瞬间加速度

瞬间加速度
瞬间加速度

2.(2010·泉州模拟)如图2所示,竖直放置在水平面上的轻质弹簧上叠

放着两物块A、B,A、

B的质量均为2 kg,它们处于静止状态,若突然将一个大小为10 N,

方向竖直向下的力

施加在物块A上,则此瞬间,A对B的压力大小为(g=10 m/s2) ( )

A.10 N B.20 N C.25 N D.30 N

解析:对AB整体分析,当它们处于静止状态时,弹簧的弹力等于

整体AB的重力,当

施加力F的瞬间,弹力在瞬间不变,故A、B所受合力为10 N,则a

=F合/(2m)=2.5 m/s2,

后隔离A物块受力分析,得F+mg-F N=ma,解得F N=25 N,所

以A对B的压力大

小也等于25 N.

答案:C

9.物块A1、A2、B1、B2的质量均为m,A1、A2用刚性轻杆连接,B1、B2

用轻质弹簧连接,两个装置都放在水平的支托物上,处于平衡状态,如

图所示,今突然迅速地撤去支托物,让物块下落,在除去支托物的瞬

间,A1、A2受到的合力分别为F A1和F A2,B1、B2受到的合力分别为F B1

和F B2,则( )

A1

A2

B1

B2

 A.F A1=0,F A2=2mg,F B1=0,F B2=2mg

B.F A1=mg,F A2=mg,F B1=0,F B2=2mg

C.F A1=0,F A2=2mg,F B1=mg,F B2=mg

D.F A1=mg,F A2=2mg,F B1=mg,F B2=mg

【例3】(2001年上海高考题)如图(1)所示,一质量为m的物体

系于长度分别为L1 、L2的两根细线上,L1的一端悬挂在天花板上,与竖

直方向夹角为θ,L2水平拉直,物体处于平衡状态。现将L2线剪断,求剪断瞬时物体的加速度。

(1)下面是某同学对该题的某种解法:

解:设L1线上拉力为T1,L2线上拉力为T2,重力为mg,物体在三力作用下处于平衡。mg,,解得=mg tanθ,剪断线的瞬间,T2突然消失,物体却在T2反方向获得加速度,因为mg tanθ=ma所以加速度a=g tanθ,方向在T2反方向。你认为这个结果正确吗?说明理由。

(2)若将图(1)中的细线L1改为长度相同,质量不计的轻弹簧,如图(2)所示,其它条件不变,求解的步骤和结果与(1)完全相同,即a=g tanθ,你认为这个结果正确吗?请说明理由。

解析:(1)这个结果是错误的。当L2被剪断的瞬间,因T2突然消失,而引起L1上的张力发生突变,使物体的受力情况改变,瞬时加速度沿垂直L1斜向下方,为a=g sinθ。

(2)这个结果是正确的。当L2被剪断时,T2突然消失,而弹簧还来不及形变(变化要有一个过程,不能突变),因而弹簧的弹力T1不变,它与重力的合力与T2是一对平衡力,等值反向,所以L2剪断时的瞬时加速度为a=g tanθ,方向在T2的反方向上。

点评:牛顿第二定律F合=ma反映了物体的加速度a跟它所受合外力的瞬时对应关系.物体受到外力作用,同时产生了相应的加速度,外力恒定不变,物体的加速度也恒定不变;外力随着时间改变时,加速度也随着时间改变;某一时刻,外力停止作用,其加速度也同时消失.

10.如图所示,物体A、B用弹簧相连,m B=2m A,A、B与地面间的动摩擦因数相同,均为μ,在力F作用下,物体系统做匀速运动,在力F 撤去的瞬间,A的加速度为_______,B的加速度为_______(以原来的方

向为正方向).

2.如图所示,A、B两小球分别连在弹簧两端,B端用

细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在

线被剪断瞬间,A、B两球的加速度分别为

A.都等于 B.和0

C.和0 D.0和

【例6】如图3-1-1所示,木块A与B用轻弹簧相连,竖直放在木块C上,三者静止.A、B、C 的质量之比为1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬间,A和B的加速度分别为a A=________,a B=_______

图3-1-1

6.如图3-1-13所示的装置中,中间的弹簧质量忽略不计,两个小球质量皆为m,当剪断上端的绳子OA的瞬间.小球A和B的加速度多大?

图3-1-14

图3-1-13

7.如图3-1-14所示,在两根轻质弹簧a、b之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同一竖直线上的两点,等小球静止后,突然撤去弹簧a,则在撤去弹簧后的瞬间,小球加速度的大小为2.5米/秒2,若突然撤去弹簧b,则在撤去弹簧后的瞬间,小球加速度的大小可能为()

A.7.5米/秒2,方向竖直向下

B.7.5米/秒2,方向竖直向上

C.12.5米/秒2,方向竖直向下

D.12.5米/秒2,方向竖直向上

【例7】如图所示,小球质量为m,被三根质量不计的弹簧A、B、C拉住,弹簧间的夹角均为1200,小球平衡时, A、B、C的弹力大小之比为3:3:1,当剪断C瞬间,小球的加速度大小及方向可能为

B

C

A

m

①g/2,竖直向下;②g/2,竖直向上;③g/4,竖直向下;④g/4,竖直向上;

A、①②;

B、①④;

C、②③;

D、③④;

解析:设弹簧C中的弹力大小为F,则弹簧A、B中的弹力大小为3F.

(1)当A、B、C均体现拉力:平衡时3F=F+mg,∴F=?mg.剪断C时:3F-mg=ma1

∴a1=?g,方向竖直向上.

(2)当A、B体现为拉力,C体现为推力:平衡时:3F+F=mg,∴F=?mg;剪断C 时:3F-mg=ma2 , ∴a2=-?g,方向竖直向下.故答案C.

加速度(教案)讲解

东南教育用心做教育,给孩子以改变未来力量授课学案 【自主学习】 (一)加速度 1.定义:________________________________________ 公式:___________ 2.单位: _______ 3.加速度是 ___量,方向与 ________方向相同。

a与v方向相同→________ 直线运动;a与v方向相反→ ______直线运动。 4.匀变速运动:_________________________________。 5.v、Δv与a的区别 ⑴速度:描述 _________________,对应于某一时刻。 ⑵速度的变化:,描述 ________________,对应于某一过程。 ⑶加速度:即速度的变化率,描述_______________________。 (二)从v-t图象看加速度 寄语:古之立大事者,不惟有超世之才,亦必有坚韧不拔之志。 东南教育用心做教育,给孩子以改变未来力量 速度—时间图象是以 ____轴为横轴,以_____为纵轴,在坐标系中将不同时刻的速度以坐标的形式描点,然后连线,就画出了速度—时间图象 在v-t图象中,图线的斜率表示物体运动的。斜率为正,表示加速度方向与所设正方向相同;斜率为负表示加速度方向与所设正方向相反;斜率不变,表示加速度不变。 一、加速度 [问题设计] 下列三种车辆起步后:自行车在5s内速度增大到14m/s;小型轿车在20 s内速度增大到30 m/s;旅客列车在100s内速度增大到40m/s.通过计算分析,哪种车辆速度变化大?哪种车辆速度增加得快? v=14m/sΔ旅客列车速度变化大,自行车速度增加得快.因为:自行车速度增加,答案1vv=40m/s,旅客列车速度增加Δ小型轿车速度增加Δ,所以旅客列车速度变化=30 m/s32大; v14Δ1自行车1s内速度增加=m/s=2.8 m/s t5Δ1v30Δ2小型轿车1s内速度增加=m/s=1.5 m/s t20Δ2v40Δ3旅客列车1s内速度增加=m/s=0.4 m/s t100Δ3vvvΔΔΔ321>>,所以自行车速度增加得快.tttΔΔΔ312[要点提炼] vΔa=. 1.定义:速度的变化量与发生这一变化所用时间的比值.即tΔ2-2. m·s2.单位:国际单位制中,加速度的单位是米每二次方秒,符号是m/s或 3.物理意义a是表示物体速度变化快慢的物理量,也叫速度对时间的变化率.加速度 vΔtaav填“有关”或“无的大小与Δ(、.4Δ=无关是用比值定义法定义的物理量,tΔ关”). [延伸思考]

吉林省市(县)抗震设防烈度、设计基本地震加速度一览表

吉林省市(县)抗震设防烈度、设计基本地震加速度一览表

附件:吉林省市(县)抗震设防烈度、设计基本地震加速度一览表 烈度 地 区加速度ⅧⅦⅥ0.20g0.15g0.10g0.05g 长春长春、九台榆树、德惠、农安 吉林吉林、舒兰、永吉蛟河、桦甸、磐石 四平伊通、公主岭、梨树、四平白城大安白城镇赉、洮南、通榆 松原松原、前郭尔罗斯乾安扶余、长岭 辽源东丰、东辽、辽源 延边延吉、汪清、图们、珲春、 龙井、和龙、安图 白山抚松、靖宇

通化辉南、梅河口 吉林省乡镇抗震设防烈度区划一览表 地区区划 乡 镇 名称 地震动峰值加速度分区 ⅦⅥ 0.15 0.1 0.05 镇(乡)镇(乡)镇(乡) 长春长春市 大屯镇、永春镇、新立城镇、净月镇、泉眼镇、四家乡、 兴隆山镇、奋进乡、双德镇、玉潭镇、幸福乡、劝农山 镇、齐家镇、新安镇、三道镇、英俊乡、奢岭办事处、 城西乡、石溪乡、鹿乡镇、云山办事处、平湖办事处 佟家乡、太平镇、长 岭乡、山河办事处、 合心镇、兰家镇、土 顶镇 九台市 土门岭镇、西营城镇、沐石河镇、其塔木镇、饮马河镇、 龙家堡镇、卡伦湖镇、东湖镇、苇子沟镇、胡家回族乡、 卢家乡、二道沟乡、加工河乡、波泥河乡、莽卡满族乡、 九郊乡、庆阳乡、三台乡 城子街镇、六台乡、 上河湾镇、纪家镇、 春阳乡、鸡鸣乡、兴 隆镇 农安市 杨树林乡、哈拉海 镇、高家店镇、小城 子乡、黄鱼圈乡 三盛玉乡、永安乡、万顺乡、榛柴岗乡、新农乡、柴岗 镇、万金塔乡、青山口乡、靠山乡 伏龙泉镇、鲍家镇、 开安镇、合隆镇、烧 锅镇、华家镇、新刘 家外地人、巴吉垒镇、 前岗乡、滨河乡、龙 王乡、三岗乡、黄金

《速度与加速度》教案

§速度与加速度 教学内容分析 1.内容和地位 在《普通高中物理课程标准》共同必修模块“物理1”的内容标准中涉及本节的内容有:“经历匀变速直线运动实验研究的过程,理解位移、速度、和加速度,体会在实验中发现自然规律中的作用”。 本节速度、加速度是描述运动的重要物理量,理解速度和加速度概念,是学习匀变速直线运动规律的基础。物体的运动是日常生活中最为常见的现象,学生对匀速物体的运动已有自己的认识,可成为教学的起点,通过探究实验和科学的辨析,真正理解描述变速运动规律的重要物理量:速度、加速度。本节研究平均速度所应用的等效替代思想和定义加速度的所应用的比值法、研究瞬时速度所应用的极限法等都是物理学中常用的研究方法,在教学中教师引导学生主动学习这几种方法,为以后应用类似方法来解决物理问题,领悟形异质同的物理模型打下基础。教学过程中还应让学生感受实验探究的过程,使学生从中理解和领会研究物理问题的途径打下良好的基础。 2、教学目标 (1)、经历实验探究变速直线运动的平均速度、瞬时速度的过程,理解速度、加速度的概念,知道速度和速率以及它们的区别。 (2)、体会物理问题研究中科学思维方法的应用,学会用比值法、等效替代来研究物理问题,体会数学在研究物理问题中的重要性。 (3)善于发表自己的见解,感受合作学习的快乐。勇于克服困难,保持探究的热情。 教学重点、难点 1、理解平均速度、瞬时速度、加速度的概念,知道速度和速率以及它们的区别。 2、加速度的概念及物理意义。 3、利用极限法由平均速度推导瞬时速度;怎样由瞬时速度的变化导出加速度的概念。

案例设计: 一、导入新课 1、复习匀速直线运动的特点和运动快慢的描述方法—速度的定义。 2、教师举例:物体有着各式各样的运动,不仅不同的物体运动的快慢程度不一样,而且同一物体在不同段的快慢程度也可以不同,请同学们举出日常生活中这种类型物体运动的实例。(如蜗牛的爬行运动、飞机的起飞、物体沿斜面下滑,火车出站和进站的运动等。) 3、引导学生思考:那么如何比较变速直线运动的物体的运动快慢呢 二、新课教学 1、平均速度 教师设问:(1)在运动会的100米短跑上,运动员在整个过程中跑的快慢一样吗(2)你如何判断哪位运动员跑的快,用什么方法请同学们以小组为单位讨论并选派代表发言。 预测:学生对物体运动快慢认识可能有下面几种: 1、同样长短的位移,看谁用的时间少; 2、如果运动的时间相等,可比较谁通过的位移大; 3、… 教师:同学们提出的这些比较方法都是正确的。 教师进一步提问: 如果运动的时间不相等,通过的位移也不相等。又如何比较快慢呢 有一小部分学生会回答:单位时间内的位移来比较,就找统一标准。 目的:引导学生用比值法来研究变速直线运动物体的运动快慢,人们在长期对运动的研究的过程中为了能描述变速直线运动的快慢,逐步建立了平均速度的概念。用平均速度来表示物体在某段位移的平均快慢程度。 探究性实验:利用打点计时器、斜面、小车、纸带等仪器来研究变速直线运动的快慢。(以4人为一小组做实验,教师先介绍打点计时器的原理,两点之间的时间间隔是多少而后由学生动手做) 请同学们观察一个实验:小车沿斜面滑下做变速直线运动的例子:让小车后固定一小纸带,小车运动时会拖着小纸带一起运动,小纸带穿过一个打点记时器,通过打点记时器把小

正弦振动加速度与速度与振幅与频率关系

正弦振动一共有四个参数来描述,即:加速度(用a表示)m/s A2 速度(用v 表示) m/s 位移(用 D 表示)行程( 2 倍振幅)m 频 率(用 f 表示)Hz 公式:a=2 n fv v=2 n fc其中d=D/2) a=(2 n f)2d (2 为平方) 说明:以上公式中物理量的单位均为国际单位制例如频率为10HZ ,振幅为10mm V=2*3.1415926*10*10/1000=0.628m/s a=(2*3.1415926*10)A2*10/1000=39.478/m/sA2 正弦运动振幅5mm频率200HZ 我想你是在做一个弹簧振子,加速度是变化的,我想你需要的应该是弹簧的弹性系数k 首先写出振动方程Y = 5sin(x/200) 根据设计要求,弹簧要使振子在1/200s 的时候运动距离达到5mm ,速度由最大的V0 变为0, 在这个过程中属于变力做功,(不知道你会积分不?)如果不会也没有关系,我 们知道弹簧的弹性势能为0.5kHA2 (式中H是弹簧的伸长量),在达到振幅时, H = 5mm = 5 X!0A(-3)m 应用动能定理:0.5kHA2=1/2mV0A2 同时,应满足时间频率要求,应用动量定理,就必须用积分了,弹力在1/800(完成1/4周期需要的时间)时间内的冲量为I, I 是以函数kHt为被积函数,对H 由0到5, t由0到1/800的定积分,即1 = 6.25 乂10八(-5沐 由动量定理 1 = mV1-mV0,得,mV0 = 6.25 ><10八(-5沐联立两式解得: k= 256m (式中m 不是单位,是振子得质量) 而且初速度为400 米每秒振动台上放置一个质量m= 10kg 的物体,它们一起上下作简谐振动,其 -3 频率V = 10Hz振幅A = 2 X 10-m,求:(1)物体最大加速度的大小; (2) 解:取x轴竖直向下,以振动的平衡位置为坐标原点,列运动方程 x=A cos (2 n V t +? 于是,加速度 2 2 a= —4 n V A cos (2 n V t + ? (1)加速度的最大值 2 2 -2 | a m |= 4 n V A = 7.9 m?s ⑵由于物体在振动过程中仅受重力mg及竖直向上的托力f,按牛顿第二定律在最高位置m g —f = m| a m f = m(g—| a m|)= 19.1N 这时物体对台面的压力最小,其值即19.1N 在最低位置m g—f= m(-| a m f= m(g+| a m|)= 177N 这时物体对台面的压力最大,其值即177N

步态分析

运动中,不同的步态反应了损伤的肌肉 如运动过程中骨盆摆动过大,臀中肌试验(+)称为臀中肌步态,通过训练臀中肌力量,达到5级可以改善 下文介绍常见的步态及引起的原因,希望对大家有帮助 临床步态分析 步态是人类步行的行为特征。步行是人类生存的基础,是人类与其它动物区别的关键特征之一。正常步行并不需要思考,然而步行的控制十分复杂,包括中枢命令,身体平衡和协调控制,涉及足、踝、膝、髋、躯干、颈、肩、臂的肌肉和关节协同运动。任何环节的失调都可能影响步态,而某些异常也有可能被代偿或掩盖。临床步态分析旨在通过生物力学和运动学手段,揭示步态异常的关键环节和影响因素,从而协助康复评估和治疗,也有助于协助临床诊断、疗效评估、机理研究等。 一、概述 (一)自然步态 1、步行的基本功能从某一地方安全、有效地移动到另一地方。 2、自然步态的要点(1)合理的步长、步宽、步频。(2)上身姿势稳定。(3)最佳能量消耗或最省力的步行姿态。 3、自然步态的生物力学因素 (1)具备控制肢体前向运动的肌力或机械能。 (2)可以在足触地时有效地吸收机械能,以减小撞击,并控制身体的前向进程。 (3)支撑相有合理的肌力及髋膝踝角度,以及充分的支撑面。 (4)摆动相有足够的推进力、充分的下肢地面廓清和合理的足触地姿势控制。 (二)步行周期 1、支撑相 下肢接触地面和承受重力的时相,占步行周期的60%,包括: (1)早期(early stance) 包括首次触地和承重反应,正常步速时占步行周期的10%~12%。①首次触地指足跟接触地面的瞬间,使下肢前向运动减速,落实足在支撑相的位置的动作。参与的肌肉包括胫前肌、臀大肌、腘绳肌。首次触地异常是造成支撑相异常的最常见原因之一。②承重反应指首次触地之后重心由足跟向全足转移的过程。骨盆运动在此期间趋向稳定,参与的肌肉包括股四头肌、臀中肌、腓肠肌。③双支撑相支撑足首次触地及承重反应期相当于对侧足的减重反应和足离地,由于此时双足均在地面,又称之为双支撑相。双支撑相是步行周期中最稳定的时期。双支撑相的时间与步行速度成反比。双支撑相时间延长,使步行速度越慢,步行越稳定;而双支撑相时间缩短,使步行速度加快,但步行越不稳定;到跑步时双支撑相消失,表现为双足腾空。患者步行障碍时往往首先出现的异常就是双支撑相时间延长,步行速度减慢,以增加步行的稳定性。④地面反作用力(GRF)首次触地时的GRF一般相当于体重和加速度的综合,正常步速时为体重的120%~140%。步速越快,GRF 越高。下肢承重能力降低时可以通过减慢步速,减少肢体首次触地负荷。缓慢步态的GRF 等于体重。患者在下肢承重能力减退时往往通过减慢步行速度以减轻下肢承重负荷。(2)中期(mid stance) 支撑足全部着地,对侧足处于摆动相,是唯一单足支撑全部重力的时相,正常步速时大约为步行周期的38%~40%。主要功能是保持膝关节稳定,控制胫骨前向

重力加速度表

全国各地区重力加速度表 力加速度地区修正值 序号地区 g(m/s2) g/1kg g/3kg g/6kg g/15kg g/30kg 1 包头9.7986 -0.3981 -1.1943 -2.3886 -11.9430 -11.9430 2 北京9.8015 -0.7045 -2.1135 -4.2270 -10.5675 -21.1350 3 长春9.8048 -1.0413 -3.1239 -6.2478 -15.6195 -31.2390 4 长沙9.791 5 0.3267 0.9801 1.9602 9.8010 9.8010 5 成都9.7913 0.3267 0.9801 1.9602 4.9005 9.8010 6 重庆9.7914 0.326 7 0.9801 1.9602 4.9005 9.8010 7 大连9.8011 -0.6636 -1.9908 -3.9816 -9.9540 -19.9080 8 广州9.7833 0.6432 1.9296 3.8592 9.6480 19.2960 9 贵阳9.7968 0.7963 2.3889 4.7778 23.8890 23.8890 10 哈尔滨9.8066 -1.2251 -3.6753 -7.3506 -18.3765 -36.7530 11 杭州9.7936 0.1020 0.3060 0.6120 1.5300 3.0600 12 海口9.7863 0.8474 2.5422 5.0844 25.4220 25.4220 13 合肥9.7947 0.0204 0.0612 0.1224 0.3060 0.6120 14 吉林9.8048 -1.0413 -3.1239 -6.2478 -15.6195 -31.2390 15 济南9.7988 -0.3981 -1.1943 -2.3886 -5.9715 -11.9430 16 昆明9.7830 1.1230 3.3690 6.7380 16.8450 33.6900 17 拉萨9.7799 0.5513 1.6539 3.3078 16.5390 16.5390 18 南昌9.7920 0.2654 0.7962 1.5924 7.9620 7.9620 19 南京9.7949 -0.0306 -0.0918 -0.1836 -0.4590 0.9180 20 南宁9.7877 0.7044 2.1132 4.2264 10.5660 21.1320 21 青岛9.7985 -0.3981 -1.1943 -2.3886 -5.9715 -11.9430 22 上海9.7964 0.0000 0.0000 0.0000 0.0000 0.0000 23 沈阳9.8035 -0.9086 -2.7258 -5.4516 -13.6290 -27.2580 24 石家庄9.7997 -0.5513 -1.6539 -3.3078 -8.2695 -16.5390 25 太原9.7970 -0.2450 -0.7350 -1.4700 -3.6750 -7.3500

Nine point eight歌词及翻译

Calla lily, carnation, daisy Silently chase away your worries 马蹄莲、康乃馨、雏菊 默默地驱散你的忧虑, Chrysanthemum, kalanchoe Become your shield whenever you fall asleep 菊花、长寿花 当你熟睡时守护著你。 I cried out Please don't leave me behind, leave me behind 我哭了出来 “拜托,不要丢下我,我不要一个人留在这里“ So you held me tight And said I will be just fine, I will be just fine, I will be just fine 于是你抱紧我 对我说“我会没事的、我会没事的、我会没事的” Petals dance for our valediction And synchronize to your frozen pulsation Take me to where your soul may live in peace Final destination 花瓣因为我们的惜别翩翩起舞 并同步到你冰冻的脉搏 带领我前往你灵魂可以和平生活的最终目的地 Touch of your skin sympathetically brushed against The shoulders you used to embrace Sparkling ashes drift along your flames And softly merge into the sky 你的肌肤温柔地蹭著 你曾经拥抱的肩膀 你那闪烁的余晖沿着火焰 轻轻地融化到这片天空里 Look now I’m on the top of your world, top of your world My darling 看 现在 我已经站在你世界的顶端了 亲爱的 Here I come, I yell And take a leap to Hell 我大喊“我来了“

设计基本加速度和水平地震影响系数的关系

今天这篇文章的由头,完全是因为前天晚上的一个疑问:01版抗规中的设计基本地震加速度-----“、。。。”等。既然规范里有数据,为什么又不参与计算?列出以上数据的意义是什么呢?这些东西和水平地震影响系数又是怎么样个关系呢?找遍网络与现有书籍,无此解释,只好自力更生,艰苦奋思。谁知越牵越多,牵出好多东西。先从这个疑问总结吧。 一、关于设计基本地震加速度 关于设计基本地震加速度的意义所在,我翻遍手头的所有资料发现最好还是从89与2001及2010几版抗规的对比中寻找解释,列表如下: 可以看出,89版抗规中并没有设计基本地震加速度这项定义,此定义完全是01版的新生事物。意义到底何在?意义就在于对地震影响的表征。89版采用的是设防烈度对地震影响进行表征。而在01及10版的抗规中,对地震影响的表征,已经舍去了设防烈度,进而采取“设计基本地震加速度、设计特征周期”。 此做法优点何在?第一,设防烈度的划分标准偏于现象,改用设计基本地震加速度后,可以用具体参数来表征地震影响-----更科学、更“规范”,我想这是那些规编们最看重的一点优势;第二,采用设计基本地震加速度后,可以清楚的表征7度半()与8度半()的概念,拓宽了抗震设防烈度的概念-----更“延伸”;第三,设计基本地震加速度还是根据设防烈度进行分类的,原则上用基本地震加速度去表征与用现象去区分地震影响并不矛盾-----更“统一”。

写到这里,想起了本科毕业时去城乡设计院面试的情景。虽然一晃六年过去了,那时的情景还是历历在目。面试我的那老总,坐在宽大的老板桌后面,他问的我那几个都会的问题由于时间久远都记不得了,只是那个没答的问题让我记忆犹新,“咱这儿的设计基本地震加速度是多少?”坏菜,那会儿的我刚出校门,这名词依稀在考试中见过两次而已,当即败下阵来。要是换成今天?可惜世上没有后悔药。 设计基本地震加速度——相应于设防烈度的地震地面运动峰值加速度,即为50年设计基准期超越概率10%的地震加速度的设计取值 二、关于地震影响系数 地震影响系数的由来: 不管是底部剪力法,还是振型分解反应谱法,结构总水平地震作用标准值的根本计算方法,始终是牛顿第二定律的变体:F=αG 以上公式的α即为地震影响系数,其实就是加速度除以了一个小 g(重力加速度);G为质点的重量。 对于初学者来说,上面的公式虽然简单,但一上来还是不容易看透本本质。其实,如果把F=αG中的α乘以一个g,同时G除以一个g,这不就是经典的牛顿第二定律吗,此时的我不禁想起一句话:抗震恒永久,牛二永流传。(牛二:牛顿第二定律——在加速度和质量一定的情况下,物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比。加速度的方向跟作用力的方向相同。牛顿第二运动定律可以用比例式来表示,即或;也可以用等式来表示,即F=kma,其中k是比例系数;只有当F以牛顿、m以千克、a以m/s2为单位时,F=ma成立。) 最后总结一句话:地震影响系数来源于牛二。 知道了地震影响系数的由来,下面顺藤摸瓜,就要总结一下α(地震影响系数)的定义公式。 α(T)= K ×β(T), 公式里有三个系数

1.高空飞行中的生物力学正加速度,即作用于人体的力是从头指向.

1.高空飞行中的生物力学:正加速度,即作用于人体的力是从头指向脚的,其以“视觉发黑”为 测量忍受指标,此时a=3g ,负加速度即作用于人体的力是由脚指向头部,其以“视觉发红”为测量忍受指标,此时a=-3g ;横向加速度,即作用于人体的力与身体前后左右面垂直,其以“呼吸困难”为测量忍受指标,此时a=15g ,那么, 航天器的气密仓的设计如图所示,它固定在一个横轴 上,可绕轴做360°旋转,这样设计的目的是( ) A .让宇航员舒适些 B .始终承受横向加速度 C .始终承受负加速度 D .始终承受正加速度 2.一质点自x 轴原点出发,沿正方向以加速度a 加速,经过to 时间速 度变为v0,接着以-a 加速度运动,当速度变为-v0/2时,加速度又变 为a ,直至速度变为v0/4时,加速度再变为-a 。,直至速度变为 -v0/8……,其v-t 图象如图所示,则下列说法中正确的是 A .质点一直沿x 轴正方向运动 B .质点将在x 轴上—直运动,永远不会停止 C .质点最终静止时离开原点的距离一定大于v 0t 0 D .质点运动过程中离原点的最大距离为v 0t 0 3.如图所示,质量均为m 的物体A 、B 通过一劲度系数为k 的轻弹簧 相连,开始时B 放在地面上,A 、B 都处于静止状态.现用手通过细绳缓 慢地将A 向上提升距离L 1时,B 刚要离开地面,此过程手做功W 1、手做 功的平均功率为P 1;若将A 加速向上拉起,A 上升的距离为L 2时,B 刚 要离开地面,此过程手做功W 2、手做功的平均功率为P 1.假设弹簧一直 在弹性限度范围内,则 A .L 1 = L 2 = k mg B .L 2 >k mg L 21= C .W 2 > W 1 D .P 2< P 1 4.如图所示,水平地面附近,小球B 以初速度v 斜向上瞄准另一小球A 射出,恰巧在B 球射出的同时,A 球由静止开始下落,不计空气阻力.则两球在空中运动的过程中 A .A 做匀变速直线运动, B 做变加速曲线运动 B .相同时间内B 速度变化一定比A 的速度变化大 C .两球的动能都随离地竖直高度均匀变化 D .A 、B 两球一定会相碰 5.一物体放在升降机底板上,随同升降机由静止开始竖直向下运动, 运动过程中物体的机械能与物体位移关系的图象如图所示,其中1 O s -过程的图线为曲线,12s s -过程的图线为直线.根据该图象,下列判断 正确的是 A .1O s -过程中物体所受合力一定是变力 B .12s s -过程中物体可能在做匀速直线运动 C .12s s -过程中物体可能在做变加速直线运动 D .2O s -过程中物体的动能可能在不断增大

郑州大学 基于加速度传感器的计步器设计

郑州大学课程设计(报告) 题目:基于加速度传感器的计步器设计 课程:传感器与检测技术 任课教师:职称: 学生姓名:学号: 专业: 院(系): 完成时间:

基于加速度传感器的计步器设计 摘要随着我们生活水平的不断提高,社会各阶层的人们开始对身体健康尤其的关注。然而健身的方法数不胜数,步行是最好的运动之一。健康需要走出来,行走锻炼——人类生命健康的加氧站。步行是一种静中有动、动中有静的健身方式,可以缓解神经肌肉紧张。据专家实验得出,当烦躁、焦虑的情绪涌上心头时,我们以轻快的步伐散步15分钟左右,即可缓解紧张、稳定情绪。计步器功能可以根据计算人的运动情况来分析人体的健康状况。而人的运动情况可以通过很多特性来进行分析。比如人在运动时会产生加速度。 论文主要采用了以单片机AT89C52为核心的计步器控制系统,并实现运动计步,是通过人运动时产生加速度变化来实现的,本文利用具有体积小,功耗低,三轴加速度传感器MMA7455来实现,采集到的加速度数据通过适当的算法就可以实现计步功能,最后通过LCD1602给予显示。 本设计的特色在于完整的设计出计步器及其控制电路,整个系统具有控制方便,检测精确,硬件结构简单,方便携带,成本较低等优点。 关键词:单片机;加速度传感器;液晶显示

Abstract With our continuous improvement of living standards, social strata, especially the health of people began to concern. However, numerous methods of fitness, walking is the best exercise one. Health needs to come out, walking exercise - human life and health and oxygen station. Walking is a static in action, moving in a static way of fitness, can relieve nerve muscle tension. According to experts, experimentally derived, when irritability, anxiety in my heart, we are walking at a brisk pace for about 15 minutes, you can relieve tension, emotional stability. Pedometer function can be calculated according to the movement of the person to analyze human health. And the movement of people can be analyzed through a number of characteristics. Such as human in motion will produce accelerations. Thesis uses a microcontroller AT89C52 as the core control system pedometer, pedometer and achieve movement is produced by the human movement acceleration change to achieve, this paper has a small size, low power consumption, triaxial acceleration sensor MMA7455 to implementation, the acceleration data collected through appropriate algorithms can achieve step count, and finally through LCD1602 given display. This design feature is the complete design of a pedometer and its control circuit, the whole system easy to control, detection accuracy, the hardware structure is simple, easy to carry, and low cost. Keywords: Mcrocontroller, Acceleration sensors, LCD

加速度计类型简介

定义 中文名称:加速度传感器 英文名称:acceleration transducer 定义:能感受加速度并转换成可用输出信号的传感器 应用学科:机械工程(一级学科);传感器(二级学科);物理量传感器(三级学科)。 加速度传感器是一种能够测量加速力的电子设备。加速力就是当物体在加速过程中作用在物体上的力,就好比地球引力,也就是重力。加速力可以是个常量。加速度计有两种:一种是角加速度计,是由陀螺仪(角速度传感器)改进的。另一种就是线加速度计。[1] 2分类 压电式 压电式加速度传感器又称压电加速度计。它也属于惯性式传感器。压电式加速度传感器的原理是利用压电陶瓷或石英晶体的压电效应,在加速度计受振时,质量块加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比。 压阻式 基于世界领先的MEMS硅微加工技术,压阻式加速度传感器具有体积小、低功耗等特点,易于集成在各种模拟和数字电路中,广泛应用于汽车碰撞实验、测试仪器、设备振动监测等领域。加速度传感器网为客户提供压阻式加速度传感器/压阻加速度计各品牌的型号、参数、原理、价格、接线图等信息。 电容式 电容式加速度传感器是基于电容原理的极距变化型的电容传感器。电容式加速度传感器/电容式加速度计是对比较通用的加速度传感器。在某些领域无可替代,如安全气囊,手机移动设备等。电容式加速度传感器/电容式加速度计采用了微机电系统(MEMS)工艺,在大量生产时变得经济,从而保证了较低的成本。 伺服式

伺服式加速度传感器是一种闭环测试系统,具有动态性能好、动态范围大和线性度好等特点。其工作原理,传感器的振动系统由"m-k”系统组成,与一般加速度计相同,但质量m上还接着一个电磁线圈,当基座上有加速度输入时,质量块偏离平衡位置,该位移大小由位移传感器检测出来,经伺服放大器放大后转换为电流输出,该电流流过电磁线圈,在永久磁铁的磁场中产生电磁恢复力,力图使质量块保持在仪表壳体中原来的平衡位置上,所以伺服加速度传感器在闭环状态下工作。由于有反馈作用,增强了抗干扰的能力,提高测量精度,扩大了测量范围,伺服加速度测量技术广泛地应用于惯性导航和惯性制导系统中,在高精度的振动测量和标定中也有应用。 线加速度计的原理是惯性原理,也就是力的平衡,A(加速度)=F(惯性力)/M(质量) 我们只需要测量F就可以了。怎么测量F?用电磁力去平衡这个力就可以了。就可以得到F对应于电流的关系。只需要用实验去标定这个比例系数就行了。当然中间的信号传输、放大、滤波就是电路的事了。 多数加速度传感器是根据压电效应的原理来工作的。 所谓的压电效应就是"对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象称为正压电效应"。 一般加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性。由于这个变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。当然,还有很多其它方法来制作加速度传感器,比如压阻技术,电容效应,热气泡效应,光效应,但是其最基本的原理都是由于加速度产生某个介质产生变形,通过测量其变形量并用相关电路转化成电压输出。每种技术都有各自的机会和问题。 压阻式加速度传感器由于在汽车工业中的广泛应用而发展最快。由于安全性越来越成为汽车制造商的卖点,这种附加系统也越来越多。压阻式加速度传感器2000年的市场规模约为4.2亿美元,根据有关调查,预计其市值将按年平均4.1%速度增长,至2007年达到5.6亿美元。这其中,欧洲市场的速度最快,因为欧洲是许多安全气囊和汽车生产企业的所在地。 压电技术主要在工业上用来防止机器故障,使用这种传感器可以检测机器潜在的故障以达到自保护,及避免对工人产生意外伤害,这种传感器具有用户,尤其是质量行业的用户所追求的可重复性、稳定性和自生性。但是在许多新的应用领域,很多用户尚无使用这类传感器的意识,销售商冒险进入这种尚待开发的市场会麻烦多多,因为终端用户对由于使用这种传感器而带来的问题和解决方法都认识不多。如果这些问题能够得到解决,将会促进压电传感器得到更快的发展。2002年压电传感器市值为3亿美元,预计其年增长率将达到4.9%,到2007年达到4.2亿美元。 使用加速度传感器有时会碰到低频场合测量时输出信号出现失真的情况,用多种测量判断方法一时找不出故障出现的原因,经过分析总结,导致测量结果失真的因素主要是:系统低频响应差,系统低频信噪比差,外界环境对测量信号的影响。所以,只要出现加速度传感器低频测量信号失真情况,对比以上三点看看是哪个因素造成的,有针对性的进行解决[5]。

设计基本地震加速度结构设计

设计基本地震加速度结构设计 1建筑设计 1.1工程概况 建筑设计在现有的自然环境与总体规划的前提下,根据设计任务书的要求,综合考虑使用功能、结构施工、材料设备、经济艺术等问题,着重解决建筑内部使用功能和使用空间的合理安排,内部和外表的艺术效果,各个细部的构造方式等,创造出既美观又实用的建筑。 建筑设计应考虑建筑与结构等相关的技术的综合协调,以及如何以更少的材料、劳动力、投资和时间来实现各种要求,使建筑物做到适用、经济、坚固、美观。 本方案采用框架结构,框架结构是由梁、柱、节点及基础组成的结构形式,横梁和立柱通过节点连成一体,形成承重结构,将荷载传至基础。其特点是承重系统与非承重系统有明确的分工,支承建筑空间的骨架与梁,柱是承重系统,这种结构形式强度高,整体性好,刚度大,抗震性好,开窗自由。 设计标高:室内外高差:450mm。 地震烈度:6度,设计基本地震加速度为0.05g,Ⅱ类场地,设计地震分组为第二组。 耐火等级:二级。 =0.60kN/m2。 基本风压:ω 雪压:0.20 kN/m2,地面粗糙度类别为B类。 不上人屋面活荷为0.5kN/m2,走廊活荷载为2.5kN/m2,卫生间楼面活荷载为2.0 kN/m2,教室楼面活荷为2.0 kN/m2,楼梯活荷载为3.50kN/m2。 1.2 总平面布局和平面功能分区 1.2.1 总平面布局

该建筑物总长度为87.6m,总宽度为17.7m,总高度为18.45m,共五层,总建筑面积为7752m2,主体结构采用现浇钢筋混凝土框架结构。 图1.1 建筑平面图 1.2.2 平面功能分区 根据设计资料的规划要求,本办公楼建筑要求的主要功能有:门卫室,办公室,会议室,男女厕所等。 (1)使用部分的平面设计 使用房间面积的大小,主要由房间内部活动的特点,使用人数的多少以及设备的因素决定的,本建筑物为办公楼,主要使用房间为办公室,各主要房间的具体设置在下表一一列出,如下表: 表1-1 序号房间名称数量单个使用面积 1 办公室79 52.45 2 会议室 5 65.53 3 办公设备用房 5 65.53 4 门房 1 25.36 5 男女厕所10 20.04 (2)窗的大小和位置 房间中窗的大小和位置主要是根据室内采光通风要求来考虑。采光方面,窗

加速度与位移

加速度与位移 1.速度和时间的关系 (1)速度公式 由加速度的定义公式a=,可得匀变速直线运动的速度公式为:=+at 为末速度,为初速度,a为加速度. 此公式对匀加速直线运动和匀减速直线运动都适用.一般取初速度 的方向为正方向,加速度a可正可负.当a与同向时,a>0,表明物体的速度随时间均匀增加;当a与反向时,a<0,表明物体的速度随时间均 匀减小. 当a=0时,公式为= 当=0时,公式为=at 当a<0时,公式为=-at(此时只能取绝对值) 可见,=+at是匀变速直线运动速度公式的一般表示形,只要知道初速度和加速a,就可以计算出各个时刻的瞬时速度. 2.位移和时间的关系 (1)平均速度公式 做匀变速直线运动的物体,由于速度是均匀变化的,所以在某一段 上的平均速度应等于初、末两速度的平均值,即 此公式只适用于匀变速运动,对非匀变速运动不适用.例如图2-14中甲物体在前5s内的平均速度为3m/s,乙物体在4s内的平均速度为3m /s (2)位移公式 s为t时间内的位移. 当a=0时,公式为s=t当=0时,公式为s= 当a<0时,公式为s=t-(此时a只能取绝对值). 可见:s=t+a是匀变速直线运动位移公式的一般表示形式,只要知道运动物体 的初速度和加速度a,就可以计算出任一段时间内的位移,从而确定任 意时刻物体所在的位置. 1、选择题: 1.一物体做匀变速直线运动,下列说法中正确的是()

A.物体的末速度与时间成正比 B.物体的位移必与时间的平方成正比 C.物体速度在一段时间内的变化量与这段时间成正比 D.匀加速运动,位移和速度随时间增加;匀减速运动,位移和速度随时间减小 2.物体做直线运动时,有关物体加速度,速度的方向及它们的正负值说法正确的是( ) A.在匀加速直线运动中,物体的加速度的方向与速度方向必定相同B.在匀减速直线运动中,物体的速度必定为负值 C.在直线线运动中,物体的速度变大时,其加速度也可能为负值D.只有在确定初速度方向为正方向的条件下,匀加速直线运动中的加速度才为正值 3.物体以2m/s2的加速度作匀加速直线运动,那么在运动过程中的任意1S内,物体的( ) A.末速度是初速度的2倍 B.末速度比初速度大2m/s C.初速度比前一秒的末速度大2m/s D.末速度比前一秒的初速度大2m/s 4.原来作匀加速直线运动的物体,若其加速度逐渐减小到零,则物体的运动速度将( ) A.逐渐减小 B.保持不变 C.逐渐增大 D.先增大后减小 5.汽车以20 m/s的速度做匀速直线运动,刹车后的加速度大小为5,那么开始刹车6 s汽车的速度大 小为() A. 20 m/s B. 0 m/s C. —10 m/s D. 5 m/s 6.关于自由落体运动,下面说法正确的是() A.它是竖直向下,v0=0,a=g的匀加速直线运动 B.在开始连续的三个1s内通过的位移之比是1∶3∶5 C.在开始连续的三个1s末的速度大小之比是1∶2∶3 D.从开始运动起依次下落4.9cm、9.8cm、14.7cm,所经历的时间之比为1∶∶ 7.甲、乙两车某时刻由同一地点沿同一方向开始做直线运动,若以该时刻作为计时起点,得到两车的图象如图所示,则下列说法正确的是()

物理歌词

《爱在西元前》物理版歌词~~不错 ps:来自校内 普朗克先生写下了黑体辐射公式, 宣告量子力学诞生距今已一百又零三年。 薛定谔方程, 天才的灵光一现, 用德布罗意波谱写出物理学光辉顶点。 对易,表象,守恒,自旋,是谁的发现? 喜欢在光谱中你只属于我的那条线。 经过丹麦玻尔研究院, 我以大师之名许愿, 思念像海森堡矩阵般地蔓延。 当波函数只剩下测不准语言, 几率就成了永垂不朽的诗篇。 我给你的爱是轨道加自旋渗透到每一个原子的里面,隔一个世纪再一次发现泡利不相容原理依然清晰可见。我给你的爱是轨道加自旋渗透到每一个原子的里面,用狄拉克符号写下了永远, 宏观确定的经典, 不会再重演。 我感到很疲倦, 能级低的好可怜, 害怕再也不能跃迁到你身边。。。 爱在西元前(统计版vs数学版) 数学版: 欧几里德留下了下了几何原本 传抄在雪白的羊皮纸上 距今已有两千三百多年 阿波罗尼生于帕加 凝视着永恒的圆锥曲线 丢番图却在静静的欣赏不定方程的解 微分级数离散收敛是谁的发现? 喜欢你在连续之中逼近我的极限 经过剑桥三一学院 我以牛顿之名许愿 思念就像傅利叶级数一样蔓延 当空间只剩下拓扑的语言 映射就成了永垂不朽的诗篇 我给你的爱写在西元前 深埋在康托尔集合里面 用超越数去超越永远 统计版:

埃德蒙哈雷撰写了生命表文献 刻在精算学的字典 距今已经三百一十多年 你在骰子前 思考随机的事件 高斯却在静静欣赏正态分布的曲线抽样描述回归多元是谁的发现 喜欢计算结果之中p值很小的画面经过费舍尔的身边 我以尼曼之名许愿 思念像结构方程一样的漫延 当数据只剩下秩的语言 非参就成了永垂不朽的诗篇 我给你的爱写在西元前 深埋在时间序列分析里面 几十步差分后相关性检验 自回归的痕迹依然清晰可见 我给你的爱写在西元前 深埋在时间序列分析里面 用遍历性质刻下了永远 那一提前千年的预言 一切又重演 sas,R,S,VB是谁的软件 喜欢输出结果之中系数显著的画面经过库兹尼茨身边 我以泊松之名许愿 思念像路经分析一样的漫延 当变量只剩下重叠的表现 因子就成了永垂不朽的诗篇 我给你的爱写在西元前 深埋在时间序列分析里面 几十步差分后相关性检验 自回归的痕迹依然清晰可见 我给你的爱写在西元前 深埋在时间序列分析里面 用遍历性质刻下了永远 那一提前千年的预言 一切又重演 购买力平价很危险离实施还很远恐怕再也不能编到国核里面 我给你的爱写在西元前 深埋在时间序列分析里面 几十步差分后相关性检验 自回归的痕迹依然清晰可见

设计基本加速度和水平地震影响系数的关系

设计基本加速度和水平地震影响系数的关系

————————————————————————————————作者: ————————————————————————————————日期: ?

设计基本加速度和水平地震影响系数的关系 今天这篇文章的由头,完全是因为前天晚上的一个疑问:01版抗规中的设计 基本地震加速度-----“0.05g、0.1g。。。”等。既然规范里有数据,为什么又不参与计算?列出以上数据的意义是什么呢?这些东西和水平地震影响系数又是怎么样个关系呢?找遍网络与现有书籍,无此解释,只好自力更生,艰苦奋思。谁知越牵越多,牵出好多东西。先从这个疑问总结吧。 一、关于设计基本地震加速度 关于设计基本地震加速度的意义所在,我翻遍手头的所有资料发现最好还是从89与2001及2010几版抗规的对比中寻找解释,列表如下: 项目GBJ11-89 GB50011-2001及2010 地震影响表征采用设防烈度采用设计基本地震加速度、设计特征周期表证 设计基本 地震加速度(g) 无 6度7度8度9度 0.05 0.1(0.15) 0.2 (0.3) 0.4 设计特征周期按设计近震或远震 和场地类别确定 按设计地震分组和场地类别确定:表5. 1.4-1 可以看出,89版抗规中并没有设计基本地震加速度这项定义,此定义完全是01版的新生事物。意义到底何在?意义就在于对地震影响的表征。89版采用的是设防烈度对地震影响进行表征。而在01及10版的抗规中,对地震影响的表征,已经舍去了设防烈度,进而采取“设计基本地震加速度、设计特征周期”。 此做法优点何在?第一,设防烈度的划分标准偏于现象,改用设计基本地震加速度后,可以用具体参数来表征地震影响-----更科学、更“规范”,我想这是那些规编们最看重的一点优势;第二,采用设计基本地震加速度后,可以清楚的表征7度半(0.15g)与8度半(0.3g)的概念,拓宽了抗震设防烈度的概念-----更“延伸”;第三,设计基本地震加速度还是根据设防烈度进行分类的,原则上用基本地震加速度去表征与用现象去区分地震影响并不矛盾-----更“统一”。 写到这里,想起了本科毕业时去城乡设计院面试的情景。虽然一晃六年过去了,那时的情景还是历历在目。面试我的那老总,坐在宽大的老板桌后面,他问的我那几个都会的问题由于时间久远都记不得了,只是那个没答的问题让我记忆犹新,“咱这儿的设计基本地震加速度是多少?”坏菜,那会儿的我刚出校门,这名词依稀在考试中见过两次而已,当即败下阵来。要是换成今天?可惜世上没有后悔药。 设计基本地震加速度——相应于设防烈度的地震地面运动峰值加速度,即为50年设计基准期超越概率10%的地震加速度的设计取值 二、关于地震影响系数 地震影响系数的由来: 不管是底部剪力法,还是振型分解反应谱法,结构总水平地震作用标准值的根本计算方法,始终是牛顿第二定律的变体:F=αG 以上公式的α即为地震影响系数,其实就是加速度除以了一个小g(重力加速度);G为质点的重量。 对于初学者来说,上面的公式虽然简单,但一上来还是不容易看透本本质。其实,如果把F=αG中的α乘以一个g,同时G除以一个g,这不就是经典的牛顿第二定

相关文档
最新文档