太阳跟踪控制方式

太阳跟踪控制方式
太阳跟踪控制方式

太阳跟踪控制方式

国内外,太阳跟踪系统中实现跟踪太阳的方法很多,基本上可以分为两类:一类是实时的探测太阳对地位置,控制对日角度的被动式跟踪;另一类是根据天文知识计算太阳位置以跟踪太阳的主动式跟踪。文献中介绍了被动式跟踪的典型代表:压差式跟踪器和光电式跟踪器;主动式跟踪的典型代表:控放式跟踪器、时钟式跟踪器和采用计算机控制和天文时间控制的视日运动轨迹跟踪器。以下对两种类型中目前主要采用的光电跟踪

方式和视日运动轨迹跟踪方式进行比较。一般地,在聚光光伏发电的应用多采用校准

的光筒,它可以阻止散射进入传感器达到更精确的太阳位置探测。

(1)光电跟踪

虽然光电跟踪方式本身的精度较高,但是它却具有严重的缺点:在阴天时,太阳辐照度较弱(而散射相对会强些),光电转换器很难响应光线的变化;在多云的天气里,太阳

本身被云层遮住,或者天空中某处由于云层变薄而出现相对较亮的光斑时,光电跟踪

方式可能会使跟踪器误动作,甚至会引起严重事故。对于太阳能发电来说,是可能在

晴朗、阴天和多云等任何天气情况下进行的。光电跟踪能够在较好的天气条件下,提

供较高的精度,但是在气象条件差时跟踪结果不能令人满意。

(2)视日运动轨迹跟踪

视日轨迹跟踪的原理是根据太阳运行轨迹,利用计算机(由天文学公式计算出每天中日出至日落每一时刻的太阳高度角与方位角参数)控制电机转动,带动跟踪装置跟踪太阳。此跟踪方式通常采用开环控制,由于太阳位置计算与地理位置(如纬度、经度等)和系

统时钟密切相关,因此,跟踪装置的跟踪精度取决于一是输入信息的准确性,二是跟

踪装置参照坐标系与太阳位置坐标系的重合度,即跟踪装置初始安装时要进行水平和

指北调整。

太阳跟踪机构

双轴跟踪

如果能够在太阳高度和赤纬角的变化上都能够跟踪太阳就可以获得最多的太阳能,

全跟踪即双轴跟踪就是根据这样的要求而设计的。双轴跟踪又可以分为两种方式:极轴式全跟踪和高度角方位角式全跟踪。

1)极轴式全跟踪。

极轴式全跟踪原理如图1一5a所示:跟踪装置的一轴指向天球北极,即与地球自转轴

相平行,故称为极轴;另一轴与极轴垂直,称为赤纬轴。工作时电池板绕极轴运转,其转速的设定与地球自转角速度大小相同方向相反用以跟踪太阳的时角变化;电池板绕赤纬轴作俯仰转动是为了跟踪赤纬角的变化。这种跟踪方式并不复杂,但在结构上电池

板的重量不通过极轴轴线,极轴支承装置的设计比较困难。

2)高度角一方位角式太阳跟踪。

高度角和方位角式太阳跟踪方法又称为地平坐标系双轴跟踪,其原理如图1一sb所示。电池板的方位轴垂直于地平面,另一根轴与方位轴垂直,称为俯仰轴。工作时电池板

根据太阳的位置变化绕方位轴转动改变方位角,绕俯仰轴作俯仰运动改变电池板的倾

斜角,从而使电池板的法线始终与太阳光线平行。这种跟踪系统的特点是跟踪精度高,而且集热器的重量保持在垂直轴所在的平面内,支承结构的设计比较容易。

由于太阳跟踪系统采用地平坐标系运动控制规律较为直观,结构受力特性好、操作性强、容易实现跟踪系统的大型化.因此,本章采用矢量分析方法,主要对地平坐标系全跟踪系统跟踪角运动控制方程和控制方式进行全面地分析,并对跟踪机构的安装误差、运行时间误差、运行误差等可能导致跟踪系统精度降低的因素进行系统研究。

地平坐标下,双轴太阳跟踪系统

β=β(φ,L loc,n,t)

ρ=ρ(φ,L loc,n,t)

双轴跟踪系统运动控制方法

通常,太阳跟踪可以采用连续跟踪和间歇跟踪两种基本方法进行太阳跟踪

系统的运动控制。连续跟踪方法为跟踪角按照太阳位置变化规律随时间连续调

节以跟随太阳运行轨迹的变化的控制方法,根据上节跟踪系统运动特性的研究

结果可以看出,太阳跟踪的两个运动轴的速度非常小,最小速度仅为0.00028转

/min,为了避免系统在超低速运动下出现位置伺服控制的不稳定,系统设计时就

需要非常大的减速比;但是,连续跟踪意味着电机在不停的运动,将消耗大量

的电能,违背了太阳能发电的目的,因此,连续跟踪方法并不适合用在太阳能

发电系统。本论文综合考虑跟踪精度和系统能耗,采用间歇跟踪方法,即每隔一段时间后,运动轴快速调整一次跟踪角,并使各运动轴的转角与其由于停顿导致落后于太阳运行的方位角和高度角相等,其余时间系统跟踪角驱动机构固定不动,如此循环,因而形成跟踪系统间歇追踪太阳的跟踪方法。显然,采用间歇跟踪方法,不仅可以简化系统控制,避免庞大的减速系统;而且可以减少步

进电机的运行次数,增加电机的运行寿命,降低跟踪运动系统本身的能耗。我们知道,虽然间歇跟踪方法具有上述优点,但不可避免的要牺牲系统的跟踪精度,因此本节将从理论上分析不同的运动控制参数对跟踪精度的影响,从而确定在使用要求许可的误差范围内,实现间歇跟踪控制方法。

绝对编码器

位置检测装置是运动控制系统实现精确控制的重要组成部分。在闭环系统

中,它的主要作用是检测位移量,该位移量与给定值进行比较,得到误差信号,控制器根据误差信号进行控制调节,使系统趋向减小误差,最终使误差为零。本文采用绝对式的光电编码器用于跟踪系统高度角和方位角位置的反馈。

由于跟踪装置两轴的跟踪范围均在360”以内,编码器若能直接连接在目标检测轴,单圈的绝对编码器就足够。但是考虑跟踪系统机械设计的特点,安装在最后一级输出轴上比较困难,因此编码器需要安装在前一级间接的检测轴的位置,此时轴的转动角度已经超过360度,此时,必须采用多圈的绝对编码器。最终选用上海精浦机电型号为 GAX60R13/12的编码器,其主要性能指标为分辨率/ 圈:8192(13位),连续4096圈,即能检测的最小角度为

360ο/213二 0.0440

由于绝对编码器的输出信号是以格雷码的形式,为了便于信号的采集和处

理,通过二次仪表 GP1312RL/CH进行信号的变换,以2路位置信号输出:一路4一ZOmA模拟量、一路RS485通讯数字量。最后通过一个RS485转USB接口直接将两路信号发送到上位机。

全过程跟踪控制方案

全过程跟踪控制方案 第一章绪言部分 第一节项目造价咨询的难点要点分析 第二节投资控制方案编制依据 第二章造价咨询服务工作计划 第一节投资控制的目标计划 第二节预算编制的工作计划 第三节施工过程控制的工作计划 第四节结算审核的工作计划 第三章招标阶段造价咨询工作方案 第一节造价咨询的工作内容 第二节预算编制基本要求 第三节预算编制工作流程 第四节预算编制主要方法 第五节预算编制要点及注意事项 第四章施工阶段全过程投资跟踪控制方案 第一节造价咨询的工作内容 第二节施工阶段全过程投资控制流程 第三节施工阶段全过程投资控制内容 第四节投资跟踪控制总目标及主要节点目标 第五节全过程投资跟踪控制方案 第六节造价控制偏差分析方法及纠偏措施 第五章竣工结算审核工作方案 第一节造价咨询的工作内容 第二节结算审核工作要点 第三节结算审核工作流程 第四节结算审核主要方法

第五节结算审核风险与防范措施 第一章绪言部分 第一节项目造价咨询的难点要点分析建设项目工程造价全过程投资跟踪控制是在新形势下产生的一项新的投资管理方式,也是工程造价由事后控制向事前、事中、事后的全过程控制的转变。投资跟踪控制作为现代投资管理一种重要方式,已经在大中型建设项目实施过程中被普遍实用,并且取得了明显的社会效益和经济效益。 1.预算阶段难点、要点分析概预算编制有时时间紧、任务急、工程数量繁杂,难免多算、漏算、重复计算,这就要加强审核力度,提高概预算编制的准确性。 ①审核工程量、审核采用的定额单价、指标是否合适 a)根据设计图纸、设计说明、施工组织设计的要求审核工程量。 b)定额具有科学性、权威性、法令性,它的形式、内容任何人都必须严格执行。审核采用的定额名称、规格、计量单位、内容是否满足施工方法要求,套用定额不同,单价则不同。 c)定额包含内容是否与设计相符。如定额含筋率、混凝土标号等。 d)补充定额是否符合要求,计算是否正确。 ②审核材料价格对材料价格、运杂费进行审核,材料价格是否包括运杂费,材料运输 方法、 措施是否符合实际,做到既要满足工程要求,又要努力降低费用。 ③其他费用 a)取费标准是否符合工程性质; b)费率计算是否正确; c)计算基数是否符合规定; d)价差调整是否符合规定。 2.结算阶段难点、要点分析 ①工程合同的不完全性决定了工程价款的不确定性 与一般货物购销合同不同, 工程合同是一种典型的不完全性合约。由于工程 本身的专业性、复杂性以及建设工程的契约商品性质, 工程合同不可能对所有事件及其对策做出详尽可行的规定, 不可能对违约造成的损失事先就规定补偿和解决办法, 合同履行结果对于相关第三方是难以证实和无法直观地确定的。为弥补 合同的不完全性, 合同各方需要在初始合同中考虑合同再协商谈判、修正对策的 设计问题,即在合同中建立一种机制来弥补缺口。因此, 工程合同的两个主要特 征是合同规划上缺口的存在和一系列的程序和技术的出现。以GF1999-0201《建 设工程施工合同》和FIDIC 施工合同条件为例, 两者在合同机制设计上均对初始合同以及再谈判程序进行恰当的安排。主要表现为: a)合同价款体现为初始造价和追加造价,是不确定的或待定的。工程合同价款一般由清单费用、工程变更费用、价格调整和索赔费用四个部分组成, 其中只有清单费用是相对确定的, 而变更费用、价格调整和索赔费用在合同签订时是不确定的, 而在实施过程中通过再协商谈判而不断调整。 b)对合同实施过程中的现协商谈判的程序和规则进行了详尽规定,例如:对计量与支付、工程变更费用、价格调整和索赔费用等方面双方的权利义务、程序、期限的规定。 c)在合同履行机制上,引入第三方合同机制:工程监理制度,重视过程管理。 ②工程管理的现实矛盾蕴含着无序和混乱, 制约着工程结算 a)工程合同的不完全性要求规范化管理,价款的不确定性要求加强过程管理但由于长期计划经济体制下形成的管理方式、管理手段的制约, 当前我国的合同管理极不规

GPS信号捕获与跟踪策略确定及实现

收稿日期: 1997211226第一作者 女 29岁 博士生 100083 北京 1)国家重点科技攻关(9621302205202)资助项目 GPS 信号捕获与跟踪策略确定及实现 1) 孙 礼 王银锋 何 川 张其善 (北京航空航天大学电子工程系) 摘 要 为了检测GPS(Global Positioning System)信号,设计了码环及载波环捕获与跟踪数字系统.序贯搜索与窄间隔超前2滞后型数字延迟锁相环的采用,保证了码相位的可靠捕获与精确跟踪,四相鉴频器、叉积自动频率跟踪算法及科思塔环载波相位跟踪算法的结合,既保证了载波频率(多普勒频移)的捕获速度,又使环路能有效地跟踪频率/相位变化,获得较好的动态性能与噪声性能.控制算法及参数确定的软化实现使系统具有较好的灵活性.基于扩频相关器与数字信号处理器的数字系统验证了上述方案的正确性及有效性. 关键词 接收机;捕获;跟踪;全球定位系统分类号 TN 12;TN 915 GPS 信号捕获与跟踪控制策略的确定与实现是GPS 接收机研制的核心.由于GPS 导航数据经过了直接序列扩频调制及载波调制,信号发射功率小,故必须首先对信号进行码相关解扩.由于接收机载体的动态性,多普勒频移不定,因此码捕获须在整个码相位及频域上以固定间隔进行二维搜索.信号解扩发生后,即采用/虚拟暂态0窄间隔超前2滞后型数字延迟锁相环对码相位进行精确跟踪.载波频率(多普勒频移)的粗略估计包含在GPS 码同步过程中,四相鉴频器进一步将多普勒频移牵引到载波跟踪的线性范围.载波跟踪主要采用科斯塔环相位跟踪与叉积自动频率相结合 的跟踪算法,二者随载体动态以软件方式进行切换,以保证载波跟踪环的噪声性能与动态性能.最后利用科斯塔环软件算法解调出导航电文. 1 GPS 信号捕获与跟踪数字系统 接收机中信号捕获与跟踪数字系统软硬件接口如图1所示.硬件主要包括解扩相关器,完成本地载波和C/A 码的产生与混频、信号处理等功能;软件由码环算法、载波环算法及数据解调算法等组成,完成捕获与跟踪闭合控制及数据解调等功能. 基于TM C/图1GPS 接收机中信号捕获与跟踪数字系统软硬件接口 载波辅助 S 320C31 的软件算法 解调数据 载波环算法 码环算法 GPS 扩频相关器 正交 同相 输入信号 A 码发生器 积分清除器 积分清除器 码数控振荡器 载波数控振荡器 积分清除器 积分清除器 1999年4月第25卷第2期北京航空航天大学学报 Jour nal of Beijing University of Aeronaut ics and Astronaut ics April 1999Vol.25 No 12

智能机器人运动控制和目标跟踪

XXXX大学 《智能机器人》结课论文 移动机器人对运动目标的检测跟踪方法 学院(系): 专业班级: 学生学号: 学生姓名: 成绩:

目录 摘要 (1) 0、引言 (1) 1、运动目标检测方法 (1) 1.1 运动目标图像HSI差值模型 (1) 1.2 运动目标的自适应分割与提取 (2) 2 运动目标的预测跟踪控制 (3) 2.1 运动目标的定位 (3) 2.2 运动目标的运动轨迹估计 (4) 2.3 移动机器人运动控制策略 (6) 3 结束语 (6) 参考文献 (7)

一种移动机器人对运动目标的检测跟踪方法 摘要:从序列图像中有效地自动提取运动目标区域和跟踪运动目标是自主机器人运动控制的研究热点之一。给出了连续图像帧差分和二次帧差分改进的图像HIS 差分模型,采用自适应运动目标区域检测、自适应阴影部分分割和噪声消除算法,对无背景图像条件下自动提取运动目标区域。定义了一些运动目标的特征分析和计算 ,通过特征匹配识别所需跟踪目标的区域。采用 Kalrnan 预报器对运动目标状态的一步预测估计和两步增量式跟踪算法,能快速平滑地实现移动机器人对运动目标的跟踪驱动控制。实验结果表明该方法有效。 关键词:改进的HIS 差分模型;Kahnan 滤波器;增量式跟踪控制策略。 0、引言 运动目标检测和跟踪是机器人研究应用及智能视频监控中的重要关键技术 ,一直是备受关注的研究热点之一。在运动目标检测算法中常用方法有光流场法和图像差分法。由于光流场法的计算量大,不适合于实时性的要求。对背景图像的帧问差分法对环境变化有较强的适应性和运算简单方便的特点,但帧问差分不能提出完整的运动目标,且场景中会出现大量噪声,如光线的强弱、运动目标的阴影等。 为此文中对移动机器人的运动目标检测和跟踪中的一些关键技术进行了研究,通过对传统帧间差分的改进,引入 HSI 差值模型、图像序列的连续差分运算、自适应分割算法、自适应阴影部分分割算法和图像形态学方法消除噪声斑点,在无背景图像条件下自动提取运动 目标区域。采用 Kalman 滤波器对跟踪目标的运动轨迹进行预测,建立移动机器人跟踪运动 目标的两步增量式跟踪控制策略,实现对目标的准确检测和平滑跟踪控制。实验结果表明该算法有效。 1、运动目标检测方法 接近人跟对颜色感知的色调、饱和度和亮度属性 (H ,S ,I )模型更适合于图像识别处理。因此,文中引入改进 型 HSI 帧差模型。 1.1 运动目标图像HSI 差值模型 设移动机器人在某一位置采得的连续三帧图像序列 ()y x k ,f 1-,()y x f k ,,()y x f k ,1+

太阳能跟踪器工作原理

太阳能跟踪器的工作原理 一工作原理 “太阳光寻迹传感器”安装在太阳能装置上,根据太阳光的位置,驱动电机,带动机械转动机构,始终跟随太阳位置运动。当太阳偏转一定角度时(一般5--10分钟左右),控制器发出指令,转动机构旋转几秒钟,到达正对太阳位置时时停止,等待下一个太阳偏转角度,一直这样间歇性运动;当阴天或晚上没有太阳出现时停止动作;只要出现太阳它就自动寻找并跟踪到位,全自动运行,无需人工干预,东西向、南北向二维控制,也可单方向控制,使用电源直流12伏,技术指标 1. 跟踪起控角度:1°--10°(不同应用类型) 2. 水平(太阳方位角)运行角度:Ⅰ型0°--360°,Ⅱ型-20°-- +200° 3. 垂直(太阳高度角)调整角度:10°--120°(太阳光与地面夹角) 4. 传动方式:丝杠、涡轮蜗杆、齿轮 5. 承载重量:10Kg-- 500Kg 6. 系统重量:2 Kg--500Kg 7. 电机功率:0.4W--15W 8. 电源电压 DC6V--24V 9. 运行环境温度: -40--85℃ 10.运行时间≥10万小时 11.室外全天候条件运行现有的太阳能自动跟踪控制器无外乎两种:一是使用一只光敏传感器与施密特触发器或单稳态触发器,构成光控施密特触发器或光控单稳态触发器来控制电机的停、转;二是使用两只光敏传感器与两只比较器分别构成两个光控比较器控制电机的正反转。由于一年四季、早晚和中午环境光和阳光的强弱变化范围都很大,所以上述两种控制器很难使大阳能接收装置四季全天候跟踪太阳。这里所介绍的控制电路也包括两个电压比较器,但设在其输人端的光敏传感器则分别由两只光敏电阻串联交叉组合而成。每一组两只光敏电阻中的一只为比

全过程跟踪控制方案

全过程跟踪控制方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

全过程跟踪控制方案目录 第一章绪言部分 第一节项目造价咨询的难点要点分析 第二节投资控制方案编制依据 第二章造价咨询服务工作计划 第一节投资控制的目标计划 第二节预算编制的工作计划 第三节施工过程控制的工作计划 第四节结算审核的工作计划 第三章招标阶段造价咨询工作方案 第一节造价咨询的工作内容 第二节预算编制基本要求 第三节预算编制工作流程 第四节预算编制主要方法 第五节预算编制要点及注意事项 第四章施工阶段全过程投资跟踪控制方案 第一节造价咨询的工作内容 第二节施工阶段全过程投资控制流程 第三节施工阶段全过程投资控制内容 第四节投资跟踪控制总目标及主要节点目标 第五节全过程投资跟踪控制方案 第六节造价控制偏差分析方法及纠偏措施 第五章竣工结算审核工作方案 第一节造价咨询的工作内容 第二节结算审核工作要点 第三节结算审核工作流程 第四节结算审核主要方法 第五节结算审核风险与防范措施

第一章绪言部分 第一节项目造价咨询的难点要点分析 建设项目工程造价全过程投资跟踪控制是在新形势下产生的一项新的投资管理方式,也是工程造价由事后控制向事前、事中、事后的全过程控制的转变。投资跟踪控制作为现代投资管理一种重要方式,已经在大中型建设项目实施过程中被普遍实用,并且取得了明显的社会效益和经济效益。 1.预算阶段难点、要点分析 概预算编制有时时间紧、任务急、工程数量繁杂,难免多算、漏算、重复计算,这就要加强审核力度,提高概预算编制的准确性。 ①审核工程量、审核采用的定额单价、指标是否合适 a)根据设计图纸、设计说明、施工组织设计的要求审核工程量。 b)定额具有科学性、权威性、法令性,它的形式、内容任何人都必须严格执行。审核采用的定额名称、规格、计量单位、内容是否满足施工方法要求,套用定额不同,单价则不同。 c)定额包含内容是否与设计相符。如定额含筋率、混凝土标号等。 d)补充定额是否符合要求,计算是否正确。 ②审核材料价格 对材料价格、运杂费进行审核,材料价格是否包括运杂费,材料运输方法、措施是否符合实际,做到既要满足工程要求,又要努力降低费用。 ③其他费用 a)取费标准是否符合工程性质; b)费率计算是否正确; c)计算基数是否符合规定; d)价差调整是否符合规定。 2.结算阶段难点、要点分析 ①工程合同的不完全性决定了工程价款的不确定性 与一般货物购销合同不同,工程合同是一种典型的不完全性合约。由于工程本身的专业性、复杂性以及建设工程的契约商品性质,工程合同不可能对所有事件及其对策做出详尽可行的规定,不可能对违约造成的损失事先就规定补偿和解决办法,合同履行结果对于相关第三方是难以证实和无法直观地确定的。为弥补合同的不完全性,合同各方需要在初始合同中考虑合同再协商谈判、修正对策的设计问题,即在合同中建立一种机制来弥补缺口。因此,工程合同的两个主要特征是合同规划上缺口的存在和一系列的程序和技术的出现。以 GF1999-0201《建设工程施工合同》和FIDIC 施工合同条件为例,两者在合同机制设计上均对初始合同以及再谈判程序进行恰当的安排。主要表现为: a)合同价款体现为初始造价和追加造价,是不确定的或待定的。工程合同价款一般由清单费用、工程变更费用、价格调整和索赔费用四个部分组成,其中只有清单费用是相对确定的,而变更费用、价格调整和索赔费用在合同签订时是不确定的,而在实施过程中通过再协商谈判而不断调整。 b)对合同实施过程中的现协商谈判的程序和规则进行了详尽规定,例如:对计量与支付、工程变更费用、价格调整和索赔费用等方面双方的权利义务、程序、期限的规定。 c)在合同履行机制上,引入第三方合同机制:工程监理制度,重视过程管理。

太阳能自动跟踪系统方案

摘要 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,但是太阳能又存在着低密度、间歇性、空间分布不断变化的缺点,这就使目前的一系列太阳能设备对太阳能的利用率不高。太阳光线自动跟踪装置解决了太阳能利用率不高的问题。本文对太阳能跟踪系统进行了机械设计和自动跟踪系统控制部分设计。 第一,机械部分设计: 机械结构主要包括底座、主轴、齿轮和齿圈等。当太阳光线发生偏离时,控制部分发出控制信号驱动步进电机1带动小齿轮1转动,小齿轮带动大齿轮和主轴转动,实现水平方向跟踪;同时控制信号驱动步进电机2带动小齿轮2,小齿轮2带动齿圈和太阳能板实现垂直方向转动,通过步进电机1、步进电机2的共同工作实现对太阳的跟踪。 第二,控制部分设计: 主要包括传感器部分、信号转换电路、单片机系统和电机驱动电路等。系统采用光电检测追踪模式实现对太阳的跟踪。传感器采用光敏电阻,将两个完全相同的光敏电阻分别放置于一块电池板东西方向边沿处下方。当两个光敏电阻接收到的光强度不相同时,通过运放比较电路将信号送给单片机,驱动步进电机正反转,实现电池板对太阳的跟踪。 关键词太阳能;跟踪;光敏电阻;单片机;步进电机

Abstract Human being is seriously threatened by exhausting mineral fuel, such as coal and fossil oil. As a kind of new type of energy sources, solar energy has the advantages of unlimited reserves, existing everywhere,using clean and economical .But it also has disadvantages ,such as low density,intermission,change of space distributing and so on.These make that the current series of solar energy equipment for the utilization of solar energy is not high. In order to keep the energy exchange part to plumb up the solar beam,it must track the movement of solar.In this paper, the solar tracking system of the mechanical part and control system part are designed. First,the mechanical part is designed. Mechanical structure mainly includes the main spindle, stepping motors, gears and gear ring, and so on. When the sun's rayshas a deviation, small gear arerotated by stepper motor according to the control signal from MCU. And the large gear and main spindle is rotated by small gear in order to track to achieve the level direction.At the same time, another small gear is rotated by another stepper motor according to the control signal.And the large gear and the solar panels are rotated by the small gear in order to track to achieve the vertical direction. Solar is tracked by the two stepper motors together. Second, control system part is designed. Control system mainly includesthe sensors part, stepper motor, MCU system and the corresponding external circuit, and so on. Photoelectric detection systemisused to track solar. Sensors use photosensitive resistance. The two same photosensitive resistances were placed in east and west direction of the bottom edge .When the two photosensitive resistances receiveddifferent light at the same time, the signal from comparison circuit is sent to MCU in order to rotate stepping motors. Keywords Solar energyTrackingPhotosensitive resistance SCMSteppingmotor

轮式移动机器人航向跟踪预估控制算法

轮式移动机器人航向跟踪预估控制算法 龚建伟 黄文宇 陆际联 (北京理工大学机器人中心,北京 100081) 摘 要:本文提出了一种轮式移动机器人航向跟踪预估控制算法,航向预估量根据机器人前轮偏角和纵向速度实时得出,预估量与机器人实际航向之和作为控制反馈航向.仿真和实验时用PID 控制器和航向预估算法结合进行航向跟踪,结果表明该算法与常规PID 算法相比,对机器人纵向速度适应范围较宽,能有效地改善控制器的动态特性,表现出了较好的自适应能力. 关键词:轮式移动机器人;自主车;侧向控制;航向跟踪;预估控制 1 引言 Introduction 轮式移动机器人是一个具有大延迟、高度非线性的复杂系统,建立精确的数学模型十分困难,在进行航向跟踪控制时,参数的变化对系统模型影响较大,其中纵向速度的变化影响最为明显.轮式移动机器人航向跟踪一般控制方法是把期望航向与机器人实测航向之差作为控制器输入偏差,控制器输出控制量为机器人的前轮偏角.轮式移动机器人的航向与其纵向速度、横向速度、前轮偏角、机器人绕其重心的转动惯量、重心位置、前后轮侧偏系数以及实际道路情况等诸多因素有关,在常规控制方法中,只考虑了期望航向与实际航向的偏差,而未能包含其它因素的影响,因此难以达到满意的控制效果,当系统参数特别是某些敏感参数发生变化时,就必须重新设定控制器参数.例如,我们用常规PID 控制器进行航向跟踪实验,在某一纵向速度下整定好PID 控制参数,当纵向速度发生很小变化时,必须重新整定PID 参数,否则控制性能变坏,超调较大,甚至出现振荡.表现在路径跟踪实验中,则是在该速度下能较好地完成弯道或急弯等路径跟踪任务,而速度变化后,跟踪误差变大或出现大幅度振荡.因此,在轮式机器人航向跟踪控制中,控制方法应该能对纵向速度等影响因素有一定的自适应能力,航向跟踪预估控制方法就是在这一背景下提出的. 2 二自由度轮式移动机器人动力学模型 T wo Degrees of Freedom Dynamic Model for Wheeled Mobile Robot 当横向加速度和横摆角速度较小时,常采用经简化的二自由度轮式移动机器人动力学模型1,2,其微分方程如下: r f r f r f zz C aC v U bC aC r U C b C a r I 2) (2)(222=-+++ (1) f f r f r f s s C v U C C r U bC aC U M v M δ2)(2)(2=++??????-++ (2) 其中:I zz :轮式机器人绕重心的转动惯量(kgm 2); M s :轮式机器人质量(kg);C f 、C r :分别为前、后轮侧偏系数(N/rad);U :轮式机器人纵向速度(m/s);v :轮式机器人横向速度(m/s);a 、b :前后车轴到重心的距离(m);r :轮式移动机器人横摆角速度. 将轮式移动机器人转向机构视为一个惯性环节,则有: d f f δδδτ=+ (3) 其中:τ:惯性时间常数;δd :期望前轮偏角. 在航向跟踪控制过程中,可以令道路曲率为零,即不计实际路径的影响,航向变化率即为机器人的横摆角速度3,即: r =? (4) 其中:?为轮式移动机器人航向与期望航向的偏差角. (1)、(2)、(3)、(4)式联立即可得出以横摆角速度、横向速度、航向偏差角、前轮偏角即X=(r ,v ,?,δf )为状态变量的系统状态空间表达式. 3 航向预估算法原理 Heading Prediction Algorithm 在实际的航向控制过程中,控制器根据期望航向与采样航向得到航向偏差,再计算控制量,而当执行机构执行这一控制量时,要经过一个采样周期,这时机器人的实际航向已经改

太阳能自动跟踪装置设计报告

吉林铁道职业技术学院 电子制作职业技能大赛(论文) 题目太阳能自动跟踪装置设计

参赛人姓名王志会张卫国朱峰所在系电气工程系 指导教师陈冬鹤 完成时间2013年5月26日

吉林铁道电子制作职业技能大赛设计报告 题目:太阳能自动跟踪装置设计 主要内容、基本要求等: ◆主要内容:加强大学生动手操作能力,促进集体荣誉感。 ◆基本要求:1,利用单片机控制实现太阳能电池板随着太阳(光源)的位置变 化而调整自身相应的姿态,以达到太阳光能的最佳利用。 2,实现一定的姿态控制精度。 3,以低成本、低功耗完成设计并实现目标电路的组装。 ◆主要参考资料:电路基础、电工技术、电子手工焊接、单片机原理及应用、传感器原理与应用。 完成日期:2013年5月26日 指导教师:陈冬鹤 实验组组长:王志会 2013年 6 月 5 日

太阳能自动跟踪装置 研制目的 人类正面临着石油和煤炭等矿物燃料枯竭的严重威胁,太阳能作为一种新型能源具有储量无限、普遍存在、利用清洁、使用经济等优点,太阳能光伏发电是改善生态环境、提高人类生存质量的绿色能源之一,但由于传统太阳能板方向固定,受光时间有限。因此研制可随光移动的太阳能跟随系统。

一自动跟踪系统整体设计 1.1 系统总体结构 本系统包括光电转换器、步进电机、89C5系列单片机以及相应的外围电路等。太阳能电池板可以360度自由旋转。控制机构将分别对水平方向进行调整。单片机加电复位后,首先由TRCT5000构成的定位系统对整个系统进行预置定位,然后单片机将对两光敏电阻采样进来的两个电平进行比较,电平有高电平和低电平两种,若两电平相等则电池板停止转动,若不等单片机将对两电平进行比较判定,驱动步进电机让太阳能板与之相对应转动,实现电池板对太阳的跟踪。图1-1所示: 1.2 光电转换器

项目跟踪管理办法

北京证券投资银行部 项目跟踪管理办法 为做好客户服务工作,及时发现解决问题,并对业务人员进行考核,特制定本管理办法。 一、在项目小组与企业签定协议,开始进场工作后十五个工作日内,业务部须 将项目小组名单、企业的通讯地址、传真和企业负责人联系方式通知管理 部。 二、由管理部负责项目跟踪管理工作的人员,依照联系方式,根据本管理办法 附件一的内容将项目反馈意见表等送达企业负责人。 三、在项目小组进场工作半个月后,由管理部项目跟踪管理人员督促企业,及 时将反馈意见初始表收回。 四、项目进展中的每三个月,由管理部项目跟踪管理人员按时将附件二项目跟 踪反馈意见期间表送达企业,并督促企业进行填写和收回。 五、项目发行结束后半年,继续由管理部项目跟踪管理人员将附件三项目回访 表送达企业,同时督促企业进行填写和收回。 六、管理部项目跟踪管理人员必须对每次反馈意见表的送达和回收情况进行登 记。 七、各业务部有义务配合管理部的项目跟踪管理工作,按时提供企业的地址等 情况。对违反规定者,将在业务部考核中进行相应处理。 八、管理部项目跟踪管理人员须对所收集到的反馈意见表的内容予以严格保 密。非经许可,该反馈意见表仅限投行管理部总经理及其以上领导阅读。 北京证券投资银行部 2001年7月20日

附件一: 尊敬的公司: 北京证券非常荣幸为贵公司提供(股份制改造、发行辅导、财务顾问、股票发行上市)服务,并真诚地希望能为贵公司的未来发展贡献我们的智慧和力量。 为提高服务质量,确保业务工作顺利开展,北京证券投资银行管理部,将对项目进行全程跟踪,对项目的质量和服务水平予以监督。我们将在项目人员进场半个月后,发出我们的调查表,并将每间隔一个月发出一份反馈意见表,以便我们了解业务人员的工作和项目进展情况,及时改进工作。希望贵公司能为我们提供宝贵意见,协助我们提高服务水平,确保圆满完成贵公司的工作。 本次为贵公司提供服务的是北京证券投资银行部()部。我们已派遣了以()为项目负责人的项目小组提供全部服务。我们还将根据不同阶段工作需要,增派其它业务人员。 我们将承诺恪守北京证券一贯的“诚信、高效、服务、进取”原则,为贵公司提供优质全面的服务,以使(改制、辅导、财务顾问、股票发行)工作获得圆满成功,贵我双方结成长期合作伙伴关系。 管理部联系人员和电话: E-MAIL信箱: 北京证券投资银行管理部 年月日 项目跟踪反馈意见表(初始表) 尊敬的公司: 经过一段时间的合作,我们希望贵公司能对项目小组的工作予以阶段性总结和评价,以便我们更好地根据贵公司的要求提供服务,我们将对填写的反馈意见表的内容予以保密。

全过程跟踪控制方案

全过程跟踪控制方案目录 第一章绪言部分 第一节项目造价咨询的难点要点分析 第二节投资控制方案编制依据 第二章造价咨询服务工作计划 第一节投资控制的目标计划 第二节预算编制的工作计划 第三节施工过程控制的工作计划 第四节结算审核的工作计划 第三章招标阶段造价咨询工作方案 第一节造价咨询的工作内容 第二节预算编制基本要求 第三节预算编制工作流程 第四节预算编制主要方法 第五节预算编制要点及注意事项 第四章施工阶段全过程投资跟踪控制方案 第一节造价咨询的工作内容 第二节施工阶段全过程投资控制流程 第三节施工阶段全过程投资控制内容 第四节投资跟踪控制总目标及主要节点目标 第五节全过程投资跟踪控制方案 第六节造价控制偏差分析方法及纠偏措施 第五章竣工结算审核工作方案 第一节造价咨询的工作内容 第二节结算审核工作要点 第三节结算审核工作流程 第四节结算审核主要方法

第五节结算审核风险与防范措施 第一章绪言部分 第一节项目造价咨询的难点要点分析 建设项目工程造价全过程投资跟踪控制是在新形势下产生的一项新的投资管理方式,也是工程造价由事后控制向事前、事中、事后的全过程控制的转变。投资跟踪控制作为现代投资管理一种重要方式,已经在大中型建设项目实施过程中被普遍实用,并且取得了明显的社会效益和经济效益。 1.预算阶段难点、要点分析 概预算编制有时时间紧、任务急、工程数量繁杂,难免多算、漏算、重复计算,这就要加强审核力度,提高概预算编制的准确性。 ①审核工程量、审核采用的定额单价、指标是否合适 a)根据设计图纸、设计说明、施工组织设计的要求审核工程量。 b)定额具有科学性、权威性、法令性,它的形式、内容任何人都必须严格执行。审核采用的定额名称、规格、计量单位、内容是否满足施工方法要求,套用定额不同,单价则不同。 c)定额包含内容是否与设计相符。如定额含筋率、混凝土标号等。 d)补充定额是否符合要求,计算是否正确。 ②审核材料价格 对材料价格、运杂费进行审核,材料价格是否包括运杂费,材料运输方法、措施是否符合实际,做到既要满足工程要求,又要努力降低费用。 ③其他费用 a)取费标准是否符合工程性质; b)费率计算是否正确; c)计算基数是否符合规定; d)价差调整是否符合规定。 2.结算阶段难点、要点分析 ①工程合同的不完全性决定了工程价款的不确定性 与一般货物购销合同不同,工程合同是一种典型的不完全性合约。由于工程本身的专业性、复杂性以及建设工程的契约商品性质,工程合同不可能对所有事

太阳跟踪控制方式

太阳跟踪控制方式 国内外,太阳跟踪系统中实现跟踪太阳的方法很多,基本上可以分为两类:一类是实时的探测太阳对地位置,控制对日角度的被动式跟踪;另一类是根据天文知识计算太阳位置以跟踪太阳的主动式跟踪。文献中介绍了被动式跟踪的典型代表:压差式跟踪器和光电式跟踪器;主动式跟踪的典型代表:控放式跟踪器、时钟式跟踪器和采用计算机控制和天文时间控制的视日运动轨迹跟踪器。以下对两种类型中目前主要采用的光电跟踪 方式和视日运动轨迹跟踪方式进行比较。一般地,在聚光光伏发电的应用多采用校准 的光筒,它可以阻止散射进入传感器达到更精确的太阳位置探测。 (1)光电跟踪 虽然光电跟踪方式本身的精度较高,但是它却具有严重的缺点:在阴天时,太阳辐照度较弱(而散射相对会强些),光电转换器很难响应光线的变化;在多云的天气里,太阳 本身被云层遮住,或者天空中某处由于云层变薄而出现相对较亮的光斑时,光电跟踪 方式可能会使跟踪器误动作,甚至会引起严重事故。对于太阳能发电来说,是可能在 晴朗、阴天和多云等任何天气情况下进行的。光电跟踪能够在较好的天气条件下,提 供较高的精度,但是在气象条件差时跟踪结果不能令人满意。 (2)视日运动轨迹跟踪 视日轨迹跟踪的原理是根据太阳运行轨迹,利用计算机(由天文学公式计算出每天中日出至日落每一时刻的太阳高度角与方位角参数)控制电机转动,带动跟踪装置跟踪太阳。此跟踪方式通常采用开环控制,由于太阳位置计算与地理位置(如纬度、经度等)和系 统时钟密切相关,因此,跟踪装置的跟踪精度取决于一是输入信息的准确性,二是跟 踪装置参照坐标系与太阳位置坐标系的重合度,即跟踪装置初始安装时要进行水平和 指北调整。 太阳跟踪机构 双轴跟踪 如果能够在太阳高度和赤纬角的变化上都能够跟踪太阳就可以获得最多的太阳能, 全跟踪即双轴跟踪就是根据这样的要求而设计的。双轴跟踪又可以分为两种方式:极轴式全跟踪和高度角方位角式全跟踪。 1)极轴式全跟踪。

太阳能自动跟踪装置控制系统设计

本科生毕业论文 题目太阳能自动跟踪装置控制系统设计 系别机械交通学院 班级机制 122 姓名李鹏万 学号 123731214 答辩时间 2016年5月 新疆农业大学机械交通学院

目录 摘要:太阳能作为一种新型清洁能源,受到了世界各国的广泛重视。现阶段影响太阳能普及的主要原因是太阳能电池的成木较高而光电转化效率却较低。因此,如何提高太阳能利用效率是太阳能行业发展的关键问题。在国内,大多数太阳能电池阵列都是固定安装的,无法保证太阳光实时垂直照射,导致太阳能资源不能得到充分利用。自动太阳跟踪控制系统在跟踪太阳旋转的情况下可接收到更多的太阳辐射能量,从而提高太阳能电池板的输出功率,该技术在各种太阳跟踪装置中可以广泛应用。 0 1 设计研究背景及意义 (2) 2 主要研究内容 (2) 2.1 系统的设计目标 (2) 2.2 设计的主要内容 (2) 3 系统的总体设计 (3) 3.1 太阳自动跟踪方式的确定 (3) 3.2 本设计的设计思想 (3) 4 太阳能充电控制器的设计 (4) 4.1 太阳能电池的选型 (4) 4.2 蓄电池的选型 (6) 4.2.1 铅酸蓄电池基本概念 (6) 4.2.2 本系统蓄电池的选型 (7) 4.3 太阳能充电控制器的设计 (8) 4.3.1 UC3906芯片的介绍 (8) 4.3.2 BUCK电路的设计 (8) 4.4 充电控制器外围电路设计 (10) 5 跟踪系统传感器检测装置的设计 (12) 5.1 阴天检测装置的设计 (12) 5.2 白天黑夜检测装置 (14) 5.3 太阳位置传感器的介绍 (14) 5.3.1 传感器检测部分的设计 (14) 5.3.2 光敏二极管的介绍 (16) 5.3.3 LM324芯片的介绍 (16) 6 视日运动轨迹模块设计 (17) 6.1 太阳赤纬角的计算 (17) 6.2 太阳高度角的计算 (17) 6.3 太阳方位角的计算 (18) 6.4 日出日落时间计算 (18) 7 执行器件的选型 (18) 7.1 步进电机的选型 (18) 7.2 步进电机驱动器的选型 (19) 7.3 执行器件的连接方式 (20) 8 控制系统的设计 (21) 8.1 单片机电源模块的设计 (22) 8.2 驱动器电源模块的设计 (22)

焊缝跟踪的实时跟踪控制算法

焊缝跟踪的控制算法 (一)理论模型 虚线 Y( t )为焊炬的跟踪调节曲线, 可视作系统执行机构的输出量,即 : ()()t Y t S t dt =? 传感器在焊缝坡口 B 点的偏移量e1(t )实际上是 R ( t )曲线上B 点相对于 Y( t )上 A 点的偏差量,即 1()()()()()t e t R t Y t R t S t dt τ τ-=--=-? 设焊接速度V ( mm/ s),则焊接点 A 滞后检测点B 时间为:V λ τ= (s ) 再设()S τ是焊炬从t τ-时刻到t 时刻的调节量,即: ()()t t S S t dt τ τ-=? 则焊炬行走 时间后与坡口中心的实际误差应为: ()1()()1()()t t e t e t S e t S t dt τ τ-=-=-? 理论上 ,只要知道机械系统的传递函数, ()S τS 便可 知道 ,但实际系统 的传输 函数 往往很难准确得到,因此△S 直接求解比较困难 焊接起始点 实际焊缝的坡口中心曲线 焊枪的跟踪曲线

(二)由模型得出的简易控制算法 实际的焊缝跟踪过程中,视觉系统提供的位置偏差是经过传感器经过一帧一帧的图像采 集后,再经过一系列的图像处理,最终得出位置偏差信息提供给控制器。因此,需做以下设定: (1) 位置请求指令发送时间间隔和执行机构调整时间间隔同步; (2) 在每次位置请求时,在上一调整周期内焊枪已完成所需的调整量; (3) λ为采样间隔点的整数倍。 设O 点为初始参考点,O 0为焊枪开始纠正起始点,从O 点到O 0点,视觉传感器只做图像采集,焊枪并不进行跟踪,这一段距离属于“盲区”。i e 为每次识别的坡口中心点与初始参考点之间的差值,i m 为每一步的焊枪实际跟踪量。 系统焊枪实时跟踪量m i 的算法为: 1 () i i i a i i a m e m ---=-∑ ( i=a ,a+1, ···,n ) 焊接方向

太阳自动跟踪装置控制系统的研究(精)

第2期(总第147期 2008年4月机械工程与自动化 M ECHAN I CAL EN G I N EER I N G &AU TOM A T I ON N o 12 A p r 1 文章编号:167226413(20080220140203 太阳自动跟踪装置控制系统的研究 徐东亮,任超 (武汉理工大学机电学院,湖北武汉430070 摘要:为了更充分、高效地利用太阳能,人们普遍采用跟踪太阳的方式以最大限度地获得更多的光能。介绍了太阳自动跟踪装置控制系统的控制原理及硬件、软件的设计方法。该系统控制软件运行后,PC 机通过串行端口发送和接收脉冲信号以驱动步进电机,实现对太阳运动轨迹的自动跟踪。整个系统结构简单、价格低廉、性能可靠、跟踪精度高。本控制系统基于PC ,具有丰富的软件资源、良好的人机界面以及强大的数据处理能力。关键词:太阳跟踪装置;自动控制;串口通讯;步进电机中图分类号:T P 273文献标识码:A 收稿日期:2007208213;修回日期:2007211201 作者简介:徐东亮(19702,男,福建人,副教授,博士,研究方向为机械电子工程、检测技术与自动化装置。 0引言 太阳能是一种洁净的可再生资源,有着矿物能源不可比拟的优越性,而且太阳能资源十分丰富,是目前可再生能源中应用范围最广泛、发展前景最远大的清洁能源。

虽然太阳能总能量很大,但由于太阳能的能量密 度比较低,在大气层外的平均密度约为1135k W m 2 ,再考虑通过大气层的损耗等因素,当到达地面时,只 有不到1k W m 2 。因此为了更充分、高效地利用太阳能,人们普遍采用跟踪太阳的方式以最大限度地获得更多的光能。本文介绍的是基于二维太阳跟踪装置的控制系统,该系统采用视日运动轨迹跟踪的方法计算太阳的高度角和方位角,进而通过PC 控制步进电机,实现全自动、全天候、高精度的太阳跟踪。由于采用在V C ++610环境下通过PC 机串口直接控制步进电机的方法,因此整个系统成本低、简单实用、可靠性高,且具有良好的人机界面,能够广泛应用于气象监测、环境能源利用等领域。1太阳运行轨迹的算法 太阳的运行轨迹,即太阳相对地球的位置可由两种坐标系来描述:赤道坐标系和地平坐标系。111赤道坐标系 赤道坐标系是人在地球以外的宇宙空间里看太阳相对于地球的位置,这时太阳相对于地球的位置是相对于赤道平面而言,用赤纬角和时角这两个坐标表示。11111赤纬角? 太阳中心与地球中心的连线(即太阳光线在地球表面直射点与地球中心的连线与此连线在赤道平面上的 投影间的夹角称为太阳赤纬角(或称太阳赤纬。它描述地球以一定的倾斜度绕太阳公转而引起二者相对位置的变化。一年中,太阳光线在地球表面上的垂直照射点的位置在南回归线、赤道和北回归线之间往复运动,使该直射点与地心连线在赤道面上的夹角也随之重复变化。赤纬角?(o 在一年中的变化用下式计算: ?=23145sin (2Πd

最大功率跟踪原理及控制方法

最大功率跟踪原理及控制方法 2.1最大功率跟踪原理 太阳能电池的输出特性如图一所示,从图中的P/V特性曲线可以看出,随着端电压的增加输出功率先增加后减小,说明存在一个端电压值,在其附近可获得最大功率,因此,在光伏发电系统中,要提高系统的整体效率,一个重要的途径就是实时调整光伏电池的工作点,使之始终工作在最大功率点附近,这一过程就称之为最大功率点跟踪-MPPT。 图一光伏电池的特性曲线 2.2 最大功率跟踪的控制方法 MPPT的控制方法:光伏系统中的最大功率点跟踪的控制方法很多,使用最多的是自寻优的方法,即系统不直接检测光照和温度,而是根据光伏电池本身的电压电流值来确定最大功率点。这种方法又叫做TMPPT(True Maximum Power Point Tracking)。在自寻优的算法中,最典型的是扰动观察法和增量电导法。本论文使用扰动观察法,扰动观察法主要根据光伏电池的P-V特性,通过扰动端电压来寻找MPPT,其原理是周期性地扰动太阳能电池的工作电压值( ),再比较其扰动前后的功率变化,若输出功率值增加,则表示扰动方向正确,可朝同一方向(+ )扰动;若输出功率值减小,则往相反(- )方向扰动。通过不断扰动使太阳能电池输出功率趋于最大,此时应有[8]。此过程是由微处理器即C8051F320控制完成的。 3、系统的总体结构 3.1系统的结构图 系统的结构图如图二所示。其中单片机要采集太阳能电池的输出电压和输出电流及蓄电池的充电电流和开路电压,通过一定的控制算法(即改变占空比),调节太阳能电池的输出电压和电流,从而实现太阳能电池在符合马斯曲线的条件下以最佳功率对蓄电池充电,系统的硬件主要由核心控制模块、采样模块、驱动模块、升压式DC/DC变换器模块组成。

AGV叉车轨迹跟踪控制策略的思考

时 代 农 机 TIMES?AGRICULTURAL?MACHINERY 第 45 卷第 4 期2018 年 4 月 Apr.2018 Vol.45 No.4 223 2018年第4期 AGV叉车轨迹跟踪控制策略的思考 李爱民 摘 要:在研究基于计算机视觉的AGV路径跟踪技术的基础上,提出了一种基于轨迹控制的AGV运动控制器设计方法,重点解决AGV路径跟踪问题和高速运动稳定性问题。首先分析了AGV工作环境和计算机视觉的特点,设计了适合AGV路径跟踪的图像处理过程。然后,在深入分析两轮差速驱动平台的基础上,提出了一种基于轨迹控制的AGV运动控制器的设计方法。该控制器以AGV相对路径的状态量为输入,输出AGV控制命令——两轮速度差和运动时间,根据指定轨迹控制AGV运动,实现轨迹控制,即AGV路径跟踪的目标。试验结果表明,AGV路径跟踪技术对直线和圆弧具有良好的跟踪效果,AGV的运动稳定。关键词:AGV;路径跟踪;轨迹控制 (江苏建筑职业技术学院,江苏?徐州?221116) 作者简介:李爱民(1976-),男,江苏徐州人,硕士研究生,副教授,研究方向:机电控制技术。  1 AGV叉车特点 AGV 叉车速度传感技术,有助于AGV 独立行走的工业级导航定位模块、高精度、高性价比、AGV 叉车让机器人走路更聪明。AGV 车是工业机器人的精度、柔性、智能化的先进技术,应用软件开发,先进的制造技术,通过检测程序、控制部件、优化整体、调度协同的实施,实施过程的管理和决策,促进产量,提高质量,降低成本,减少资源消耗和环境污染,是最高的体现工业自动化水平。自动导引车的7个特点: (1)先进性:AGV 是一种集光、机、电、计算机、信息系统于一体的移动式工业机器人。它集成了科学技术领域的先进应用技术。AGV 是工厂自动化物流的标志,具有较强的导向能力、较高的定位精度和良好的自动驾驶性能。 (2)灵活性:AGV 可与各种生产线、装配线、输送线、平台、货架、操作点等快速组合。保证在工作对接多方位上实现与各个岗位工作对接,从而提高整体效率。它可以缩短物流周转周期,缩短物料的过程时间,实现来料加工、物流与生产、成品与销售之间的灵活应对,从而提高生产系统的效率。 (3)独立性:AGV 可以在没有其他系统支持的情况下完成一个独立的任务。 (4)兼容性:AGV 既能独立工作,又能更好地与其他生产系统和控制管理系统结合,实现兼容与相互适应的工作内容。 (5)安全性:AGV 作为一种自动驾驶车辆,具有完善的安全防护能力,包括智能交通管理、安全避让、多级报警、紧急制动、故障报告等,在许多不适合人类工作的场合都能发挥独特的作用。 (6)示范:AGV 代表先进生产力,是企业技术进步的标志,?AGV 还可以促进企业标准化、标准化和信息化的基础设施建设。 (7)i-so 智能AGV 搬运机器人广泛应用于电子制造、汽车、五金、物流、食品、制药等。在工业自动化和智能化领域表现出较强的创新能力和技术能力。 2 AGV叉车状态提取 AGV 叉车状态提是以AGV 的视觉导航控制来进行对于叉车路径运动的严格跟踪基础,也就是控制车辆的相对路 径状态。AGV 叉车相对路径理想状态,是AGV 叉车的轴线与路径之间的重合轴线。上位机的控制指令是根据图像信息确定车辆当前相对路径状态而决定的。但是由于汽车的状态的各自特殊性,上位机所给出的控制指令也有所不同。通过提取机器视觉中的控制量,从而控制确定AGV 叉车相对路径状态指令。这对图像的实时处理有很高的要求,简化图像上的算法处理或采用更高速的CPU 是现在目前提高图像的实时性的主要途径。但随之而来的是整个系统的成本增加,因此简化的图像自身才是提高实时性的有效手段,而不是算法的处理方式与在CPU 上的速度提升。保证图像处理效果为主,简化算法为辅,这种做法就必须提高图像自身质量,较高质量的图像可以在很大程度上减少图像的预处理,从而提升图像质量为简化算法提供实时性。随之而来的就是对摄像机提出了更高要求,摄像机是选择测试填充功能的一部分,它的作用在于减少光照变化,简化图像处理算法,提高提取控制精度。随着相机填充功能的增加,CPU 的高频率运行成本增加了很多,系统成本也没有大幅度增加。为了描述AGV 角度和偏移量的提取,图像预处理和状态提取是路径图像处理的两个过程步骤。在相对简单的环境下,由于摄像机具有保证良好光照与图像高质量的特点,自动阈值二值化技术结合自动阈值Canny 边缘检测可以得到准确地AGV 数量。 图像坐标系是提取的状态量的主要量数来源。将二者转换为世界坐标系中的状态量,通过摄像机坐标标定技术反映AGV 叉车相对于纸带的实际状态。轴和角映射到世界坐标系的轴路径状态的AGV 叉车图像坐标系之间,其值没有变化,所以不需要改变角度,但必须通过转移价值到世界坐标系的坐标标定的作用是找出AGV 叉车二轴点路径轴的实际距离。 3 基于轨迹控制的AGV控制 AGV 轨迹控制,是实现AGV 叉车轨迹跟踪过程中的平滑轨迹变化控制,避免出现转向摇摆现象。当更多的光电传感器用于排队时,当汽车的右传感器通过“开关模式”原理检测纸带时,汽车就会转向左侧。当左侧传感器检测纸带,车向右偏转。两个传感器间距过大,因此汽车摇晃得厉害。缩短了左右传感器间距,限制了AGV 叉车速度减少并控制转向摆动现象,通过分析,可以得出一个结论:AGV 叉车的瞬时速度转向与叉车两轮差速驱动AGV 平台的瞬时速度方向是相同的。所以,AGV 只能通过两轮速度差来改变车速的方向和大小。

相关文档
最新文档