小型水力发电站水文计算规范[SL77-94]条文说明

小型水力发电站水文计算规范[SL77-94]条文说明
小型水力发电站水文计算规范[SL77-94]条文说明

中华人民共和国行业标准

小型水力发电站水文计算规范

条文说明

目次

总则

设计径流

流量历时曲线

枯水分析

水位流量关系

和文化生活中的影响举足轻重

据典型调查和初步统计

只达到设计年发电量而另一些电站常因遭遇一般洪水受到不同程度

年以来我们对我国小水电水文计算工作进行了大量调查研究发现一些地方行政主管

部门和有关人士往往不太重视水文工作

这样就给小水电站带来了装

计的资料条件和对水文工作的特殊要求

当前

面对现有数万座电站的改造挖潜和每年以万

一工作程序

我国国民经济和社会发展十年规划和八五多个农村初级电气

化县和再建设

小水电的特点

大都散布在广大农村小河流域的上中游

熟悉等情况

成果外

条设置和内容编排是以上小水电的特点

小水电其容量界限依目前

重要的是考虑

本规范内容一般适用于集水面积以下的小流域小水电可行性

根据我国小水电建设前期工作的实践经验除工

但具体而言由于我国

所以

较大的小水电站

宽要求实际情况主要指电站类型

本条和以下的条是本规范超越各章的

对小水电水文计算的共性要求

但一般缺

也不太知道我国已有很多可以为小水电水文分析计算直

整理统计的水文特征值资料

一类是水文行政主管部门来不及组织整编的国家水文站网近年实测的资料再一类则是很多水库专用水文

这些特征或

根据

万区域地形图和或

几十年来

所以本

其中包括区域综合

这些资料一般鲜为

小水电水文分析计算的三个原则

集基本资料

材料

在短缺实测流量资料的地区

特别是当暴雨径流资料太少而且对其质量没有把握时

大多数是由直接占有水文气象资料及其测验设施的专职水文部门

新分析研究

这是本条中正确应用

本规范分为实测径流资料不足和无实测径流资料

后两种统称径流资料泛指原始的和整编的流量资料及其统计特征

足够不足

工程特点本规范按不同类型水电站对水文计算的不同要求特别归纳为两类一是即一般所分类的引水式河床式混

合式二是包括

具体见本规范各小水电水文分析计算采用的区域综合分析研究成果及其

须是经省级以上行政主管部门审定的

年代到其

一般也没

另外

并应当按本条的要

包括

包括年内枯水

年际枯水

包括引用资料和参证测站

包括流域暴雨洪水特性洪水调查计算方法及其参数定量各设计频率的设计洪水

包括设计纵断面图

包括多年平均和各设计频率或各设计泥沙代

征和侵蚀模数分析

包括

装机容量指标下限为万万

我国多数专业人员习惯

上把集水面积小于以上则定为

设计径流

径流这里是泛指年

各指定频率

本条规定应提供的设计径流成果

自本条至条基本上是我国几十年来小水电径流分析计算工作经验的总结及其方法的

进行频率分析计算的机会实际上是很少有的

项中条中

实测或插补延长后

另外还有泥沙和蒸发

如未加特别注明一

年以上

条和的条件即由本条的

本流域相邻流域或附近水文气象相似区域圈定的范围所限制

选为降水量基本参证测站的限制条件则比较少渐次从周围

相似区域内或气候一致区内本章条

本规范以设计流域为中心

站所在的区域

其中

中的

本章条将进一步明

本条是进行频率分析计算为改变目前各地分析计算流频率分析计算作了明确的规定数字期望公式计算经验频率三点法或

用三点法

且规划设计站点比较多和频率分析计算的工作量比较大则最好应用或编制有关软件

这三条主要是关于

因为正如前已指出

延长径流系列后进行频率分析计算直接频率计算的成果一般比间接区域分析成果更符合设计

小水电水文计算普遍遇到的资料条件和我国大部分地区年降水量存在年小周期丰枯波动

年左右的规定

经验表明

定一条有实用意义的相关线定线就比较困难

条概括总结和明确规定了插补延长径流

按集水面积比例缩放移用参证测站频率分析计算成果条中

水面积比例就是通常应用最多的水文比拟法

集水面积比例缩放的方法移用参证测站频率分析计算成果和插补延长径流系列除已经过集水

多年平均降水量

枯期和最枯月降水量相应降水量

量比例逐年修正参证测站径流系列后进行频率计算但当资料十分短缺时可以统一用多年平均或

本条是进行区域综合分析计算

区域综合分析计算一是条的原则使用现行的区域综

二是根据资料条件

这两方面的工作互本规范条明确规定允许使用的区域综合图表

应用现行的区域综合图表

均值和等值线图及值分区图等值图及值及区域综合年

各地原有的年径流分区经验公式一般不宜应用特别是不宜作为设计年径流的主要依据来应

分析综合的区域天然年径流和集水面积关系

这两条是必须对已确定使用的年径流系列进行代表性分析和一致性分析

代表性

在人类活

由此曾

造成许多失误和损失但应和年代后可望回

因此浪费水资

总结过去的实际工作经验

三则

在精度要求不高时

分析中仅给出系列代表性和一致性好或不好的一般性结论是不够的还应当进一步定性或定人类活动对年径流的影响在设计径流中除必须按条的规

从全

则水电站设计装机容量必这些分析应结合条

系列均值水平系列是偏丰还是偏枯或是

此外需要注意在年降水量明显存在年以

表性年小周期丰枯波动而没有明显年以上大周期丰枯变化的

未来径流形势

偏丰还是可能偏枯

可能接近常年比较重要问题一般只要有一个

所以

一般只指各月的统计值月内分

设计年径流包括及其

量历时曲线二是用来进行年发电量等水利水能计算

不同的电站根据不同的负荷特性和电站在电力系统中的位置

际工作中

条中同倍比缩放

个原则确定

经验频率接近设计频率经验频率

年内月内实测径流资料完整或比较完整比较完整

对电站未来运行较为不利较为不利会造成未来电站大量弃水

最不利因为这会

在严

适量基流的

经综合后移用

条的规

已有的径流区域综合图表

等资料刊印的设计年径流年内分配模型

型条中的区域年降水和年径流关系

面积同设计站址集水面积量级相当的径流参证测站

其中包括插补参证年降水长系列中短缺

即使设计

转相关例如指为插补丁站某年缺测的年径流量

远离实际

练地根据千差万别的资料情况灵活应用中提及的

中广开思路

应按

游山丘区原因之二是即清的是未来电站所面临的真正的实际来水情况

符合这一基本要求所以条规定对其一般不宜进行频率计算

的实际径流特征

应用条和条所规定的移用参证测站成果和

设计站址流域同被移用站流域人类活动影响水平要求基本相同

年左右时可按条的规定相关分析对比流域

从相关图中一般都能由此定量确定同一年降水量条件下年

份作为年径流设计典型年但必须注意因为受人类活动影响较大的年径流系列不能作频率分析所以无法在没有代表年概念下确定直接将年径流设计

其设计意义在于确定当规划设计的站点以上流域发生设计频率年降水

为避免偶然性可以考虑在频率接近设计代表年频率的年降水年份中多另外进行这种统计计算时还要注意对与实测年径流系列同步的年降水量系列进行必要的系

因为我国小水电水文分析计算工作历来很少注意这个问

这些影响

所以本条仅规定应注意

梯级电

但基本方法却没有什么特算方法依然类同本章有关各条

流量历时曲线

为流量历时曲线是本规范区别于其他水文计算

径流电站中的引水式电站是在

引水口附近水库电站和抽水蓄能电站的水库是

月平均流量历时曲线的计算成果偏大旬平均流量历时曲线很少被应用且在实测径流

本条规定分级或不分级排队统计推

若分级排队一般可分

下限流量值即为各级代表流量若不分级则计算工作量很大且容易出错

设计径流

规定的综合区域日平均流量历时曲线

制备综合区域日平均流量历时曲线时选择径流参证测站的技术要求和有关规定同第章

设计径流

无因次流量指各级代表流量同多年平均流

这也是个困难应注意各参证测站的无因次或模数日平均流量历时曲线应当点绘在同一张普通格纸或对数

绘制综合区域流量历时曲线的方法

本条是关于也可用

后者对设计频率的要求比较严格即用来推求流量历时曲线的设计典型年并不一定需要按设计代

量分布的方法问题不经过同倍比缩放

年径流频率分析计算

先推求月平均流量历时曲线而最终应

地下径流补给全年丰盛

且比重较大的河流一般情况是保证率

所以应当注

为此如何把月

保证率

设计径流此外综合区

过去不少地方一直沿用形式与古典概率公式相同的

更小的值本规范统一规定应

流量保证率和

但都有样本和总体

这种流量历时曲线是规划

给出的是多年平均没有

具体做法应当是

个流量的频率曲线及其参由此

据了解

例如当分析计算已确定某电站设计频率为

为天中有天的上游来水量等于和大于

的机遇是

枯期时间统计分析时

其中不同的是设计代表年有两种

实测径流资料短缺时这里还需

保证率

各单站点设计的方便日平均流量保证率

并特别冠以参数流量历时曲线

我国很多电站实际

流量历时曲线的成果本章前

面有关条文已涉及这个问题

本条规定的中心是应根据流量变幅

即应分别选用合适的普通格纸或对数格纸

对绘制不同形式的流量历时曲线来说对数格纸能放

大高水低频或低水高频的曲线首端或尾部小水电站设计

保证率一般为

所以通常应用的多年平均日平均流量历时曲线绘制在普通格纸上也就可

枯水分析

水面积不大流域调蓄能力很低

枯水对小水电站及其电网经济效益的影响小水电规划设计特

本条从而规定

径流量或月平均流量和最小日平均流量

年内异常枯水对小水电站全年正常运行有很大的破坏作用

指异常特枯年的出现及其未来重现的可能

总的来看

率大于

一是必须应用径

流分析和流量历时曲线的成果

是必须进行专门性的枯水调查特别是仅由降水径流参证测站设计径流和推求流量历时曲线时枯调查

一般的站址野外枯水调查可以在年内

但有针对性的专门枯水调查

比较正规的枯水调查方法同洪水调查有关组织

水利电力出版社

应当注意

量是在什么相应降水量情况下的枯水流量

设计洪水

条的如

峰高量小面窄历时短

适用于大中型

规定的中心和重点一是要求充分应用

必须对洪

可以

要求和简化用矩法初

本章虽

在形式上内容不多

所以本规范有关条文比较详尽和全

本章相应条款即可同时

仅淡化了第条和第

但据

的规定

或综合选定

万工程等别

工程规模建筑物一般属永久性主要建筑物按

常运用洪水标准为

可参照平原水库拦河水闸

用洪水标准为年和年非常运用洪水标准为年

这四条是

相对谨慎可靠的方法

条规定一是应根据经审定的全国

确定计算参数和计算方

都还应根据参证测站实测暴雨洪水资料分析综合选定

主要编印或包括在以下一些图册中

简称年编制

?暴雨径流查算图表?

对这些暴雨洪水查算图表需要说明以下几点

彼此之间经过多次反

所以

推求设计洪峰流量大于

还必须按的规定

应注意这里仅指由合适的径流参证测站

所以设计雨量应根据暴雨洪水查算图表确定

成果的问题比较少

多为这样规定便

过去各相关规范和资料对此没有明确区分本规范特将设计暴雨历时分为成洪暴雨历时和

历时成洪暴雨量直接决定一次洪水过程洪量大小

雨强度直接决定一次洪峰大小

小流域多为一般应以设计

设计洪水需要的是面雨量即使在以

暴雨的定点定面点面折减系数分别为和

设计暴雨点面折减系数的具体数值和有关使用规则

正外延和峰量关系等

条中建议作出的暴雨历时频率

射状的非平行折线簇折点在历时为

集水面积

线推估设计流域的设计洪

对以上线

关系点据比较散乱

所以条的规定

而不能把区域综合

转折点大约在和

本规范在

将对

水文计算算例 (2)

精心整理 (一)全线典型大中桥水文计算分析 水文计算的基本步骤: -对有水文资料的河流收集水文资料 -确定桥位在地形图上的位置 -确定主流-勾绘汇水面积(五万分之一地形图) -计算流量 -各水文参数计算 1.***大桥水文计算 (1).设计流量计算 ① 洪峰流量汇水面积相关法公式 ② n N N F K Q =…………………………………(1) 式中:Q N ——某频率洪峰流量(米3/秒). n 、K N ——为重现期为N 的经验参数 F ——流域面积(平方公里). ② 综合参数法: ηλψ3N H F βαCN Q mN = (2) 其中:Q mN ——某频率的洪峰流量(米3/秒). N ——设计重现期(年). ψ——流域形状系数,2 L F =ψ L.——主沟长度 H 3N ——设计重现期为N 的3小时面雨量(毫米). C 、α、β、γ、η——分区综合经验参数指数.

式中参数的确定: ③ 原交通部公路科学研究所推理公式法: F S Q n P P ??? ??-≡μτ278.0…………………………………(3) 式中:Q p ——某频率洪峰流量(米3/秒). S P ——某一频率雨力即最大1小时暴雨强度(毫米/小时). τ——流域汇流时间(小时). μ——损失参数(毫米/小时). F ——流域面积(平方公里). n ——暴雨递减指数. 0.278:单位换算系数. ④ 全国水文分区经验公式: 公式的基本形式:n KF Q =%2。 (4) 根据分区表查90区的对应值:n 值按取0.72,K 值取13.8,%2%118.1Q Q = ⑤ 采用全国水文分区经验公式 0n Q CF =,)1(%10%1K C Q Q v +=………………………………(5) 根据分区表查90区的对应值。查得1.6=C ,65.0=n 则65.001.6F Q =,55.1=v C s C /v C =3.5,查得K1%=8.16,0 %1648.13Q Q = 流量计算结果 序 号 断面位置 河名及桥名 汇水面积F (Km 2) 河沟长L (Km ) 河沟纵坡j 公式① (m 3/s) 公式② (m 3/s) 公式③ (m 3/s) 公式④ (m 3/s) 采用值 (m 3/s) 1 K51+600. 0 ***大桥 18.2 8.5 0.0189 432.2 237.2 499.4 131.5 499.4 2 K51+860. 0 ***大桥 20.12 8.8 0.0189 462.7 252.3 548.8 141.4 548.8 3 K52+060. ***大桥 20.12 8.8 0.0189 462.7 252.3 548.8 141.4 548.8

水文自动测报系统规范

水文自动测报系统规范 1总则 1.0.1为适应我国水文自动测报系统的发展,做好水文自动测报系统规划、设计、建设和运行管理,统一技术标准,特制定本规范。 1.0.2本规范适用于江河、湖泊、水库、水电站等水文自动测报系统的规划、设计、建设和运行管理。 1.0.3水文自动测报系统属于应用遥测、通信、计算机技术,完成江河流域降水量、水位、流量、闸门开度等数据的实时采集、报送和处理的信息系统。 1.0.4按水文自动测报系统规模和性质的不同可分为水文自动测报基本系统和水文自动测报网。水文自动测报基本系统由中心站(包括监测站)、遥测站、信道(包括中继站)组成。水文自动测报网是通过计算机的标准接口和各种信道,把若干个基本系统联接起来,组成进行数据交换的自动测报网络。 1.O.5新建水利、水电工程需要建设的水文自动测报系统,应作为工程规划设计的组成部分,并将系统的建设纳入工程建设一并实施。 1.O.6本规范中涉及水文测验、水文情报预报的精度要求,应按有关的国家标准和行业标准的规定执行。 2水文自动测报系统规划和可行性研究报告的编制 2.1 基本资料收集和可行性论证 2.1.1进行水文自动测报系统的规划设计,应收集下列基本资料: (1)计划建设水文自动测报系统地区的大比例尺地形图。 (2)流域内已建水文站网、报汛站网、邻近地区遥测站网方面的资料。 (3)流域的气象、水文资料:包括重要水文站的最高最低水位、短历时暴雨雨强、洪水产流汇流时间、洪水传播时间、防洪标准和洪水灾害,降雪量占降水量的百分比,最高、最低气温,相对湿度的 平均值和最大、最小值,日照时数最少的持续时间等特征资料。 (4)雷电情况与地震烈度。 (5)已建和计划建设的水利工程布局,以及重要水利工程的技术资料。 (6)现行的水文预报、防洪调度方案,预报和调度工作的要求。 (7)流域内无线电台设置情况和发展规划。 (8)流域的社会经济、交通、供电和通信情况。 2.1.2建设水文自动测报系统的可行性论证包括: (1)依据建设目标、功能要求,所在地区的水文气象特征与地形条件,当前国内外的技术、

水文计算算例

(一)全线典型大中桥水文计算分析 水文计算的基本步骤: -对有水文资料的河流收集水文资料 -确定桥位在地形图上的位置 -确定主流-勾绘汇水面积(五万分之一地形图) -计算流量 -各水文参数计算 1.***大桥水文计算 (1). 设计流量计算 ① 洪峰流量汇水面积相关法公式 n N N F K Q = (1) 式中:Q N ——某频率洪峰流量(米3/秒). n 、K N ——为重现期为N 的经验参数 F ——流域面积(平方公里). 1.6061.0n 871%==-K ;)中查得:附表(用水文手册》手册》和《榆林地区实由《延安地区实用水文 ② 综合参数法: ηλψ3N H F βαCN Q mN = (2) 其中:Q mN ——某频率的洪峰流量(米3/秒). N ——设计重现期(年). ψ——流域形状系数,2 L F =ψ

L.——主沟长度 H 3N ——设计重现期为N 的3小时面雨量(毫米). C 、α、β、γ、η——分区综合经验参数指数. 式中参数的确定: ;、、、、)中查得: 附表(用水文手册》手册》和《榆林地区实由《延安地区实用水文49.011.058.015.035.4C 97=====-ηγβα ③ 原交通部公路科学研究所推理公式法: F S Q n P P ??? ??-≡μτ278.0…………………………………(3) 式中:Q p ——某频率洪峰流量(米3/秒). S P ——某一频率雨力即最大1小时暴雨强度(毫米/小时). τ——流域汇流时间(小时). μ——损失参数(毫米/小时). F ——流域面积(平方公里). n ——暴雨递减指数. 0.278:单位换算系数. 16 .02283.0111%1334.016.0334.0/44.82303.198.065.01401??? ? ???=???? ??====?=?====j L j L K K h mm S K u K mm S P β γ τβγ,由表三查得:,由表二查得:中查得:用水文手册》手册》和《榆林地区实由《延安地区实用水文

水文监测系统

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 水文监测工作中的问题与对策 水是生命之源,在人类的生存和发展中发挥着不可替代的作用,但是当前由水而引发的自然灾害严重威胁人们的生命和财产安全,造成了大量的财产损失和人员伤亡,因此做好水文监测工作成为社会主义现代化建设中的一个重要课题。水文监测工作涉及的范围比较广泛,且需要依靠较高的科学技术手段作为保障,特别是近年来随着水文灾害的不断加剧,对水文监测工作的质量提出了更高的要求。为此,针对当前水文监测中存在的问题,相关部门必须要加强认识,积极采取有效措施加以解决和应对,促进水文监测工作的顺利展开和发展。 1水文监测工作中的问题 1.1监测设施设备的测洪能力较低 自从1998年发生特大洪灾以来,我国的水文监测工作取得了一定的发展,用于水文监测的基础设施建设水平有了大幅度的提高,并更新和改造了大型动力测船以及水文缆道等,使得水文监测能力和质量大大提高。但是从整体上来看,水文监测设施设备的测洪能力依然较低,主要表现在以下方面:一是改造之后的测洪能力只是能够测量到设站以来的最大洪水,对于超标洪水的监测远远不够:二是对于一些大洪水或者是特大洪水的监测依然采用的是传统的浮标测洪法,监测质量低下。 1.2技术手段较为落后

在当前的水文监测中,不少监测站依然是利用测深杆来测量水深,利用流速仪来测量水流速度,利用横式采样器来采取沙样等。这些测量方式在中低水测量中的准确度较高,但是监测大洪水时往往存在着测速和取沙定位困难、精准度较差的问题。并且由于单次测验所耗费的时间较长,劳动强度较大,且所测量的数据无法自动传输给计算机,使得水文监测工作的质量和效率不高。 1.3水文监测人员的综合素质较低 水文监测工作的好坏在很大程度上取决于水文监测人员的专业水平和自身能力,但是当前很多的水文监测人员综合素质较低,在很大程度上影响和制约了水文监测工作的质量和效率。主要表现为水文监测人员不能与时俱进,在业务技术、思想政治、以及职业道德等方面存在着一定的问题和缺陷,使得水文监测的技术水平受到限制,再加上缺乏足够的责任心和责任感,在实际的工作中存在着晚测、漏测、误测等现象,使得水文监测资料的真实性无法得到保障,对以后的防灾减灾工作产生了不利影响。 1.4科技成果的推广转化工作不到位 当前我国在水文监测方面所投入的经费不足,导致水文实验研究以及科技成果的推广转化工作比较薄弱,影响了水文监测工作质量的提高。到目前为止,我国的水文工作人员在水平升级、小发明、以及小创造等活动中研发出了一批有较强实用性的科研成果,但是却仅仅局限于研发单位的内部使用,并没有得到广泛推广,无法充分发挥其价值和作用。 2水文监测问题的对策 2.1加强水文监测队伍建设 首先,要建立一支高素质高水平的职工队伍,从职称、学历、技能等方面入手,对人才结构进行合理调整,实现人力资源的优化配置,从整体上提高水文监测职工队伍的综合素质。并且要加强对职工的教育和培训工作,提高他们的专业技能和责任意识,以满足水文监测工作的实际需要;同时,还要注重对领导队伍的建设工作,提高领导管理的质量和水平。具

小型水力发电站水文计算规范

中华人民共和国行业标准 SL 77-94 小型水力发电站水文计算规范 Hydrological calculation norms for small hydro power 1994-04-05发布 1994-05-01实施中华人民共和国水利部发布 主编单位:水利部农村电气化研究所 批准部门:中华人民共和国水利部 中华人民共和国水利部 关于发布《小型水力发电站水文计算规范》(SL 77-94)的通知 水科教[1994]120号 由水利部农村电气化研究所主编的《小型水力发电站水文计算规范》,经审查,批准为水利行业标准,其编号为SL 77-94.该标准从1994年5月1日起实施.实行中如发现问题,请及时反映给主编部门;该规范由水利部水电及农村电气化司负责解释,由水利电力出版社出版发行.1994年4月5日 目次 1总则 2设计径流 3流量历时曲线 4枯水分析 5设计洪水 6水位流量关系 7泥沙,蒸发,冰情及其他 8成果合理性检查 附录A装机容量小于500kW和小于100kW的小水电站的水文分析计算 附加说明 1总则 1.0.1为保证小型水力发电站(以下简称"小水电"或"小水电站")水文分析计算质量,提高成果的可靠性,结合小水电特点,制定本规范. 1.0.2本规范适用于装机容量 2.5万kW以下(含2.5万kW)各类小水电站可行性研究和初步设计阶段的水文分析计算,规划阶段亦应参照使用.对装机容量小于500kW的电站,可根据实际情况适当简化内容,放宽要求;对小于100kW的微型电站,可参照执行.详见附录A. 1.0.3小水电水文分析计算的基本资料应包括以下内容: (1)水文,气象资料; (2)流域自然地理,河流特征资料; (3)流域水利水电工程开发等人类活动影响资料; (4)水文,气象区域综合分析研究成果; (5)其他有关资料. 1.0.4小水电水文分析计算必须在认真调查和搜集水文,气象等基本资料的基础上,根据资料条件和工程特点,正确应用我国现行的中小流域水文分析计算方法和经省级以上行政主管部门审定的区域综合分析研究成果及其配套查算图表. 1.0.5小水电水文分析计算报告,应按照本规范内容逐章编写,依次说明流域情况,参证测站,引用资料,计算方法及其参数定量,明确给出分析计算结论,顺序列入全部采用成果和主要图表.

水文监测系统

水文监测工作中的问题与对策 水是生命之源,在人类的生存和发展中发挥着不可替代的作用,但是当前由水而引发的自然灾害严重威胁人们的生命和财产安全,造成了大量的财产损失和人员伤亡,因此做好水文监测工作成为社会主义现代化建设中的一个重要课题。水文监测工作涉及的范围比较广泛,且需要依靠较高的科学技术手段作为保障,特别是近年来随着水文灾害的不断加剧,对水文监测工作的质量提出了更高的要求。为此,针对当前水文监测中存在的问题,相关部门必须要加强认识,积极采取有效措施加以解决和应对,促进水文监测工作的顺利展开和发展。 1 水文监测工作中的问题 1.1 监测设施设备的测洪能力较低 自从1998 年发生特大洪灾以来,我国的水文监测工作取得了一定的发展,用于水文监测的基础设施建设水平有了大幅度的提高,并更新和改造了大型动力测船以及水文缆道等,使得水文监测能力和质量大大提高。但是从整体上来看,水文监测设施设备的测洪能力依然较低,主要表现在以下方面:一是改造之后的测洪能力只是能够测量到设站以来的最大洪水,对于超标洪水的监测远远不够:二是对于一些大洪水或者是特大洪水的监测依然采用的是传统的浮标测洪法,监测质量低下。 1.2 技术手段较为落后 在当前的水文监测中,不少监测站依然是利用测深杆来测量水深,利用流速仪来测量水流速度,利用横式采样器来采取沙样等。这些测量方式在中低水测量中的准确度较高,但是监测大洪水时往往存在着测速和取沙定位困难、精准度较差的问题。并且由于单次测验所耗费的时间较长,劳动强度较大,且所测量的数据无法自动传输给计算机,使得水文监测工作的质量和效率不高。 1.3 水文监测人员的综合素质较低水文监测工作的好坏在很大程度上取决于水文监测人员的专业水平和自身能力,但是当前很多的水文监测人员综合素质较低,在很大程度上影响和制约了水文监测工作的质量和效率。主要表现为水文监测人员不能与时俱进,在业务技术、思想政治、以及职业道德等方面存在着一定的问题和缺陷,使得水文监测的技术水平受到限制,再加上缺乏足够的责任心和责任感,在实际的

桥梁工程水文计算

2、水文计算 基本资料:桥位于此稳定河段,设计流量31%5500/S Q Q m s ==,设计水位 457.00S H m =,河槽流速 3.11/s c v m =,河槽流量3 C Q =4722m /s ,河槽宽度c B 159.98m =,河槽平均水深c h 9.49m =,天然桥下平均流速0 3.00/M v m s =,断 面平均流速=2.61m/s υ,水面宽度B=180m ,河岸凹凸岸曲率半径的平均值 R=430m ,桥下河槽最大水深12.39mc h m =。 2.1桥孔长度 根据我国公路桥梁最小桥孔净长度Lj 公式计算。 该桥在稳定河段,查表知K=0.84,n=0.90。有明显的河槽宽度Bc ,则有: n 0.90 j s c c L =K (Q /Q )B =0.84(55004722) 159.98=154.16m ?÷? 换算成平面半径R=1500的圆曲线上最小桥孔净长度为154.23m 。 2.2桥孔布置图 根据河床断面形态,将左岸桥台桩号布置在K52+325.00。取4孔40m 预应力混凝土T 形梁为上部结构;钻孔灌注桩双柱式桥墩,桩径为1.6m ,墩径取1.4m ;各墩位置和桩号如图1所示;右桥台桩号为K52+485.00;该桥孔布置方案的桥孔净长度为155.80m 大于桥孔净长度154.23m ,故此桥孔布置方案是合理的。 2.3桥面最低高程 河槽弗汝德系数Fr= 2 2 3.119.809.49 =0.104c c v gh ?= <1.0。即,设计流量为缓流。桥前出现 壅水而不出现桥墩迎水面的急流冲击高度。 2.3.1桥前壅水高度?Z 和桥下壅水高度?Zq

【精选】水文水利计算

第一章绪论 1水文水利计算分哪几个阶段?任务都是什么? 答:规划设计阶段水文水利计算的主要任务是合理地确定工程措施的规模。 施工阶段的任务是将规划设计好的建筑物建成,将各项非工程措施付诸实施 管理运用阶段的任务是充分发挥已成水利措施的作用。 2我国水资源特点? 答:一)水资源总量多,但人均、亩均占有量少(二)水资源地区分布不均匀,水土资源配 置不均衡(三)水资源年际、年内变化大,水旱灾害频繁四)水土流失和泥沙淤积严重(五)天然水质好,但人为污染严重 3水文计算与水文预报的区别于联系? 答:水文分析与计算和水文预报都是解决预报性质的任务。 (1)预见期不同,水文计算要求预估未来几十年甚至几百年内的情况,水文预报只能预报 几天或一个月内的未来情况。(2)采用方法不同,水文计算主要采用探讨统计规律性的统计 方法,水文预报采用探讨动态规律性的方法。 4水文分析与计算必须研究的问题? 答:(1)决定各种水文特征值的数量大小。(2)确定该特征值在时间上的分配过程。(3)确定该特征值在空间上的分布方式。(4)估算人类活动对水文过程及环境的影响。 次重点:广义上讲,水文水利计算学科的基本任务就是分析研究水文规律,为充分开发利用水资源、治理水旱灾害和保护水环境工作提供科学的依据。 第二章水文循环及径流形成 1水循环种类:大循环、小循环 次重点定义:存在于地球上各种水体中的水,在太阳辐射与地心引力的作用下,以蒸发、降水、入渗和径流等方式进行的往复交替的运动过程,称为水循环或水分循环。 2水量平衡定义,地球上任意区域在一定时段内,进入的水量与输出的水量之差 等于该区域内的蓄水变化量,这一关系叫做水量平衡。 3若以地球陆地作为研究对象,其水量平衡方程式为 多年平均情况下的水量平衡方程式若以地球海洋作为研究 对象,其水量平衡方程式为多年平均全球水量平衡方程式 流域水量平衡的一般方程式如下:若流域为闭合流域, 则流域多年平均p=E+R 4干流、支流和流域内的湖泊、沼泽彼此连接成一个庞大的系统,称为水系。 5河流一般分为河源、上游、中游、下游及河口五段。

水文计算书

新孟公路武陟至温县段初步设计 沁河特大桥 水文计算书 计算: 复核: 审核: 1999年10月

目录 一概述…………………………………….1-6页二水文计算……………………………….7-10页三桥孔径计算……………………………11-13页四洪水位计算……………………………14-16页五冲刷计算………………………….….17-23页六设计采用值……………………………….24页

第一章概述 沁河发源于山西省沁源县大岳山南麓,流经安泽、沁水、阳城、晋城、沁阳、博爱、温县、武陟,汇入黄河,全长485公里,流域面积13532平方公里,沁河小董站多年平均年总水量12亿立方米,平均年输沙量814万吨,平均含沙量 6.9公斤/立方米,实测最大流量4130秒/立方米(1982年)。 沁河济源市五龙口以下为防洪河段,长90公里,据查,沁河提防始建于明太祖洪武十八年(公元1385年),解放后,经过大力整修延长,目前两岸现有提防总长161.63公里,其中,左岸提防上起济源逯村,下至武陟的马家止,长76.29公里,右岸上起济源五龙口,下至武陟方陵止,长85.34公里,共有险工44处,堤保护岸691个,工程长42.24公里,裹护长29.70公里,现马蓬至方陵大堤加固工程即将开工。 据1986年《河南年鉴》1985年防汛任务,对沁河则保证小董站4000 m3/s洪水不决口,遇到超标准洪水,保证北岸不决口,南岸自然漫溢。据《河南省沁河河道地图》记载,历史上沁河发生特大洪水至少三次,具体情况见表1-1。 沁河武陟小董站解放以来的历年汛期最高水位、最大流量见表1-2。 新(乡)孟(州)公路武陟至温县段平原区二级公

水文水情自动测报系统

水文(水资源)自动测报系统解决方案 1 组网方案简述 1.1 水文自动测报系统概述 水文自动测报系统属于应用现代遥测、通信、计算机技术,是完成江河流域降雨量、蒸发量、河流湖泊水位、海洋潮位、流量(流速)、风向风速、水质、闸坝的闸门开度、渗压、土壤墒情等数据的实时采集、报送和处理应用的信息系统,属于非工程性防洪措施。它能将某一流域或区域内的水文气象、水资源信息在短时间内传递至决策机构,以便进行洪水预报和水资源优化调度,减少水害损失,提高水资源的利用率,可以产生巨大的社会效益和经济效益。 根据水文自动测报系统规模和性质的不同,可将其分为水文自动测报基本系统和水文自动测报网两部分。水文自动测报基本系统由中心站、遥测站(包括监测站)、通信系统(包括中继站)组成。水文自动测报网是通过计算机的标准接口和各种信道,把若干个基本系统连接起来,组成进行数据交换共享的水文自动测报网络。 水文自动测报系统多用在重点防洪地区及大型水利工程上,特别是在流域性、区域性的水文数据采集、传输和处理、应用的自动化方面起到了积极作用。 我国的水文自动测报系统从70年代末起步,在浙江省浦阳江流域首先应用。80年人初期为引进阶段,先后在淮河王家坝区间、长江流域汉江丹江口水库、黄河的三门峡至花园口建成进口设备的水情自动测报系统。1985年以后为国产设备研制、定型阶段,有淮河正阳关以上流域水文自动测报系统、黄河流域陆浑小区自报式水情自动测报系统、长江流域汉江的黄龙滩水库水情自动测报系统等。90年代后为推广应用阶段。 水文自动测报系统包括三种工作制式:自报式、查询应答式和混合式。 自报式工作制式: 在遥测站设备控制下每当被测参数发生一个规定的增减量变化或按设定的时间间隔,即

水文计算步骤

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 推理公式法计算设计洪峰流量 推理公式法是基于暴雨形成洪水的基本原理推求设计洪水的一种方法。 1.推理公式法的基本原理 推理公式法计算设计洪峰流量是联解如下一组方程 ) 6.7.8(278.0)5.7.8(,278.0) 4.7.8(,278.04 /13/11m c c n c p m c n p Q mJ L t F t t S Q t F S =

图8.7.1 推理公式法计算设计洪峰流量流程图 ②计算设计暴雨的S p、x TP,进而由损失参数μ计算设计净雨的T B、R B。 ③将F、L、J、R B、T B、m代入式(8.7.4)(8.7.5)和(8.7.6),其中仅剩下Q m、τ、R s,τ未知,但R s,τ与τ有关,故可求解。 ④用试算法求解。先设一个Q m,代入式(8.7.6)得到一个相应的τ,将它与t c 比较,判断属于何种汇流情况,再将该τ值代入式(8.7.4)或式(8.7.5),又求得一个Q m,若与假设的一致(误差不超过1%),则该Q m及τ即为所求;否则,另设Q m仿以上步骤试算,直到两式都能共同满足为止。 试算法计算框图如图8.7.1。 2. 图解交点法 该法是对(8.7.4)(8.7.5)和(8.7.6)分别作曲线Q m~τ及τ~ Q m,点绘在一张图上,如图8.7.2所示。两线交点的读数显然同时满足式(8.7.4)(8.7.5)和(8.7.6),因此交点读数Q m、τ即为该方程组的解。 创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

小型水力发电站水文计算规范

【题名】: 小型水力发电站水文计算规范 【副题名】: Hydrological calculation norms for small hydro power 【起草单位】: 水利部农村电气化研究所主编 【标准号】: SL 77-94 【代替标准】: 【颁布部门】: 中华人民共和国水利部发布 【发布日期】: 1994-04-05发布 【实施日期】: 1994-05-01实施 【批准文号】: 水科教[1994]120号 【批准文件】: 中华人民共和国水利部关于发布《小型水力发电站水文计算规范》(SL 77-94)的通知 水科教[1994]120号 由水利部农村电气化研究所主编的《小型水力发电站水文计算规范》,经审查,批准为水利行业标准,其编号为SL77-94。该标准从1994年5月1日起实施。实行中如发现问题,请及时反映给主编部门;该规范由水利部水电及农村电气化司负责解释,由水利电力出版社出版发行。 1994年4月5日 【全文】: 小型水力发电站水文计算规范 1总则 1.0.1为保证小型水力发电站(以下简称“小水电”或“小水电站”)水文分析计算质量,提高成果的可靠性,结合小水电特点,制定本规范。 1.0.2本规范适用于装机容量 2.5万kW以下(含2.5万kW)

各类小水电站可行性研究和初步设计阶段的水文分析计算,规划阶段亦应参照使用。对装机容量小于500kW的电站,可根据实际情况适当简化内容,放宽要求;对小于100kW的微型电站,可参照执行。详见附录A。 1.0.3小水电水文分析计算的基本资料应包括以下内容。 (l)水文、气象资料; (2)流域自然地理、河流特征资料; (3)流域水利水电工程开发等人类活动影响资料; (4)水文、气象区域综合分析研究成果; (5)其他有关资料。 1.0.4小水电水文分析计算必须在认真调查和搜集水文、气象等基本资料的基础上,根据资料条件和工程特点,正确应用我国现行的中小流域水文分析计算方法和经省级以上行政主管部门审定的区域综合分析研究成果及其配套查算图表。 1.0.5小水电水文分析计算报告,应按照本规范内容逐章编写,依次说明流域情况、参证测站、引用资料、计算方法及其参数定量,明确给出分析计算结论,顺序列入全部采用成果 和主要图表。 1.0.6小水电站装机容量、调蓄库容、集水面积任一项指标达到大中型水利水电工程级别下限的,水文分析计算按《水利水电工程水文计算规范》(SDJ214-83)和《水利水电工程设计洪水计算规范》(SL44-93)执行。 2设计径流 2.0.1小水电水文分析计算,应提供以下全部或部分的基本设计径流成果: (1)多年平均和各指定频率或各设计代表年的年径流、汛期径流、枯期径流、最枯月径流; (2)各设计代表年的年内分配。 2.0.2设计径流,根据不同资料条件,主要应采用以下方法: (1)当站址有足够径流资料时,进行频率分析计算; (2)当站址上下游、本流域、相邻流域或附近水文气象相似区域内有径流参证测站时,按集水面积比例缩放移用参证测站频率分析计算成果; (3)当无以上资料条件时,进行区域综合分析计算。 2.0.3在n项连续径流系列中,按由大至小顺序排列的第m 项经验频率Pm用数学期望公式计算:

水文分析与计算

水文分析与计算 不同工程要求估算的水文设计特征值不尽相同。桥梁工程要求估算所在河段可能出现的设计最高水位和最大流量,以便合理决定桥梁的高程和跨度;防洪工程为权衡下游和自身的安全、经济和风险,要求估算工程未来运行时期可能遇到的各种稀遇的洪水;灌溉、发电、供水、航运等工程需要知道所在河流可能提供的水量和水能蕴藏量,以确定灌溉面积、发电量、城市或工矿企业供水量和航运发展规模。工程的运行时期可长达几十至几百年,不可能象水文预报那样给出该时期内某一水文特征值出现的具体时间和大小,而是用水文统计的方法,估算在该时期中可能出现的某一设计标准的水文特征值。 一般说,运用水文统计方法所依据的样本很少,抽样误差较大,往往不能满足生产需要。因此,不能单纯根据工程所在地点的水文资料进行计算,还必须对计算过程和计算结果进行充分的合理性分析,才能较可靠地求得工程所在地的设计水文数据。因此,也常称水文计算为水文分析与计算。 一、设计年径流计算 即估算符合设计标准的通过河流某一指定断面的全年和各时段的径流量及其月旬分配,为水资源开发利用的水利规划和工程设计提供科学依据。计算主要内容包括:①各种

设计标准的年最大设计洪峰流量和不同时段设计洪量;②符合设计要求的洪水过程线;③当梯级水库或单一水库下游有防洪要求时,拟定一种或几种满足设计要求的设计洪水的地区组成;④年内不同时期(如某些月份、或丰水期、枯水期和施工期等)的设计洪水。 二、设计洪水计算 即计算符合某一地点指定的防洪设计标准的洪水数值,为防洪规划或防洪工程设计提供可靠的水文数据。 计算的主要内容有:①各种历时的设计地点的雨量或流域平均面雨量;②它们的时程分配和地区分布;③大型工程和重要的中小型工程,还要求估算指定流域的可能最大暴雨,供推算可能最大洪水之用。 三、设计暴雨计算 并根据设计暴雨计算结果,推求相应的设计洪水和涝水。算主要内容有:确定某一设计标准的各年输沙量及其年内分配,以估计水库库容减少情况和工程寿命;估算水库和它的上下游河道冲淤变化,为水工建筑物布设和水库运用方式的确定提供依据。例如,通过合理布设排沙底孔和规定水库运用方式,有助于利用异重流排沙(见河流泥沙、水库淤积)。

(完整版)水文水利计算复习资料

水文计算 1.水文现象的基本特征及水文学的研究方法是什么. 基本规律(1)成因规律(确定性规律) (2)统计规律(随机性规律) (3)地区性规律 研究方法成因分析法、数理统计法、地理综合法 2.流域平均雨量计算有哪几种方法. 算数平均法、泰森多边形法、等雨量线图法 3.径流有哪些表示方法. 流量(Q):单位时间通过河流某断面的水量 径流量(W):时段?t内通过河流某一断面的总水量 径流深(R):径流量平铺在整个流域面积上的水层深度 R=QT/1000F 径流模数(M):流域出口断面流量与流域面积的比值 M=1000Q/F 径流系数(α):某一时段的径流深与相应的降雨深度的比值 α =R/P 4.生么是概率、频率?二者的关系。 概率:表示随机事件出现的可能性或几率,是用来度量可 能性大小的数值,常用百分数表示。 频率:一定程度上反映了事件出现的可能性大小。 二者关系:概率是理论值,是固定不变的,可以按照公式预先计

算出来。具有先验性;而频率是计算值,是可变的(具有明显的随机性)、试验的(不符合古典概率公式的事件,他们的概率只能通过多次观测试验来推求)。概率是指随机变量某值在总体中的出现机会;频率是指随机变量某值在样本中的出现机会。当样本足够大时,频率具有一定的稳定性;当样本无限增大时,频率趋于概率。因此,频率可以作为概率的近似值。 5.重现期(T )与频率(P )有什么关系,P=80%的枯水年,其重现期(T)为多少年?含有是什么。 频率与重现期的关系有两种: (1)当研究暴雨洪水问题时,研究的目的是防洪,一般设计频率P <50%,则 T=1/P (X ≥Xp) T---重现期 P---频率(%) (2)当考虑水库兴利调节研究枯水问题时,研究的目的是灌溉、发电、供水等兴利目的,更关心小于等于某一数值出现的可能性大小,设计频率P >50%,则 )(1)x x (11p p x x P P T <=≥-= P=80%的枯水年,(年)5%8011=-=T 它表示小于等于P =80%的枯水流量在长时期内平均5年出现一次。 6.在频率计算中,为什么要给经验频率曲线选配一条“理论”频率曲线?

水库水文计算全过程

2水文 2.1流域概况 ××水库位于××西南方向,坝址高程1760m,径流面积0.78km2,主河长1.6km,平均坡降为88‰,流域平均高程1880m,径流量条形状。 ××水库属珠江水系西洋江流域源头支流,地处珠江流域与红河流域的分水岭上。河流自北向南,在坝址下游500m向西转,进入溶洞,流入其龙得河,又通过地下暗河进入头河,汇入西洋江,流域水系分布详见《××水库水系图》。 ××水库流域地处中低山区,森林种类较多,主要分布有灌木、杂草、杉木等植物,目前,森林林植被完好,覆盖率在80%以上,径流内有少量的泉点出露,来水主要靠地表径流。 2.2气象特性 西洋江流域属中亚热带高原季风气候区。夏季受东南太平洋和孟加拉湾暖湿气流影响,5~10间湿热多雨,水量充沛,其降水量占年降水量的85%左右,此期间又多集中在6—8月,占全年降水量的50%左右。冬季,受周围山脉作屏障作用,阻滞北方冷空气的入侵,使本流域干燥,凉爽少雨(11—4月),据××县象站资料统计,多年平均降水量为1046.00mm,蒸发量(d=20m)为1637.6mm,多年平均气温为16.7℃,极高最高气温为36.7℃,最低为-5.5℃。多年无霜期为306天,雨季相对湿率82%,绝对浊率19.9hp a,旱季相对湿度76%,绝 页脚内容22

对湿度10.8hp a。以上结果表明,流域具有气候温和,降水量年际变化小,年内分配均匀,集中程度高,干湿分明的特点。该气候特点决定了径流由降水补给,径流与降水规律一致。 2.3年径流分析 拟建的××水库坝址附近属无测水文气象资料地区,水库设计年径流量根据其地理位置及气候成固相似性的特点,采用查径流深等直线图和移用西洋街(二)站径流模数两种方法分析,再作综合论证后取值。 2.3.1移西洋街(二)站径流模数法 西洋街(二)站属国家基本水文站,观测内客有水位、流量、降水、蒸发,观制面积2473km2。该站有1964—2001年的流量统计系列,且该系列已具有一定的代表性,统计年限满足规范要求,用适线法将该径流系列进行频率计算,矩法初估参数,取倍比系数C5=2.5C V,计算结果如表2-1 页脚内容22

水文监测系统简介

水文监测系统技术建议方案 一、概述 水文站是观测及搜集河流、湖泊、水库等水体的水文、气象资料的基层水文机构。水文站观测的水文要素包括水位、流速、流向、波浪、含沙量、水温、冰情、地下水、水质等;气象要素包括降水量、蒸发量、气温、湿度、气压和风等。水文站的建设问题,一直是水文管理部门所关心的重要问题。水文站建设后,可对辖区水文信息进行实时监测,收集实测资料,探索基本水文规律,对水资源评价、水文计算、水文情报、水文预报和水文科学研究,提供准确、及时的数据信息。 系统建设目标如下: 1)实现对各类监测信息(含现场视频、图像)进行实时性采集,以及数据超限的报警通知,保障系统信息的高效性、及时性、准确性、充分性。 2)所有观测点数据通过无线网络直接传输至监控中心“水文自动监测系统”,在电子地图可视化界面中直观显示各测站雨水情信息、水位、流速等情况及警戒状态;在发生报警时,系统可自动发出报警信号,如:系统弹出信息、发出声音提示、数据颜色变化,向相关部门指定人员发出报警短息通知。 3)实现系统加密通讯,尤其对边疆地区数据通讯进行加密处理,防止水文数据泄露。 4)系统开发要坚持先进实用、稳定可靠、安全的原则,并具备良好扩展性、兼容性和开放性,为系统后期扩展升级、向其他相关平台系统提供数据共享服务提供规范性接口。 二、系统总体设计 2.1 系统组成结构 “水文自动监测系统”的建设,包括现场站点各传感器、信息采集设备以及监控中心信息接收及显示、应用系统的建设。现场测点信息采集与传输设备完成传感器信息的实时采集、基本分析处理(如警戒状态)与显示,并负责将数据以无线/有线方式传输到监控中心,通过软件进行接收、显示以及数据的存储、分析、处理与预警。 2.2系统拓朴图(示例)

水文计算步骤资料

水文计算步骤

推理公式法计算设计洪峰流量 推理公式法是基于暴雨形成洪水的基本原理推求设计洪水的一种方法。 1.推理公式法的基本原理 推理公式法计算设计洪峰流量是联解如下一组方程 ) 6.7.8(278.0)5.7.8(,278.0)4.7.8(,278.04/13/11m c c n c p m c n p Q mJ L t F t t S Q t F S =

收集于网络,如有侵权请联系管理员删除 图8.7.1 推理公式法计算设计洪峰流量流程图 ② 计算设计暴雨的S p 、x TP ,进而由损失参数μ计算设计净雨的T B 、R B 。 ③ 将F 、L 、J 、R B 、T B 、m 代入式(8.7.4)(8.7.5)和(8.7.6),其中仅剩下Q m 、τ、R s,τ未知,但R s,τ与τ有关,故可求解。 ④ 用试算法求解。先设一个Q m ,代入式(8.7.6)得到一个相应的τ,将它与t c 比较,判断属于何种汇流情况,再将该τ值代入式(8.7.4)或式(8.7.5),又求得一个Q m ,若与假设的一致(误差不超过1%),则该Q m 及τ即为所求;否则,另设Q m 仿以上步骤试算,直到两式都能共同满足为止。 试算法计算框图如图8.7.1。 2. 图解交点法 该法是对(8.7.4)(8.7.5)和(8.7.6)分别作曲线Q m ~τ及τ~ Q m ,点绘在一张图上,如图8.7.2所示。两线交点的读数显然同时满足式(8.7.4)(8.7.5)和(8.7.6),因此交点读数Q m 、τ即为该方程组的解。 图8.7.2 交点法推求洪峰流量示意图 【例8.3】江西省××流域上需要建小水库一座,要求用推理公式法推求百年一遇设计 洪峰流量。 计算步骤如下: 1. 流域特征参数F 、L 、J 的确定 F=104km 2,L=26km ,J=8.75‰ 2. 设计暴雨特征参数n 和S p 暴雨衰减指数n 由各省(区)实测暴雨资料发现定量,查当地水文手册可获得,一般n 得数值以定点雨量资料代替面雨量资料,不作修正。 从江西省水文手册中查得设计流域最大1日雨量得统计参数为: 5.3/,42.0,1151===V s V d C C C mm x

水文计算步骤

推理公式法计算设计洪峰流量 推理公式法是基于暴雨形成洪水的基本原理推求设计洪水的一种方法。 1.推理公式法的基本原理 推理公式法计算设计洪峰流量是联解如下一组方程 ) 6.7.8(278.0)5.7.8(,278.0) 4.7.8(,278.04 /13/11m c c n c p m c n p Q mJ L t F t t S Q t F S =

图8.7.1 推理公式法计算设计洪峰流量流程图 ② 计算设计暴雨的S p 、x TP ,进而由损失参数μ计算设计净雨的T B 、R B 。 ③ 将F 、L 、J 、R B 、T B 、m 代入式(8.7.4)(8.7.5)和(8.7.6),其中仅剩下Q m 、τ、R s,τ未知,但R s,τ与τ有关,故可求解。 ④ 用试算法求解。先设一个Q m ,代入式(8.7.6)得到一个相应的τ,将它与t c 比较,判断属于何种汇流情况,再将该τ值代入式(8.7.4)或式(8.7.5),又求得一个Q m ,若与假设的一致(误差不超过1%),则该Q m 及τ即为所求;否则,另设Q m 仿以上步骤试算,直到两式都能共同满足为止。 试算法计算框图如图8.7.1。 2. 图解交点法 该法是对(8.7.4)(8.7.5)和(8.7.6)分别作曲线Q m ~τ及τ~ Q m ,点绘在一张图上,如图8.7.2所示。两线交点的读数显然同时满足式(8.7.4)(8.7.5)和(8.7.6),因此交点读数Q m 、τ即为该方程组的解。 图8.7.2 交点法推求洪峰流量示意图 【例8.3 】江西省××流域上需要建小水库一座,要求用推理公式法推求百年一遇设计洪峰流量。 计算步骤如下: 1. 流域特征参数F 、L 、J 的确定 F=104km 2,L=26km ,J=8.75‰ 2. 设计暴雨特征参数n 和S p 暴雨衰减指数n 由各省(区)实测暴雨资料发现定量,查当地水文手册可获得,一般n 得数值以定点雨量资料代替面雨量资料,不作修正。 从江西省水文手册中查得设计流域最大1日雨量得统计参数为: 5.3/,42.0,1151===V s V d C C C mm x

水文系统不确定性分析方法综述

《水资源系统优化规划与管理》 课程论文 学院: 专业: 姓名: 学号: 任课教师: 2017年1月3日

水文系统不确定性分析方法综述 杨金孟 (山东农业大学水利土木工程学院山东泰安271018 ) 摘要:水文系统是一个复杂的系统,包含了很多不确定性因素,增加了精确模拟和预测水文过程的困难。为了提高计算结果的可靠性,水文系统的不确定性分析已成为当前研究的热点。本文对水文系统不确定性分析方法及应用研究进展进行了分类综述,介绍了它们的基本概念、原理和应用现状,并对值得进一步研究的问题进行了展望。 关键词:水文系统;不确定性分析;方法综述 A Summary on Uncertainty Analysis Methods of Hydrological System Y ANG Jinmeng (College of W ater Conservancy and Civil Engineering,Shandong Agricultural University ,Taian 271018)Abstract: Hydrological system is a complex system with many uncertain factors. These factors are not conductive to the accurate simulation and prediction of hydrological processes. Thus more and more people focus on the uncertainty analysis methods for the hydrological systems to improve the reliability of calculations. In this paper, we summarized the researches and the applications of the uncertainty analysis methods for hydrological systems. Based on the review, we introduced their basic concepts, principles and status of applications and prospected the issues worthy of further research. Keywords: hydrological system; uncertainty analysis; methods summary 1 引言 水文系统研究的基本内容为水在自然界里的运动、变化过程和分布规律,通常以流域或区域作为研究对象,涉及到降雨、蒸散发、地表径流、地下水运动变化及连接地表水和地下水的土壤水的状况等。水文系统的复杂性使得不确定性分析贯穿水循环研究过程的始终,从水文过程监测数据的获取、分析和处理,水文模型的开发、应用等,都伴随自然或人为的不确定性因素。由于水文系统数据本身固有的模糊性和变异性,加之技术和人为因素,使得数据处理具有不确定性,主要表现在正确与错误并存、信息与“噪声”并存以及正常与异常并存,使得对数据分析产生的结论不精确或不可信。 模型是水文系统研究的重要手段,由于多数模型带有明显的主观假设,且参数只能通过实测资料和参数优选得到,在模型结构的选择、参数的率定、方法的优选、目标函数的确定等方面均存在不确定性。因而,不确定性分析在水文系统研究和应用中就显得尤为重要。第23届国际地球物理和大地测量大会上,国际水文科学协会(IAHS)明确提出应减少水文预报中的不确定性,探索水文模拟的新方法,实现水文理论的重大突破。1996年9月由联合国教科文组织开了第三届国际研讨会。会议的主题是:水资源系统的风险、可靠性、不确定性和稳健性;重心是研讨风险、可靠性、不确定性等问题的新途径和未来研究应用的展望。我国1994年在武汉召开了《全国首届水文水资源与水环境科学不确定性研究新理论、新方法学术讨论会》。会后出版了会议论文专著《现代水科学不确定性研究与进展》。近年来,水文系统不确定性研究取得丰硕的成果。本文就水文系统不确定性分析方法简要综述。 2 不确定性分析方法及应用分类

相关文档
最新文档