ) D.( 2,+∞) 6.(2002北京文,10)已知椭圆222253n y m x +和双曲线22 2 232n y m x -=1有公共的焦点,那么双曲线的渐近线方程是( ) A.x =± y 215 B.y =± x 215 C.x =±y 4 3 D.y =±x 4 3 7.(2002天津理,1)曲线???==θ θ sin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是( ) A.21 B.22 C.1 D.2

圆锥曲线文科高考习题含答案

已知椭圆=1(a>b>0),点P ( a 5 5 ,)在椭圆上。 (I )求椭圆的离心率。 (II )设A 为椭圆的右顶点,O 为坐标原点,若Q 在椭圆上且满足|AQ|=|AO|求直线OQ 的斜率的值。 22.【2012高考安徽文20】(本小题满分13分) 如图,21,F F 分别是椭圆C :22a x +22 b y =1(0>>b a )的左、右 焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点, 1F ∠A 2F =60°. (Ⅰ)求椭圆C 的离心率; (Ⅱ)已知△A B F 1的面积为403,求a, b 的值.

在平面直角坐标系xOy 中,已知椭圆1C :22 221x y a b +=(0a b >>)的左焦点为1(1,0)F -,且点(0,1) P 在1C 上. (1)求椭圆1C 的方程; (2)设直线l 同时与椭圆1C 和抛物线2C :2 4y x =相切,求直线l 的方程. 24.【2102高考北京文19】(本小题共14分) 已知椭圆C :22x a +2 2y b =1(a >b >0)的一个顶点为A (2,0),离心率为2, 直线y=k(x-1)与椭圆C 交与 不同的两点M,N (Ⅰ)求椭圆C 的方程 (Ⅱ)当△AMN 的面积为3 时,求k 的值

如图,椭圆 22 22 :1(0) x y M a b a b +=>>的离心率为 3 ,直线x a =±和y b =±所围成的矩形ABCD的面积 为8. (Ⅰ)求椭圆M的标准方程; (Ⅱ) 设直线:() l y x m m =+∈R与椭圆M有两个不同的交点,, P Q l与矩形ABCD有两个不同的交点,S T. 求|| || PQ ST 的最大值及取得最大值时m的值. 26.【2102高考福建文21】(本小题满分12分) 如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上。(1)求抛物线E的方程; (2)设动直线l与抛物线E相切于点P,与直线y=-1相较于点Q。证明 以PQ为直径的圆恒过y轴上某定点。

相关文档
最新文档