电力系统实验报告.

电力系统实验报告.
电力系统实验报告.

电力系统实验报告

学院:核技术与自动化工程学院专业:电气工程及其自动化

指导老师:顾珉

姓名:许新

学号:200706050209

实验一发电机组的启动与运转实验

一实验目的

1 了解微机调速装置的工作原理和掌握其操作方法。

2 熟悉发电机组中原动机(直流电动机)的基本特征。

3 掌握发电机组起励建压,并网,接列和停机的操作。

二原理说明

在本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于调整原动机的转速和输出的有功功率,励磁系统用于调整发电机电压和输出的无功功率。

装于原动机上的编码器蒋转速信号以脉冲的形式送入THLWT-3型微机调速装置,该装置将转速信号转换成电压,和给定电压一起送入ZKS-15型直流电机调速装置,采用双闭环来调节原动机的电枢电压,最终改变原动机的转速和输出功率。

三实验内容与步骤

1 发电机组起励建压

(1)先将试验台的电源插头插入控制柜左侧的大四芯插座(两个大四芯插座可通用)。接着依次打开控制柜的“总电源”,“三相电源”,“单相电源”的电源开关,再次打开试验台的“三相电源”“单相电源”开关。

(2)将控制柜上的“原动机电源”开关旋到“开”的位置,此时,实验台上的“原动机启动”光字牌点亮,同时,原动机的风机开始运转,发出呼呼的声音。

(3)按下THLWT-3型微机调速装置面板上的“自动/手动”键,选定自动方式,开始默认方式为自动方式。

(4)按下THLWT-3型微机调速装置面板上的“启动”键,此时,装置上的增速灯闪烁,表示发电机正在启动。当发电机组转速上升到1500rpm时,THLWT-3型微机调速装置面板上的增速灯熄灭,启动完成。

(5)当发电机转速接近或略超过1500rpm时,可手动调整使转速为1500rpm,即按下THLWT-3型微机调速装置面板上的“自动/手动”键,选定“手动”方式,此时“手动”指示灯会被点亮。按下THLWT-3型微机调速装置面板上的“+”或“—”键即可调整发电机转速。

(6)发电机起励键压有三种方式,课根据实验要求选定。一是手动起励键压,一是常规起励键压,一是微机励磁。发电机键压后的值可由用户设置,此处设定为发电机额定电压400v,具体操作如下。

由于我们组做的是手动起励键压,所以以下简单介绍一下起励键压。

1)选定“励磁调节方式”和“励磁电源”。将实验台上的“励磁调节方式”旋钮旋到“手动调压”,“励磁电源”旋钮旋到“他励”。

2)打开励磁电源。将控制柜上的“励磁电源”打到开。

3)键压。调节试验台上的“手动调压”旋钮。逐渐增大,直到发电机电压(线电压)达到设定的发电机电压。

2发电机组停机

(1)减小发电机励磁至0。

(2)按下THLWT-3型微机调速装置面板上的“停止”键。

(3)当发电机转速减为0时,将THLZD-2电力系统综合自动化控制柜上的“励磁电源”

打到“关”,“原动机电源”打到“关”。

3发电机组并网

(1)首先投入无穷大系统,具体操作参见第一部分“无穷大系统”,将实验台上的“发

电机运行方式”切至“并网”方式。打开控制柜的“总电源”,“三相电源”和“单

相电源”的电源开关。在打开实验台的“三相电源”和“单相电源”开关。(2)发电机与系统间的线路有“单回”和“双回”可选。根据实验要求选定一种,此处选“单回”。即断路器QF1和QF3处于合闸状态,其他处断路器处于分闸状态。

双回即断路器QF1 QF2 QF3 QF4和QF6处于合闸状态,其他处断路器处于分闸

状态。

(3)合上断路器QF7,调节自耦调节器的手柄,逐渐增大输出电压,直到接近发电机电压。

(4)投入同期表。将实验台上的“同期表控制”旋钮打到“投入”状态。

(5)发电机组并网有三种方式,可根据实验要求选定。一是手动并网,一是半自动并网,一是自动并网。为了保证发电机在并网后不进相运行,并网前应使发电机的

频率和电压略大于系统的频率和电压。

由于我们组选用的是手动并网,以下简单说明一下手动并网。

1)选定“同期方式”。将实验台上的“同期方式”旋钮“手动”状态。

2)观测同期表指针的指针旋转。同期时,以系统为基准,fg>fs时同期表的相角指针顺时针旋转,频率指针转到“+”的部分;Ug>Us时压差指针转到“+”。反之相反。Fg 和ug表示发电机频率和电压,fs和us表示系统频率和电压。

根据同期表指针的位置,手动调整发电机的频率和电压,直至频率指针和压差指针指向0位置。表示频率差和压差接近于0,此时相角指针转动缓慢,当相角指针转至中央刻度时,表示相角差为0,此时按下断路器QF0的合闸按钮。完成手动并网。

4 发电机组发出有功和无功功率

(1)调节励磁装置,调整发电机组发出的无功,使Q=0.75kvar PF=0.8

1)手动励磁调节THLZD-2电力系统自动化实验台上的“手动调压”按钮,逐渐增大励磁,知道打到要求的无功值。

(2)调节调速器,调整发电机组发出的有功,具体操作,多次按下THLWT-3微机调速装置“+”键。逐步增大发电机有功输出,使P=1kw

5发电机组解列

(1)将发电机组输出的有功和无功减为0

1)多次按下THLWT-3微机调速装置“—”,逐步较少发电机有功输出,直至有功接近0。

2)调节励磁,减小无功。多次按下THLWL-3微机励磁装置面板上的“—”,逐步较少发电机无功输出,直至无功接近于0。

备注在调整过程中,注意不要让发电机进相。

(2)按下THLZD-2店林立系统综合自动化实验台上的断路器QF0的分闸按钮,将发电机组合系统解列。然后发电机停机,具体参照实验内容发电机组停机。

6 发电机组组网运行

该功能是配合THLDK-2电力系统监控实验台而设定的。

(1)将THLZD-2电力系统综合自动化实验台上的“发电机运行方式”切至“联网”

方式。

(2)将THLZD-2电力系统综合自动化实验台左侧的电缆插头接入THLDK-2电力系统监控实验台。

(3)重复实验1发电机组起励键压步骤。

(4)采用手动并网方式,将发电机组并入THLDK-2电力系统监控实验台上的电力网,具体操作参见THLDK-2电力系统监控实验指导书。

四实验体会与心得

首先,由于实验设备都是强电,所以在操作的时候一定要注意安全。一定要按照教程来,几个人一起相互监督才能操作,安全才是最重要的。

该实验平台由电力系统微机监控实验系统和电力系统综合自动化实验台组成。它结合了电力监控系统的实际,是一套高度自动化,开放式的多机电力网综合实验装置。它充分展示现代电能的生产传输分配和使用的全过程,实现电力系统的检测控制监控保护调度的自动化,具有电力系统四遥功能。在我看来,其主要目标就是要实现电力从生产到供应的时效最短化、安全最大化和运行成本最小化。做了几次实验,觉得对这些知识理解的更透彻了。

实验二手动准同期并网实验

一、实验目的

1.加深理解同步发电机准同期并列运行原理,掌握准同期并列条件。

2.掌握手动准同期的概念及并网操作方法,准同期并列装置的分类和功能。

3.熟悉同步发电机手动准同期并列过程

二、原理说明

在满足并列条件的情况下,只要控制得当,采用准同期并列方法可使冲击电流很小且对电网扰动甚微,故准同期并列方式是电力系统运行中的主要并列方式。准同期并列要求在合闸前通过

调整待并发电机组的电压和转速,当满足电压幅值和频率条件后,根据“恒定越前时间原理”,由运行操作人员手动或由准同期控制器自动选择合适时机发出合闸命令,这种并列操作的合闸冲

击电流一般很小,并且机组投入电力系统后能被迅速拉入同步。

依并列操作的自动化程度,又可分为手动准同期、半自动准同期和全自动准同期三种方式。正弦整步电压是不同频率的两正弦电压之差,其幅值作周期性的正弦规律变化。它能反映发电机组与系统间的同步情况,如频率差、相角差以及电压幅值差。线性整步电压反映的是不同频

率的两方波电压间相角差的变化规律,其波形为三角波。它能反映电机组与系统间的频率差和相

角差,并且不受电压幅值差的影响,因此得到广泛应用。

手动准同期并列,应在正弦整步电压的最低点(相同点)时合闸,考虑到断路器的固有合闸时间,实际发出合闸命令的时刻应提前一个相应的时间或角度。

自动准同期并列,通常采用恒定越前时间原理工作,这个越前时间可按断路器的合闸时间整定。准同期控制装置根据给定的允许压差和允许频差,不断地检测准同期条件是否满足,在不满

足要求时,闭锁合闸并且发出均压、均频控制脉冲。当所有条件均满足时,在整定的越前时间送

出合闸脉冲。

三、实验内容与步骤

选定实验台面板上的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“手动”位置。微机励

磁装置设置为“恒U g”控制方式。

1.发电机组起励建压,使n=1485 rpm;U g=390V。(操作步骤见第一章)

将自耦调压器的旋钮逆时针旋至最小。按下QF7 合闸按钮,观察实验台上系统电压表,顺时针旋转旋钮至显示线电压400V,然后按下QF1 和QF3 合闸按钮。

2.在手动准同期方式下,发电机组的并列运行操作

在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,手动操作合闸按钮进行合闸。

⑴将实验台上的“同期表控制”旋钮打到“投入”状态。投入模拟同期表。观察模拟式同期表中,频差和压差指针的偏转方向和偏转角度,以及和相角差指针的旋转方向。

⑵按下微机调速装置上的“+”键进行增频,同期表的频差指针接近于零;此时同期表的压差指针也应接近于零,否则,调节微机励磁装置。

⑶观察整步表上指针位置,当相角差指针旋转至接近0 度位置时(此时相差也满足条件),

48

手动按下QF0 合闸,合闸成功后,并网指示灯闪烁蜂鸣。观察并记录合闸时的冲击电流

将并网前的初始条件调整为:发电机端电压为410V,n=1515 rpm,重复以上实验,注意观察各种实验现象。

3.在手动准同期方式下,偏离准同期并列条件,发电机组的并列运行操作

本实验分别在单独一种并列条件不满足的情况下合闸,记录功率表冲击情况;

⑴电压差、相角差条件满足,频率差不满足,在f g>f s 和f g<f s 时手动合闸,观察并记录实验台上有功功率表P 和无功功率表Q 指针偏转方向及偏转角度大小,分别填入表3-3-5-1;注意:

频率差不要大于0.5Hz。

⑵频率差、相角差条件满足,电压差不满足,V g>V s 和V g<V s 时手动合闸,观察并记录实验台上有功功率表P 和无功功率表Q 指针偏转方向及偏转角度大小,分别填入表3-3-5-1;注意:

电压差不要大于额定电压的10%。

⑶频率差、电压差条件满足,相角差不满足,顺时针旋转和逆时针旋转时手动合闸,观察并记录实验台上有功功率表P 和无功功率表Q 指针偏转方向及偏转角度大小,注意:相角差不要大于30°。

四注意事项

当出现发电机和电网相序不同时,则应停机,并把三相调压器啊旋转至零位。在确保断电的情况下,调换发电机或者电网三相电源任意二根端线以改变相序后,按前述方法重新起动MG。

实验三半自动准同期并网实验

一、实验目的

1.加深理解同步发电机准同期并列原理,掌握准同期并列条件。

2.掌握半自动准同期装置的工作原理及使用方法。

3.熟悉同步发电机半自动准同期并列过程。

二、原理说明

为了使待并发电机组满足并列条件,完成并列自动化的任务,自动准同期装置需要满足以下基本技术要求:

1.在频差及电压差均满足要求时,自动准同期装置应在恒定越前时间瞬间发出合闸信号,使断路器在δe=0 时闭合。

2.在频差或电压差有任一满足要求时,或都不满足要求时,虽然恒定越前时间到达,自动准同期装置不发出合闸信号。

3.在完成上述两项基本技术要求后,自动准同期装置要具有均压和均频的功能。如果频差满足要求,是发电机的转速引起的,此时自动准同期装置要发出均频脉冲,改变发电机组的转速。

如果电压差不满足要求,是发电机的励磁电流引起的,此时自动准同期装置要发出均压脉冲,改

变发电机的励磁电流的大小。

同步发电机的自动准同期装置按自动化程度可分为:半自动准同期并列装置和自动准同期并列装置。

半自动准同期并列装置没有频差调节和压差调节功能。并列时,待并发电机的频率和电压由运行人员监视和调整,当频率和电压都满足并列条件时,并列装置就在合适的时间发出合闸信号。

它与手动并列的区别仅仅是合闸信号由该装置经判断后自动发出,而不是由运行人员手动发出。

三、实验内容与步骤

选定实验台面板上的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“半自动”位置。微机

励磁装置设置为“恒U g”控制方式;“手动”方式。

1.发电机组起励建压,使n=1480rpm;U g=400V。(操作步骤见第一章)

2.查看微机准同期的各整定项是否为附录八中表4-8-2 的设置(出厂设置)。如果不符,则

进行相关修改。然后,修改准同期装置中的整定项:

“自动调频”:退出。

“自动调压”:退出。

“自动合闸”:投入。

注:QF0 合闸时间整定继电器设置为t d-(40~60ms)。t d 为微机准同期装置的导前时间设置,

出厂设置为100ms,所以时间继电器设置为40~60ms

3.在半自动准同期方式下,发电机组的并列运行操作

在这种情况下,要满足并列条件,需要手动调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸。

⑴观察微机准同期装置压差闭锁和升压和降压指示灯的变化情况。升压指示灯亮,相应操作微机励磁装置上的“+”键进行升压,直至“压差闭锁”灯熄灭;降压指示灯亮,相应操作微

机励磁装置上的“-”键进行降压,直至“压差闭锁”灯熄灭。此调节过程中,观察并记录观察

并记录压差减小过程中,模拟式同期表中,电压平衡表指针的偏转方向和偏转角度的大小的变化

情况。

⑵观察微机准同期装置频差闭锁和加速和减速指示灯的变化情况。加速指示灯亮,相应操作微机调速装置上的“+”键进行增频,直至“频差闭锁”灯熄灭;减速指示灯亮,相应操作微

机励磁装置的“-”键进行减频,直至“频差闭锁”灯熄灭。此调节过程中,观察并记录观察并

记录频差减小过程中,模拟式同期表中,频差平衡表指针的偏转方向和偏转角度的大小的变化,

以及相位差指针旋转方向及旋转速度情况。

⑶“压差闭锁”和“频差闭锁”灯熄灭,表示压差、频差均满足条件,微机装置自动判断相差也满足条件时,发出QF0 合闸命令,QF0 合闸成功后,并网指示灯闪烁蜂鸣。观察并记录

合闸时的冲击电流。

将并网前的初始条件调整为:发电机端电压为410V,n=1515 rpm,重复以上实验,注意观察各种实验现象。

⑷发电机组的解列和停机。

四实验心得与体会

进一步掌握了微机准同期装置压差闭锁和升压和降压指示灯的变化情况原因,以及微机准同期装置频差闭锁和加速和减速指示灯的变化情况。并对整个半自动准同期并网有了进一步的认识。

实验四自动准同期并网实验

一、实验目的

1.加深理解同步发电机准同期并列原理,掌握准同期并列条件。

2.掌握自动准同期装置的工作原理及使用方法。

3.熟悉同步发电机准同期并列过程。

自动准同期并列装置设置与半自动准同期并列装置相比,增加了频差调节和压差调节功能,自动化程度大大提高。

微机准同期装置的均频调节功能,主要实现滑差方向的检测以及调整脉冲展宽,向发电机组的调速机构发出准确的调速信号,使发电机组与系统间尽快满足允许并列的要求。

微机准同期装置的均压调节功能,主要实现压差方向的检测以及调整脉冲展宽,向发电机的励磁系统发出准确的调压信号,使发电机组与系统间尽快满足允许并列的要求。此过程中要考虑

励磁系统的时间常数,电压升降平稳后,再进行一次均压控制,以使压差达到较小的数值,更有

利于平稳地进行并列。

三、实验内容与步骤

选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“自动”位置。微机励

磁装置设置为“恒U g”控制方式;“自动”方式。

1.发电机组起励建压,使n=1480rpm;U g=400V。(操作步骤见第一章)

2.查看微机准同期各整定项是否为附录八中表4-8-2 的设置(出厂设置)。如果不符,则进

行相关修改。然后,修改准同期装置中的整定项:

“自动调频”:投入;“自动调压”:投入。

“自动合闸”:投入。

52

3.在自动准同期方式下,发电机组的并列运行操作

在这种情况下,要满足并列条件,需要微机准同期装置自动控制微机调速装置和微机励磁装置,调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,

微机准同期装置控制合闸按钮进行合闸。

⑴微机准同期装置的其他整定项(导前时间整定、允许频差、允许压差)分别按表3-3-7-1、3-3-7-2 和3-3-7-3 修改。

注:QF0 合闸时间整定继电器设置为t d-(40~60ms)。t d 为微机准同期装置的导前时间设置。微机准同期装置各整定项的设置方法可参考附录四(微机准同期装置使用说明)、实验三(压

差、频差和相差闭锁与整定)等实验内容。

⑵操作微机励磁装置上的增、减速键和微机励磁装置升、降压键,U g=410V,n=1515 rpm,待电机稳定后,按下微机准同期装置投入键。

观察微机准同期装置当“升速”或“降速”命令指示灯亮时,微机调速装置上有什么反应;当“升压”或“降压”命令指示灯亮时,微机励磁调节装置上有什么反应。

微机准同期装置“升压”、“降压”、“增速”、“减速”命令指示灯亮时,观察本记录旋转灯光

整步表灯光的旋转方向、旋转速度,以及发出命令时对应的灯光的位置。

微机准同期装置压差、频差、相差闭锁与“升压”、“降压”、“增速”、“减速”灯的对应点亮

关系,以及与旋转灯光整步表灯光的位置。

注:当一次合闸过程完毕,微机准同期装置会自动解除合闸命令,避免二次合闸。此时若要再进行微机准同期并网,须按下“复位”按钮。

四实验心得与体会

交流同步发电机与电网并联时要求,发电机的电压的幅值、频率、相位和相序都应该与电网相等,这样并网瞬间就不会对发电机产生电流冲击。

在完全满足发电机的电压的幅值、频率、相位和相序都应该与电网相等的条件下的并网操作称为准同期,意思是准确同期(又称为准同步)。由于准同期操作较难以实现,有的在并网操作时先通过并网电抗器与电网相连,等到发电机并网成功后再将并网电抗器切除。采用这种方法时,在保证相序一致的条件下,可以适当放宽发电机的电压的幅值、频率、相位与电网相等的条件,这种并网操作就称为非同期(或粗同期,或粗同步)。

实验五单机—无穷大系统稳态运行方式实验

一、实验目的

1.熟悉远距离输电的线路基本结构和参数的测试方法。

2.掌握对称稳定工况下,输电系统的各种运行状态与运行参数的数值变化范围。

3.掌握输电系统稳态不对称运行的条件、参数和不对称运行对发电机的影响等。

二、原理说明

单机-无穷大系统模型,是简单电力系统分析的最基本,最主要的研究对象。本实验平台建立的是一种物理模型。

发电机组的原动机采用国标直流电动机模拟,但其特性与电厂的大型原动机并不相似。发电机组并网运行后,输出有功功率的大小可以通过调节直流电动机的电枢电压来调节(具体操作必

须严格按照调速器的正确安全操作步骤进行!可参考《微机调速装置基本操作实验》)。发电机组

的三相同步发电机采用的是工业现场标准的小型发电机,参数与大型同步发电机不相似,但可将

其看作一种具有特殊参数的电力系统发电机。

实验平台给发电机提供了三种典型的励磁系统:手动励磁、常规励磁和微机励磁系统,可以通过实验台的转换开关切换(具体操作必须严格按照励磁调节装置的正确安全操作步骤进行!

可参考《微机励磁装置基本操作实验》)。

实验平台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大系统”采用大功率三相自耦调压器,三相自耦调压器的容量远大于发电机的容量,可近似看作

无穷大电源,并且通过调压器可以方便的模拟系统电压的波动。

实验平台提供的测量仪表可以方便的测量(电压,电流,功率,功率因数,频率)并可通过切换开关显示受端和送端的P,Q,cosΦ。发电机组装设了功角测量装置,通过频闪灯可以直观,

清晰的观测功角(使用前请仔细阅读附录一“功角指示装置原理说明”,注:由于功角指示的指

针相对于频闪灯的发光静止,但实际是在高速运转,切勿用手触摸!),还可通过微机调速装置

测来测量功角。

三、实验内容与步骤

开电源前,调整实验台上的切换开关的位置,确保三个电压指示为同一相电压或线电压;发电机运行方式为并网运行;发电机励磁方式为常规励磁,他励;并网方式选择手动同期。1.单回路稳态对称运行实验

⑴发电机组自动准同期并网操作

输电线路选择XL2和XL4(即QF2 和QF4 合闸),系统侧电压U S=300V,发电机组启机,建压,通过可控线路单回路并网输电。

⑵调节调速装置的增、减速键,调整发电机有功功率;调节常规励磁装置给定,改变发电机的电压,调整发电机无功功率,使输电系统处于不同的运行状态,为了方便实验数据的分析和

比较,在调节过程中,保持cosΦ=0.8 U S=300V 不变。观察并记录线路首、末端的测量表计

及线路开关站的电压值,计算、分析和比较运行状态不同时,运行参数(电压损耗、电压降落、

沿线电压变化、无功功率的方向等)变化的特点及数值范围,记录数据于表3-4-1 中。

注:在调节功率过程中发电机组一旦出现失步问题,立即进行以下操作,使发电机恢复同步运行状态:操作微机调速装置上的“-”减速键,减少有功功率;增加常规励磁给定,提高

发电机电势;单回路切换成双回路。

⑶发电机组的解列和停机

保持发电机组的P=0,Q=0,此时按下QF0 分闸按钮,再按下控制柜上的灭磁按钮,按下微机调速装置的停止键,转速减小到0 时,关闭原动机电源。

⑷实验台和控制柜设备的断电操作

依次断开实验台的“单相电源”、“三相电源”和“总电源”以及控制柜的“单相电源”、“三相电源”和“总电源”。

2.双回路对称运行与单回路对称运行比较实验

实验步骤基本同按实验内容⒈,只是将原来的单回线路改成双回路运行。观察并记录数据于表3-4-1 中,并将实验结果与实验⒈进行比较和分析。

3.单回路稳态非全相运行实验

输送单回路稳态对称运行时相同的功率,此时设置发电机出口非全相运行(断开一相),观察并记录运行状态和参数变化情况。

⑴发电机组自动准同期并网操作

实验步骤同实验内容⒈55

⑵单回路稳态非全相运行

①微机保护定值整定:电流Ⅰ段“投入”,电压闭锁和方向闭锁“退出”,整定动作电流为

2 倍稳态运行时的动作电流,动作时间0.5 秒,重合闸时间90 秒;其它保护均退出。(保护定值

的设定方法请查看附录六“TSL-300 微机线路保护装置使用说明”)

②操作短路故障设置按钮,设置单相接地短路故障,设置短路持续时间为10 秒(具体操作可以参考实验指导书第一部分关于短路故障设置的详细说明)。

③将短路故障投入,此时微机保护切除故障相,准备重合闸,即只有一回线路的两相在运行。观察此状态下的三相电流、电压值,记录在表3-4-2 中,将实验结果与实验1 进行比较;(备注:由于实验台的有功功率表和无功功率表只能测量三相平衡状态下的有功功率和无功功率值,所以在非全相运行状态下,有功功率和无功功率值应从微机励磁装置中读出)。④断相运行90 秒后,重合闸成功,系统恢复到单回路稳态运行状态。

⑶发电机组的解列和停机以及实验台和控制柜设备的断电操作

实验步骤同⒈-⑶、⑷。

四实验心得与体会

在我看来同步发电机在电力系统中为稳定运行时,由于原动机输入的机械功率和发电机本身的损耗及输出的电磁功率相平衡,发电机以同步转速和恒定的转子角稳定运行。当系统遭受一大的扰动时,如发生短路时或负荷的突变等,发电机的输出功率也相应发生突变,由于原动机的调速装置有相当的惯性,必须经过一定的时间才能调整原动机的输出功率。因此,破坏了发电机与原动机之间的功率平衡,在机组轴上出现了不平衡转距,从而使发电机的转速和功角发生变化,引起整个电力系统的机电瞬变过程,甚至可能使发电机失步。瞬时稳定问

题就是讨论同步发电机在电力系统遭受巨大的扰动之后,是否还能维持同步运行的问题。

实验六单机无穷大系统稳态实验:

一、整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影

响,并对实验结果进行理论分析:

实验数据如下:

由实验数据,我们得到如下变化规律:

(1)保证励磁不变的情况下,同一回路,随着有功输出的增加,回路上电流也在增加,这是因为输出功率P=UIcos Φ,机端电压不变所以电流随着功率的增加而增加;

(2)励磁不变情况下,同一回路,随着输出功率的增大,首端电压减小,电压损耗也在减小,这是由于输出功率的增大会使发电机输出端电压降低,在功率流向为发电机到系统的情况下,即使电压虽好降低有由于电压降落的横向分量较小,所以电压降落近似为电压损耗;

(3)出现电压降落为负的情况是因为系统倒送功率给发电机的原因。

单回路供电和双回路供电对电力系统稳定性均有一定的影响,其中双回路要稳定一些,单回路稳定性较差。

二、根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。

由实验数据,我们可以得到如下结论:

(1)送出相同无功相同有功的情况下:单回路所需励磁电压比双回路多,线路电流大小相等,单回路的电压损耗比双回路多;(eg.P=1,Q=0.5时)

(2)送出相同无功的条件下,双回路比单回路具有更好的静态稳定性,双回路能够输送的有功最大值要多于单回路;

发生这些现象的原因是:双回路电抗比单回路小,所以所需的励磁电压小一些,电压损耗也要少一些,而线路电流由于系统电压不改变;此外,由于电抗越大,稳定性越差,所以单回路具有较好的稳定性。

三、思考题:

1、影响简单系统静态稳定性的因素是哪些?

答:由静稳系数S Eq=EV/X,所以影响电力系统静态稳定性的因素主要是:系统元件电抗,系统电压大小,发电机电势以及扰动的大小。

2、提高电力系统静态稳定有哪些措施?

答:提高静态稳定性的措施很多,但是根本性措施是缩短"电气距离"。

主要措施有:

(1)、减少系统各元件的电抗:减小发电机和变压器的电抗,减少线路电

抗(采用分裂导线);

(2)、提高运行电压水平;

(3)、改善电力系统的结构;

(4)、采用串联电容器补偿;

(5)、采用自动励磁调节装置;

(6)、采用直流输电。

3、何为电压损耗、电压降落?

答:电压损耗指的是输电线路首末两端电压的数值差;

电压降落指的是首末两端电压的相量差。

4、“两表法”测量三相功率的原理是什么?它有什么前提条件?

答:原理:在测A、B、C三相总功率时,可以用两只功率表接在AB及BC间,测得的值相加即可。功率表的测量原理是测得电压、电流及其功率角,然后由P=UIcosΦ得到功率的大小,该种接法测得的是线电压、线电流及其夹角,相对于相电压相电流之间夹角而言,增加了120°,若相角为0°,则总功率P=3UI,采用两表发测得的功率为P=2UIcos120°√3=3UI,所以可以用两表法测得。

前提条件:在负荷平衡的三相系统中可以用两表法测三相功率----三相三线系统可以用两表法测量,但是三相四线系统只有在三相平衡时才可以采用两表法。

实验七电力系统暂态稳定实验

一、.整理不同短路类型下获得实验数据,通过对比,对不同短路类型进行定性分析,详细说明不同短路类型和短路点对系统的稳定性的影响。

各种短路类型获得的实验数据如下:

表5-1 单相接地短路

通过对比,我们可以看出同样的短路故障切除时间在不同短路类型下对系统稳定性的影响不一样:

不对称短路时,根据正序等效定则,相当于在正常等值电路中的短路点接入了一个附加阻抗,改变系统阻抗,影响系统输出功率,使之与正常运行情况下的输出有差别,影响功角,进而影响系统的稳定性。由于不同短路情况下的附加电抗不一样,所以影响也不一样。单相接地时附加电抗为负序电抗和零序电抗之和,两相短路时附加电抗为负序电抗,两相接地短路时附加电抗附加电抗为负序电抗与零序电抗并联。

由等面积定则可以得到,保持暂态稳定的条件是最大减速面积大于加速面积,附加电抗越大,故障时的功率特性曲线离原动机输出越远,在相同切除时间时,加速面积较大,极限切除角减小,相当于暂态稳定性降低。

二、通过试验中观察到的现象,说明二中提高暂态稳定的措施对系统稳定性作用机理。

答:系统发生短路故障时,发电机输出的电磁功率骤然降低,而原动机的机械输出功率来不及变化,两者失去平衡,发电机转子将加速。

强行励磁可以提高发电机的电势,增加发电机的输出功率,即可使原动机输出与发电机输出功率平衡,可以有效地减小失步引起的不利影响。且强行励磁的速度越快、强励倍数越大,效果越好。

电力系统中的短路故障大多是由网络放电造成的,是暂时性的,在切断线路经过一段电弧熄灭和空气去游离的时间轴,短路故障便完全消除了。这时,如果再把线路重新投入系统,它便能继续正常工作。

所以采用自动重合闸装置,用微机保护装置切除故障线路后,经过延时一定时间将自动重合原线路,从而恢复全相供电,即可提高了故障切除后的功率特性曲线,即提高系统的暂态稳定性。

三、思考题:

1.不同短路状态下对系统阻抗产生影响的机理是什么?

不对称短路时,根据正序等效定则,相当于在正常等值电路中的短路点接入了一个附加阻抗,改变了系统阻抗:

(1)单相接地短路:以A相短路为例,由边界条件Ua=0、Ib=0、Ic=0,将它们用对称分量法分解,得到各序分量之间表示的边界条件,采用复合序网或结合各序等效电路分析,便可以得到其附加电抗X△=X2+X0;

(2)两相相间短路:以BC两相间短路为例,其边界条件为Ub=Uc、Ib+Ic=0、Ia=0,得到其附加电抗为X△=X2;

(3)两相接地短路:以BC两相接地短路为例,其边界条件为Ia=0、Ub=0、Uc=0,得到其附加电抗为X△=X2//X0。

2.提高电力系统暂态稳定的措施有哪些?

答:(1)快速切除故障;

(2)采用自动重合闸;

(3)发电机快速强励磁;

(4)发电机电气制动;

(5)变压器中性点经小电阻接地;

(6)快速关闭汽门;

(7)切发电机和切负荷;

(8)设置中间开关站;

(9)输电线路强行串联补偿。

3.对失步处理的方法(注意事项3中提到)的理论根据是什么?

答:对失步处理的方法如下:通过励磁调节器增磁按钮,使发电机的电压增大;如系统没处于短路状态,且线路有处于断开状态的,可并入该线路减小系统阻抗;通过调速器的减速按钮减小原动机的输入功率。

其理论依据在于:

(1)可以通过励磁调节器增磁按钮,使发电机的电压增大,在于:系统发生短路故障时,发电机输出的电磁功率骤然降低,而原动机的机械输

出功率来不及变化,两者失去平衡,发电机转子将加速。而迅速增磁

提高发电机的电势,可以增加发电机的输出功率,即可使原动机输出

与发电机输出功率平衡,可以有效地减小失步引起的不利影响;

(2)如系统没处于短路状态,且线路有处于断开状态的,可并入该线路减小系统阻抗,原因在于:减小系统阻抗,可以使原动机所带负荷减少,

即其转速相对降低,这样,在发生短路故障时,原动机和发电机的输

出功率不平衡程度也相对减轻一些;

(3)通过调速器的减速按钮减小原动机的输入功率也可以作为减小故障影响,因为这也相当于减少转轴上的不平衡功率。

4.自动重合闸装置对系统暂态稳定的影响是什么?

答:自动重合闸装置即是开关设备自动进行重新投入输电线路的操作,只要该装置在极限切除角之前的功角处自动合闸,即可使系统保持暂态稳定。但是需注意一点,重合闸时间必须大于潜供电弧熄灭时间,一面是线路再次受到短路故障的冲击,可能会大大恶化系统的暂态稳定性甚至破坏整个系统的稳定。

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

电路分析实验报告

电压源与电流源的等效变换 一、实验目的 1、加深理解电压源、电流源的概念。 2、掌握电源外特性的测试方法。 二、原理及说明 1、电压源是有源元件,可分为理想电压源与实际电压源。理想电压源在一定的电流 范围内,具有很小的电阻,它的输出电压不因负载而改变。而实际电压源的端电压随着电流变化而变化,即它具有一定的内阻值。理想电压源与实际电压源以及它们的伏安特性如图4-1所示(参阅实验一内容)。 2、电流源也分为理想电流源和实际电流源。 理想电流源的电流是恒定的,不因外电路不同而改变。实际电流源的电流与所联接的电路有关。当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电 并联来表示。图4-2为两种电流越大。实际电流源可以用一个理想电流源和一个内阻R S 流源的伏安特性。

3、电源的等效变换 一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。两者是等效的,其中I S=U S/R S或 U S=I S R S 图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s 和R s 的 电压源变换为一个参数为I s 和R S 的等效电流源。同时可知理想电压源与理想电流源两者 之间不存在等效变换的条件。 三、仪器设备 电工实验装置: DG011、 DG053 、 DY04 、 DYO31 四、实验内容 1、理想电流源的伏安特性 1)按图4-4(a)接线,毫安表接线使用电流插孔,R L 使用1KΩ电位器。 2)调节恒流源输出,使I S 为10mA。, 3)按表4-1调整R L 值,观察并记录电流表、电压表读数变化。将测试结果填入表4-1中。 2、实际电流源的伏安特性 按照图4-4(b)接线,按表4-1调整R L 值,将测试的结果填入表4-1中。

《软件工程导论》实验报告

2011-2012(2)《软件工程导论》实验报告 学院:计算机学院 班级:软件工程114 姓名:黄芳恺 学号:119074258 目录 实验1:项目计划、分析和设计 实验2;编码 实验3:代码复查、编译 实验4:项目测试总结

软件工程导论实验一:项目计划、分析和设计 [ 实验日期 ] 2012 年 4 月 20 日 [ 实验目的 ] 初步了解结构化分析、设计方法的原理、步骤以及各阶段的文档,练习撰写简要的需求文档、设计文档。 [ 实验内容 ] 贪吃蛇程序:贪吃蛇游戏是一个深受人们喜爱的游戏,一条蛇在密闭的围墙内,在围墙内随机出现一个食物,通过按键盘上的四个光标键控制蛇向上下左右四个方向移动,蛇头撞到食物则表示食物被蛇吃掉,这时蛇的身体长一节,同时计1分,接着又出现食物,等待被蛇吃掉,如果蛇在移动过程中,撞到墙壁或身体交叉蛇头撞到自己的身体,游戏结束。根据编写贪吃蛇的游戏规则,我们利用c语言来进行编辑具体步骤,从而使游戏能够运行,根据编写贪吃蛇程序,掌握软件工程思想及要领,进一步巩固编程思想和掌握画图函数底层,依据项目可行性研究的结果,进行需求分析和设计,编写简要的需求规格说明书,绘制程序流程图。 [ 实验原理和步骤] 当前的建模方法主要有传统的结构化分析、设计方法(SA/D)和面向对象分析、设计方法(OOA/D)两种。 分析阶段: 结构化分析(SA)是一种建模技术,它通过一定方法帮助开发人员定义系统需要什么功能,系统需要存储和使用哪些数据,以及为完成这些功能,系统需要什么样的输入和输出以及如何把这些功能结合在一起来完成任务。 设计阶段: 分总体设计和详细设计两阶段。总体设计阶段的任务主要是确定系统由哪些模块组成,以及这些模块之间的相互关系;详细设计阶段的任务主要是设计每个模块的处理过程。常用的结构化设计(SD)方法有面向数据流分析(DFA)的设计方法和面向数据的设计方法。DFA设计技术实施的通用步骤:(1)复查并精化DFD;(2)确定DFD类型; (3)把DFD映射到系统模块结构,设计出模块结构的上层;(4)基于DFD逐步分解高层模 块,设计出下层模块〈初步结构〉;(5)根据模块独立性原理,精化模块结构,得到更为合理的软件结构;(6)模块接口描述;(7)修改和补充数据词典;(8)制定测试计划。 详细设计阶段的任务主要是确定每个模块的处理过程,包括(1)确定每个模块的算法。(2)确定每一个模块的数据组织。(3)为每个模块设计一组测试用例。(4)编写详细设计说明书。详细设计阶段采用的方法是结构化程序设计(SP),与SA,SD方法衔接。目标是给出可以直接用以编码的程序逻辑结构,强调清晰第一。 设计思路: 这个程序的关键点是表示蛇的图形以及蛇的移动。用一个小矩形块表示蛇的一节身体,身体每长一节,增加一个矩形块,蛇头用两节表示。移动时必须从蛇头开始,所以蛇不

数据分析实验报告

数据分析实验报告 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第一次试验报告 习题1.3 1建立数据集,定义变量并输入数据并保存。 2数据的描述,包括求均值、方差、中位数等统计量。 分析—描述统计—频率,选择如下: 输出: 统计量 全国居民 农村居民 城镇居民 N 有效 22 22 22 缺失 均值 1116.82 747.86 2336.41 中值 727.50 530.50 1499.50 方差 1031026.918 399673.838 4536136.444 百分位数 25 304.25 239.75 596.25 50 727.50 530.50 1499.50 75 1893.50 1197.00 4136.75 3画直方图,茎叶图,QQ 图。(全国居民) 分析—描述统计—探索,选择如下: 输出: 全国居民 Stem-and-Leaf Plot Frequency Stem & Leaf 5.00 0 . 56788 数据分析实验报告 【最新资料,WORD 文档,可编辑修改】

2.00 1 . 03 1.00 1 . 7 1.00 2 . 3 3.00 2 . 689 1.00 3 . 1 Stem width: 1000 Each leaf: 1 case(s) 分析—描述统计—QQ图,选择如下: 输出: 习题1.1 4数据正态性的检验:K—S检验,W检验数据: 取显着性水平为0.05 分析—描述统计—探索,选择如下:(1)K—S检验

结果:p=0.735 大于0.05 接受原假设,即数据来自正太总体。 (2 )W 检验 结果:在Shapiro-Wilk 检验结果972.00 w ,p=0.174大于0.05 接受原假设,即数据来自正太总体。 习题1.5 5 多维正态数据的统计量 数据:

成都理工电力系统实验报告

电力系统自动化报告 学院: 核技术与自动化学院 专业: 电气工程及其自动化 班级: 1班 学号: 201202060227 姓名: 徐茁夫 指导老师: 罗耀耀 完成时间: 2015年7月6日

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左右2.54cm, 页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一:典型方式下的同步发电机起励实验 一、实验目的 ⒈了解同步发电机的几种起励方式,并比较它们之间的不同之处。 ⒉分析不同起励方式下同步发电机起励建压的条件。 二、原理说明 同步发电机的起励方式有三种:恒发电机电压Ug 方式起励、恒励磁电流Ie 方式起励和恒给 定电压UR 方式起励。其中,除了恒UR 方式起励只能在他励方式下有效外,其余两种方式起励 都可以分别在他励和自并励两种励磁方式下进行。 恒Ug 方式起励,现代励磁调节器通常有“设定电压起励”和“跟踪系统电压起励”两种起 励方式。设定电压起励,是指电压设定值由运行人员手动设定,起励后的发电机电压稳定在手动 设定的给定电压水平上;跟踪系统电压起励,是指电压设定值自动跟踪系统电压,人工不能干预, 起励后的发电机电压稳定在与系统电压相同的电压水平上,有效跟踪范围为85%~115%额定电 压;“跟踪系统电压起励”方式是发电机正常发电运行默认的起励方式,可以为准同期并列操作 创造电压条件,而“设定电压起励”方式通常用于励磁系统的调试试验。 恒Ie 方式起励,也是一种用于试验的起励方式,其设定值由程序自动设定,人工不能干预, 起励后的发电机电压一般为20%额定电压左右。 恒UR(控制电压)方式只适用于他励励磁方式,可以做到从零电压或残压开始人工调节逐渐 增加励磁而升压,完成起励建压任务。 三、实验内容与步骤 常规励磁装置起励建压在第一章实验已做过,此处以微机励磁为主。 ⒈选定实验台上的“励磁方式”为“微机控制”,“励磁电源”为“他励”,微机励磁装置菜 单里的“励磁调节方式”为“恒Ug”和“恒Ug 预定值”为400V。 ⑴参照第一章中的“发电机组起励建压”步骤操作。 ⑵观测控制柜上的“发电机励磁电压”表和“发电机励磁电流”表的指针摆动。 ⒉选定“微机控制”,“自励”,“恒Ug”和“恒Ug 预定值”为400V。 操作步骤同实验1。 ⒊选定“微机控制”,“他励”,“恒Ie”和“恒Ie 预定值”为1400mA。 操作步骤同实验1。 ⒋选定“微机控制”,“自励”,“恒Ie”和“恒Ie 预定值”为1400mA。 操作步骤同实验1。 ⒌选定“微机控制”,“他励”,“恒UR”和“恒UR 预定值”为5000mV。 操作步骤同实验1。 四、实验报告 ⒈比较起励时,自并励和他励的不同。 答:他励直流电机的励磁绕组与电枢绕组无联接关系,而由其他直流电源对励磁绕组供电的直流电机称为他励直流电机,永磁直流电机也可看作他励直流电机。并励直流电机的励磁绕组与电枢绕组相并联,作为并励电动机来说,励磁绕组与电枢共用同一电源,从性能上讲与他励直流电动机相同。他励直流电动机起动时,必须先保证有磁场(即先通励磁电流),而后加电枢电压。否则在加励磁电流之前,电枢中一直为起动电流(或理解为电能只以电枢绕组中热量的形式释放)

软件工程导论实验报告

<<软件工程概论>> 实验报告 姓名:李治 学号:100511210 班级:网工1001 指导教师:桂兵祥 实验一“图书馆系统”结构化需求分析

上机任务: 用结构化需求分析方法完成下列任务: (1)对“图书馆系统”问题进行描述; (2)对该系统进行功能分析; (3)建立数据流图; (4)建立实体 - 关系图; (5)建立数据字典; 一、图书馆系统的问题描述: ① 一个图书馆藏有图书和期刊杂志两大类书籍,每种图书/杂志可以有多册。 ② 图书馆可以维护(注册、更新和删除)图书资料。 ③ 图书馆管理员负责与借书者打交道。 ④ 借书者可以预约目前借不到的书或杂志。 ⑤ 所有人员都可以浏览图书馆的图书信息和各种告示。 ⑥ 系统能在流行的技术环境下运行,有一个良好的图形交互界面。 ⑦ 系统应具有良好的可扩展性。 二、图书馆系统功能分析: ① 浏览功能:所有人员都可以浏览图书馆的图书信息。 ② 借还功能:借书者可以借/续借、还、预约图书。 ③ 图书管理功能:图书管理人员可以做录入、更新和销毁等图书信息维护工作。④ 借书者管理:系统管理人员可进行注册、更改、注销借书者信息等维护工作。 三、建立数据流图: 1、图书馆系统的基本逻辑模型: 浏览图书 浏览者 图书信息 浏览信息 2、借/还功能数据流图: (1)借/还功能(第一步)DFD : 借书还书 续借预约 书目号和借书 证号 书目号 书目号 标题号和借书 证号 管理员 借书者 借书者 显示信息 (2)借/还功能(修改)DFD :

借书还书续借预约 书目号和借书 证号 书目号 书目号 标题号和借书 证号 管理员 借书者 3、维护功能数据流图: (1)维护功能(第一步)DFD : 更改借者注销借书者 录入新书更新图书管理员 注册借书者销毁图书处理罚金 管理员 (2)维护功能(修改) DFD : 录入标题修改标题删除标题录入新书管理员 销毁书目修改书目 标题信息 标题号 标题号 书目信息 书目号 书目号 4、借书功能细化的数据流图:

MATLAB通信系统仿真实验报告1

MATLAB通信系统仿真实验报告

实验一、MATLAB的基本使用与数学运算 目的:学习MATLAB的基本操作,实现简单的数学运算程序。 内容: 1-1要求在闭区间[0,2π]上产生具有10个等间距采样点的一维数组。试用两种不同的指令实现。 运行代码:x=[0:2*pi/9:2*pi] 运行结果: 1-2用M文件建立大矩阵x x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] 代码:x=[0.10.20.30.40.50.60.70.80.9 1.11.21.31.41.51.61.71.81.9 2.12.22.32.42.52.62.72.82.9 3.13.23.33.43.53.63.73.83.9] m_mat 运行结果: 1-3已知A=[5,6;7,8],B=[9,10;11,12],试用MATLAB分别计算 A+B,A*B,A.*B,A^3,A.^3,A/B,A\B. 代码:A=[56;78]B=[910;1112]x1=A+B X2=A-B X3=A*B X4=A.*B X5=A^3 X6=A.^3X7=A/B X8=A\B

运行结果: 1-4任意建立矩阵A,然后找出在[10,20]区间的元素位置。 程序代码及运行结果: 代码:A=[1252221417;111024030;552315865]c=A>=10&A<=20运行结果: 1-5总结:实验过程中,因为对软件太过生疏遇到了些许困难,不过最后通过查书与同学交流都解决了。例如第二题中,将文件保存在了D盘,而导致频频出错,最后发现必须保存在MATLAB文件之下才可以。第四题中,逻辑语言运用到了ij,也出现问题,虽然自己纠正了问题,却也不明白错在哪了,在老师的讲解下知道位置定位上不能用ij而应该用具体的整数。总之第一节实验收获颇多。

电路分析实验报告-第一次

电路分析实验报告

实验报告(二、三) 一、实验名称实验二KCL与KVL的验证 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证基尔霍夫定理的正确性。 三、实验原理 KCL为任一时刻,流出某个节点的电流的代数和恒等于零,流入任一封闭面的电流代数和总等于零。且规定规定:流出节点的电流为正,流入节点的电流为负。 KVL为任一时刻,沿任意回路巡行,所有支路电压降之和为零。且各元件取号按照遇电压降取“+”,遇电压升取“-”的方式。沿顺时针方向绕行电压总和为0。电路中任意两点间的电压等于两点间任一条路径经过的各元件电压降的代数和。 四、实验内容 电路图截图:

1.验证KCL: 以节点2为研究节点,电流表1、3、5的运行结果截图如下: 由截图可知,流入节点2的电流为2.25A,流出节点2 的电流分别为750mA和1.5A。2.25=0.75+1.5。所以,可验证KCL成立。 2.验证KVL: 以左侧的回路为研究对象,运行结果的截图如下:

由截图可知,R3两端电压为22.5V,R1两端电压为7.5V,电压源电压为30V。22.5+7.5-30=0。所以,回路电压为0,所以,可验证KVL成立。 一、实验名称实验三回路法或网孔法求支路电流(电压) 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证网孔分析法的正确性。 三、实验原理 为减少未知量(方程)的个数,可以假想每个回路中有一个回路电流。若回路电流已求得,则各支路电流可用回路电流线性组合表示。这样即可求得电路的解。回路电流法就是以回路电流为未知量列写电路方程分析电路的方法。网孔电流法就是对平面电路,若以网孔为独立回

数据分析实验报告

《数据分析》实验报告 班级:07信计0班学号:姓名:实验日期2010-3-11 实验地点:实验楼505 实验名称:样本数据的特征分析使用软件名称:MATLAB 实验目的1.熟练掌握利用Matlab软件计算均值、方差、协方差、相关系数、标准差与变异系数、偏度与峰度,中位数、分位数、三均值、四分位极差与极差; 2.熟练掌握jbtest与lillietest关于一元数据的正态性检验; 3.掌握统计作图方法; 4.掌握多元数据的数字特征与相关矩阵的处理方法; 实验内容安徽省1990-2004年万元工业GDP废气排放量、废水排放量、固体废物排放量以及用于污染治理的投入经费比重见表6.1.1,解决以下问题:表6.1.1废气、废水、固体废物排放量及污染治理的投入经费占GDP比重 年份 万元工业GDP 废气排放量 万元工业GDP 固体物排放量 万元工业GDP废 水排放量 环境污染治理投 资占GDP比重 (立方米)(千克)(吨)(%)1990 104254.40 519.48 441.65 0.18 1991 94415.00 476.97 398.19 0.26 1992 89317.41 119.45 332.14 0.23 1993 63012.42 67.93 203.91 0.20 1994 45435.04 7.86 128.20 0.17 1995 46383.42 12.45 113.39 0.22 1996 39874.19 13.24 87.12 0.15 1997 38412.85 37.97 76.98 0.21 1998 35270.79 45.36 59.68 0.11 1999 35200.76 34.93 60.82 0.15 2000 35848.97 1.82 57.35 0.19 2001 40348.43 1.17 53.06 0.11 2002 40392.96 0.16 50.96 0.12 2003 37237.13 0.05 43.94 0.15 2004 34176.27 0.06 36.90 0.13 1.计算各指标的均值、方差、标准差、变异系数以及相关系数矩阵; 2.计算各指标的偏度、峰度、三均值以及极差; 3.做出各指标数据直方图并检验该数据是否服从正态分布?若不服从正态分布,利用boxcox变换以后给出该数据的密度函数; 4.上网查找1990-2004江苏省万元工业GDP废气排放量,安徽省与江苏省是 否服从同样的分布?

电力系统实验报告

电力系统实验报告 实验名称:简单电力系统的短路计算 实验人:王新博 学号:20091141003 指导教师:赵宏伟 实验日期:2012-5-4 一、实验目的:掌握用PSCAD进行电力系统短路计算的方法。 二、实验原理 在电力系统三相短路中,元件的参数用次暂态参数代替,画出电路的等值电路,短路电流的计算即相当于稳态短路电流计算。单相接地,两相相间,两相接地短路时的短路电流计算中,采用对称分量法将每相电流分解成正序、负序和零序网路,在每个网络中分别计算各序电流,每种短路类型对应了不同的序网连接方式,形成了不同复合序网,再在复合序网中计算短路电流的有名值。在并且在短路电流计算中,一般只需计算起始次暂态电流的初始值。 三、实验内容及步骤 图示电力系统, G T 已知:发电机:Sn=60MV A,Xd”=0.16,X2=0.19 ; 变压器:Sn=60MV A,Vs%=10.5 ; 1)试计算f点三相短路,单相接地,两相相间,两相接地短路时的短路电流 有名值。 2)若变压器中性点经30Ω电抗接地,再作1)。 3)数据输入 4)方案定义

5)数据检查 6)作业定义 7)执行计算 8)输出结果 四、实验结果与分析(包括实验数据记录、程序运行结果等) 1、手算过程: 1)、三相短路短路电流有名值(有接地电抗): 2)、三相短路短路电流有名值(无接地电抗): 3)、单相接地短路电流有名值(有接地电抗): 4)、单相接地短路电流有名值(无接地电抗): 5)、两相相间短路电流有名值(有接地电抗): 6)、两相相间短路电流有名值(无接地电抗): 7)、两相接地短路时短路电流有名值(有接地电抗): 8)、两相接地短路时短路电流有名值(无接地电抗): 2、通过PSCAD仿真所得结果为: 1)、三相短路(有接地电抗):

软件工程导论实验报告 白盒测试 黑盒测试

《软件工程导论》实验报告 学生姓名: 学号: 班级: 指导老师: 专业: 实验日期:

白盒测试 一、实验目的 通过简单程序白盒测试,熟悉测试过程,对软件测试形成初步了解,并养成良好的测试习惯。熟练掌握如何运用基路径测试方法进行测试用例设计,初步熟悉如何利用程序插装技术进行逻辑覆盖率分析。 二、实验内容: 1、被测试程序功能:求解系数为整数的方程ax2+bx+c=0 2、程序定义:键盘输入3个数字a,b,c,求解方程ax2+bx+c=0 3、测试环境:Windows 8.1、Eclipse 4、说明:本次测试采用插桩测试法,由于程序比较简单,手动输入测试用例。 四、实验步骤 1、程序流程图

2、代码: import java.util.Scanner; public class test { public static void main(String[] args) { Scanner sc=new Scanner(System.in); System.out.println("请输入3个整数a,b,c:"); String as; String bs; String cs; int a=0; int b=0; int c=0; double x, x1, x2; as=sc.nextLine(); bs=sc.nextLine(); cs=sc.nextLine(); try{ a=Integer.parseInt(as); b=Integer.parseInt(bs); c=Integer.parseInt(cs); }catch(Exception e){ System.out.println("输入错误"); System.exit(0); } if (a == 0) { if (b == 0) { if (c == 0) System.out.println("无穷多解" ); else

通信工程系统仿真实验报告

通信原理课程设计 实验报告 专业:通信工程 届别:07 B班 学号:0715232022 姓名:吴林桂 指导老师:陈东华

数字通信系统设计 一、 实验要求: 信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。对传输系统进行误码率分析。 二、系统框图 三、实验原理: QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。QAM 就是一种频率利用率很高的调制技术。 t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb 式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号; t 0s i n ω 为正交信号或者Q 信号; m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅; m 为 m A 和m B 的电平数,取值1 , 2 , . . . , M 。 m A = Dm*A ;m B = Em*A ; 式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空

间上的坐标,有输入数据决定。 m A 和m B 确定QAM 信号在信号空间的坐标点。称这种抑制载波的双边带调制方式为 正交幅度调制。 图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M) QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。 图3.3.5 QAM 相干解调原理图 四、设计方案: (1)、生成一个随机二进制信号 (2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制 (5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调 五、实验内容跟实验结果:

电力系统分析实验报告

五邑大学 电力系统分析理论 实验报告 院系 专业 学号 学生姓名 指导教师

实验一仿真软件的初步认识 一、实验目的: 通过使用PowerWorld电力系统仿真软件,掌握电力系统的结构组成,了解电力系统的主要参数,并且学会了建立一个简单的电力系统模型。学会单线图的快捷菜单、文件菜单、编辑菜单、插入菜单、格式菜单、窗口菜单、仿真控制等菜单的使用。 二、实验内容: (一)熟悉PowerWorld电力系统仿真软件的基本操作 (二)用仿真器建立一个简单的电力系统模型: 1、画一条母线,一台发电机; 2、画一条带负荷的母线,添加负荷; 3、画一条输电线,放置断路器; 4、写上标题和母线、线路注释; 5、样程存盘; 6、对样程进行设定、求解; 7、加入一个新的地区。 三、电力系统模型: 按照实验指导书,利用PowerWorld软件进行建模,模型如下: 四、心得体会: 这一次试验是我第一次接触PWS这个软件,刚开始面对一个完全陌生的软件,我只能听着老师讲解,照着试验说明书,按试验要求,在完成试验的过程中一点一点地了解熟悉这个软件。在这个过程中也遇到了不少问题,比如输电线的画法、断路器的设置、仿真时出现错误的解决办法等等,在试验的最后,通过请教老师同学解决了这些问题,也对这个仿真软件有了一个初步的了解,为以后的学习打了基础。在以后的学习中,我要多点操作才能更好地熟悉这个软件。

实验二电力系统潮流分析入门 一、实验目的 通过对具体样程的分析和计算,掌握电力系统潮流计算的方法;在此基础上对系统的运行方式、运行状态、运行参数进行分析;对偶发性故障进行简单的分析和处理。 二、实验内容 本次实验主要在运行模式下,对样程进行合理的设置并进行电力系统潮流分析。 选择主菜单的Case Information Case Summary项,了解当前样程的概况。包括统计样程中全部的负荷、发电机、并联支路补偿以及损耗;松弛节点的总数。进入运行模式。从主菜单上选择Simulation Control,Start/Restart开始模拟运行。运行时会以动画方式显示潮流的大小和方向,要想对动画显示进行设定,先转换到编辑模式,在主菜单上选择Options,One-Line Display Options,然后在打开的对话框中选中Animated Flows Option选项卡,将Show Animated Flows复选框选中,这样运行时就会有动画显示。也可以在运行模式下,先暂停运行,然后右击要改变的模型的参数即可。 三、电力系统模型

数据分析实验报告

数据分析实验报告 【最新资料,WORD文档,可编辑修改】 第一次试验报告 习题1.3 1建立数据集,定义变量并输入数据并保存。 2数据的描述,包括求均值、方差、中位数等统计量。 分析—描述统计—频率,选择如下: 输出:

方差1031026.918399673.8384536136.444百分位数25304.25239.75596.25 50727.50530.501499.50 751893.501197.004136.75 3画直方图,茎叶图,QQ图。(全国居民) 分析—描述统计—探索,选择如下: 输出: 全国居民Stem-and-Leaf Plot Frequency Stem & Leaf 9.00 0 . 122223344 5.00 0 . 56788 2.00 1 . 03 1.00 1 . 7 1.00 2 . 3 3.00 2 . 689

1.00 3 . 1 Stem width: 1000 Each leaf: 1 case(s) 分析—描述统计—QQ图,选择如下: 输出: 习题1.1 4数据正态性的检验:K—S检验,W检验数据: 取显着性水平为0.05 分析—描述统计—探索,选择如下:(1)K—S检验 单样本Kolmogorov-Smirnov 检验 身高N60正态参数a,,b均值139.00

标准差7.064 最极端差别绝对值.089 正.045 负-.089 Kolmogorov-Smirnov Z.686 渐近显着性(双侧).735 a. 检验分布为正态分布。 b. 根据数据计算得到。 结果:p=0.735 大于0.05 接受原假设,即数据来自正太总体。(2)W检验

OFDM系统仿真实验报告

无线通信——OFDM系统仿真

一、实验目的 1、了解OFDM 技术的实现原理 2、利用MATLAB 软件对OFDM 的传输性能进行仿真并对结论进行分析。 二、实验原理与方法 1 OFDM 调制基本原理 正交频分复用(OFDM)是多载波调制(MCM)技术的一种。MCM 的基本思想是把数据流串并变换为N 路速率较低的子数据流,用它们分别去调制N 路子载波后再并行传输。因子数据流的速率是原来的1/N ,即符号周期扩大为原来的N 倍,远大于信道的最大延迟扩展,这样MCM 就把一个宽带频率选择性信道划分成N 个窄带平坦衰落信道,从而“先天”具有很强的抗多径衰落和抗脉冲干扰的能力,特别适合于高速无线数据传输。OFDM 是一种子载波相互混叠的MCM ,因此它除了具有上述毗M 的优势外,还具有更高的频谱利用率。OFDM 选择时域相互正交的子载波,创门虽然在频域相互混叠,却仍能在接收端被分离出来。 2 OFDM 系统的实现模型 利用离散反傅里叶变换( IDFT) 或快速反傅里叶变换( IFFT) 实现的OFDM 系统如图1 所示。输入已经过调制(符号匹配) 的复信号经过串P 并变换后,进行IDFT 或IFFT 和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM 调制后的信号s (t ) 。该信号经过信道后,接收到的信号r ( t ) 经过模P 数变换,去掉保护间隔以恢复子载波之间的正交性,再经过串/并变换和DFT 或FFT 后,恢复出OFDM 的调制信号,再经过并P 串变换后还原出输入的符号。 图1 OFDM 系统的实现框图 从OFDM 系统的基本结构可看出, 一对离散傅里叶变换是它的核心,它使各子载波相互正交。设OFDM 信号发射周期为[0,T],在这个周期内并行传输的N 个符号为001010(,...,)N C C C -,,其中ni C 为一般复数, 并对应调制星座图中的某一矢量。比如00(0)(0),(0)(0)C a j b a b =+?和分别为所要传输的并行信号, 若将

通信系统仿真实验报告(DOC)

通信系统实验报告——基于SystemView的仿真实验 班级: 学号: 姓名: 时间:

目录 实验一、模拟调制系统设计分析 -------------------------3 一、实验内容-------------------------------------------3 二、实验要求-------------------------------------------3 三、实验原理-------------------------------------------3 四、实验步骤与结果-------------------------------------4 五、实验心得------------------------------------------10 实验二、模拟信号的数字传输系统设计分析------------11 一、实验内容------------------------------------------11 二、实验要求------------------------------------------11 三、实验原理------------------------------------------11 四、实验步骤与结果------------------------------------12 五、实验心得------------------------------------------16 实验三、数字载波通信系统设计分析------------------17 一、实验内容------------------------------------------17 二、实验要求------------------------------------------17 三、实验原理------------------------------------------17 四、实验步骤与结果------------------------------------18 五、实验心得------------------------------------------27

电力系统分析实验报告

本科生实验报告 实验课程电力系统分析 学院名称核技术与自动化工程学院 专业名称电气工程及其自动化 学生姓名 学生学号 指导教师顾民 实验地点6C901 实验成绩

二〇一五年十月——二〇一五年十二月 实验一MATPOWER软件在电力系统潮流计算中的应用实例 一、简介 Matlab在电力系统建模和仿真的应用主要由电力系统仿真模块(Power System Blockset 简称PSB)来完成。Power System Block是由TEQSIM公司和魁北克水电站开发的。PSB是在Simulink环境下使用的模块,采用变步长积分法,可以对非线性、刚性和非连续系统进行精确的仿真,并精确地检测出断点和开关发生时刻。PSB程序库涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本元件和系统仿真模型。通过PSB可以迅速建立模型,并立即仿真。PSB程序块程序库中的测量程序和控制源起到电信号与Simulink程序之间连接作用。PSB程序库含有代表电力网络中一般部件和设备的Simulink程序块,通过PSB 可以迅速建立模型,并立即仿真。 1)字段baseMVA是一个标量,用来设置基准容量,如100MVA。 2)字段bus是一个矩阵,用来设置电网中各母线参数。 ①bus_i用来设置母线编号(正整数)。 ②type用来设置母线类型, 1为PQ节点母线, 2为PV节点母线, 3为平衡(参考)节点母线,4为孤立节点母线。 ③Pd和Qd用来设置母线注入负荷的有功功率和无功功率。 ④Gs、Bs用来设置与母线并联电导和电纳。 ⑤baseKV用来设置该母线基准电压。 ⑥Vm和Va用来设置母线电压的幅值、相位初值。 ⑦Vmax和Vmin用来设置工作时母线最高、最低电压幅值。 ⑧area和zone用来设置电网断面号和分区号,一般都设置为1,前者可设置范围为1~100,后者可设置范围为1~999。 3)字段gen为一个矩阵,用来设置接入电网中的发电机(电源)参数。 ①bus用来设置接入发电机(电源)的母线编号。 ②Pg和Qg用来设置接入发电机(电源)的有功功率和无功功率。 ③Pmax和Pmin用来设置接入发电机(电源)的有功功率最大、最小允许值。 ④Qmax和Qmin用来设置接入发电机(电源)的无功功率最大、最小允许值。 ⑤Vg用来设置接入发电机(电源)的工作电压。 1.发电机模型 2.变压器模型 3.线路模型 4.负荷模型 5.母线模型 二、电力系统模型 电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路、动力系统、电力系统和电力网简单示意如图

软件工程导论实验报告

目录 第一章可行性分析报告 (7) 1.1 引言 (7) 1.2 可行性研究的前提 (8) 1.3技术可行性分析 (9) 1.3.1系统简要描述 (9) 1.3.2处理流程和数据流程 (9) 1.4操作可行性分析 (9) 1.5经济可行性分析 (10) 1.5.1支出 (10) 1.5.2效益 (10) 1.5.3收益/投资比 (11) 1.5.4投资回收周期 (11) 1.5.5敏感性分析 (11) 1.6法律可行性 (11) 1.7结论 (11) 第二章需求分析报告 (12) 2.1引言 (12) 2.1.1 编写目的 (12) 2.1.2 项目背景 (12) 2.1.3 定义 (12)

2.2任务概述 (13) 2.2.1 目标 (13) 2.2.2 假定和约束 (12) 2.2.3 人力、资金、时间的约束 (12) 2.2.4技术发展规律的约束 (13) 2.3需求规定 (8) 2.3.1对功能的规定 (8) 2.3.2对性能的规定 (8) 2.3.3精度 (8) 2.3.4时间特性要求 (15) 2.3.5旅客信息 (15) 2.4数据描述 (15) 2.4.1数据特征 (15) 2.4.2系统数据流图 (15) 2.5 运行环境规定 (11) 2.5.1服务器端子系统运行要求 (11) 2.5.2客户端子系统运行要求 (11) 第三章概要设计 (18) 3.1引言 (18) 3.1.1编写目的 (18) 3.1.1项目背景 (18)

3.2任务概述 (19) 3.2.1目标 (18) 3.2.2运行环境 (18) 3.2.3需求概述 (18) 3.3总体设计 (20) 3.3.1处理流程 (20) 3.3.2客户机程序流程 (20) 3.3.3总体结构设计 (20) 3.3.4功能分配 (20) 3.4 接口设计 (20) 3.4.1外部接口 (24) 3.4.2软件接口 (24) 3.4.3硬件接口 (24) 3.4.4内部接口 (24) 3.5 数据结构设计 (27) 3.5.1 数据库数据结构设计 (27) 3.5.2物理结构设计 (27) 3.5.3 数据结构与程序关系 (27) 3.6 运行设计 (27) 3.6.1 运行模块的组合 (27) 3.6.2 运行控制 (27)

2PSK通信系统仿真实验报告

2PSK通信系统仿真实验报告 班级: 姓名: 学号:

、实验目的 1.了解通信系统的组成、工作原理、信号传输、变换过程; 2.掌握通信系统的设计方法与参数设置原则; 3.掌握使用SystemView软件仿真通信系统的方法; 4.进行仿真并进行波形分析; 二、实验任务 使用Systemview进行系统仿真任务,要经过以下几个步骤: 1.系统输入正弦波频率:500 Hz;码元传输速率:64kBd; 2.设计一通信系统,并使用SystemView软件进行仿真; 3.获取各点时域波形,波形、坐标、标题等要清楚;滤波器的单位冲击相应和幅频特性曲线; 4.获取主要信号的功率谱密度; 5.获取眼图; 6.提取相干载波; 7.数据分析及心得体会要求手写。 三、原理简介 1.PCM系统原理 .脉冲编码调制 通常把从模拟信号抽样、量化,直到变换成二进制符号的基本过程,称为脉冲编码调制(Pulse Code Modulation PCM,简称脉码调制。原理框图如图1-1所示: PCM信号 输出 A 冲激脉冲 图1-1 PCM编码方框图 .编码过程 由冲激脉冲对模拟信号进行抽样,抽样信号虽然是时间轴上离散的信号,但仍是模拟信号。为了实现以数字码表示样值必须采用“四舍五入” 的方法将抽样值量化为整数,量化后的抽样信号与量化前的抽样信号相比较,有所失真且不再是模拟信号,这种量化失真在接收端还原成模拟信号时表现为噪声,称为量化噪声。量化噪声的大小取决于把样值 分级取整”的方式,分的级数越多,即量化级差或间隔越小,量化噪声也越小。

在量化之前通常用保持电路将其作短暂保存,以便电路有 时间对其进行量化。然后在图 1-1中的编码器中进行二进制编码。这 样,每个二进制码组就代表了一个量化后的信号抽样值,即完成了 PCM 编码的过程。译码过程与编码过程相反。如图 1-2所示。 2. 二进制移相键控(2PSK 的基本原理: 2PSK 二进制移相键控方式,是键控的载波相位按基带脉冲序列的规律而改 变的一 种数字调制方式。就是根据数字基带信号的两个电平 (或符号)使载波相 位 在两个不同的数值之间切换的一种相位调制方法。两个载波相位通常相差 180 度,此时称为反向键控(PSK )也称为绝对相移方式。在2psk 中,通常用初始相位 0和 n 分别表示二进制“ 1”和“ 0”。其表达式如下: Acos wct 发送1时 Fpsk (t)= -Acos Wct 发送0时 2psk 的典型波形如图: 由于表示信号的两种码元的波形相同,极性相反,故 2psk 信号的一般可以 表述为一个双极性非归零的矩形波脉冲序列与一个正弦载波相乘,即 ?aP5K (t)=S(t)COSW Ct 图1-2 PCM 译码原理图 PCM 信号 输入 模拟信号 输出

相关文档
最新文档