1K412071斜拉桥施工控制的主要技术措施

1K412071斜拉桥施工控制的主要技术措施
1K412071斜拉桥施工控制的主要技术措施

1K412071斜拉桥施工控制的主要技术措

1K412071斜拉桥施工控制的主要技术措施1K412071斜拉桥施工控制的主要技术措施k412070了解斜拉桥、连续粱桥的施工方法、工艺和技术要求

1k412071斜拉桥施工控制的主要技术措施

斜拉桥主梁施工方法与梁式桥基本相同,大体上可分为顶推法、平转法、支架法和悬臂法。悬臂法分悬臂浇筑法和悬臂拼装法。悬臂浇筑法在塔柱两侧用挂篮对称逐段浇筑主梁混凝土;悬臂拼装法是先在塔柱区浇筑(对采用钢梁的斜拉桥为安装)一段放置起吊设备的起始梁段,然后用适宜的起吊设备从塔柱两侧依次对称拼装梁体节段。由于悬臂法适用范围较广而成为斜拉桥主梁施工最常用的方法。

斜拉桥的零号段是梁的起始段,一般都在支架和托架上浇筑,支架和托架的变形将直接影响主梁的施工质量,在零号段浇筑前应消除支架的温度变形、弹性变形、非弹性变形和支承变形。

不与索塔结构固结的主梁,施工时必须使梁塔临时固结,并须加强施工期内对临时固结的观察。

采用挂篮悬浇主梁时,挂篮设计和主梁浇筑时应考虑抗风振的刚度要求;挂篮制成后应进行检验、试拼、整体组装检验、预压,同时测定悬臂梁及挂篮的弹性挠度、调整高程及其他技术性能。

主梁采用悬拼法施工时,预制梁段宜选用长线台座或多段联线台座,每联宜多于5段,啮合端面要密贴,不得随意修补。

大跨径主梁施工时应缩短双向长悬臂持续时间,尽快使一侧固定,以减少风振时不利影响,必要时应采取临时抗风措施。

应观测合龙前连日的昼夜温度场变化与合龙高程及合龙口长度变化的关系,确定适宜的合龙时间和合龙程序。

1k412072拉索的施工技术要求

拉索的安装工艺要考虑放索及索的移动方案、斜拉索的塔部安装方案、斜拉索的梁部安装方案。索的安装方法的选择视拉索张拉端设于塔还是设于梁,或两端均为张拉端而定。设于塔,则梁部先安装(锚固端),采用吊点法;设于梁,则塔部先安装锚固端,可用吊点法和吊机安装法。对于张拉端,梁部安装可用拉杆接长法;塔部安装可用分步牵引法.

安装斜拉索前应计算出克服索自重所需的拖曳力,以便选择卷扬机、吊机及滑轮组配置。

安装张拉端,先要计算出安装索力。

施工中不得损伤索体保护层和索端锚头及螺纹,不得堆压弯折索体。

拉索张拉的顺序、级次数和量值应按设计规定执行。应以振动频率计测定的索力或油压表为准,以延伸值作校核,并应视拉索防振圈以及弯曲刚度的状况对测定值予以修正。

索塔顺桥向两侧的拉索(组)和横桥向对称的拉索(组)必须对称同

步张拉。

跨中合龙前后,应对索力检测。每组及每索的拉力误差超过设计规定时应进行调整,调整可以从超过设计索力最大或最小的拉索开始(放或拉)直调至设计索力。调索时应对塔和相应梁段进行位移检测,并做好存档记录。记录内容包括日期、时间、环境温度、索力、索伸缩量、桥面荷载状况、塔梁的变位量及主要相关控制断面应力等。

1k412073现浇预应力混凝土连续粱的施工要点

现浇预应力混凝土连续梁的常用施工方法有支架法、移动模架法和悬臂浇筑法。

(1)在支架上现浇预应力混凝土连续梁的技术要求和注意事项

①支架稳定,强度、刚度应符合规范要求,验算倾覆稳定系数不得小于1.3;受载后挠曲的杆件,挠度不得大于结构跨度的1/400;

②支架的弹性、非弹性变形及基础的允许下沉量应满足施工后梁体设计标高的要求;

③整体浇筑时应采取措施,防止梁体不均匀下沉产生裂缝,若地基下沉可能造成梁体混凝土产生裂缝时,应分段浇筑。

(2)在移动模架上浇筑预应力混凝土连续梁的注意事项

①在支架上长度必须满足施工要求;

②支架应利用专用设备组拼,在施工时能确保质量和安全;

③浇筑分段工作缝,必须设在弯矩零点附近;

④箱梁外、内模板在滑动就位时,模板平面尺寸、高程、预拱度的误差必须在容许范围内;

⑤混凝土内预应力筋管道、钢筋、预埋件设置应符合规范和设计要求。

(3)悬臂浇筑法(简称悬浇)

主要设备是一对能行走的挂篮。挂篮在已经张拉锚固并与墩身连成整体的梁段上移动,绑扎钢筋、立模、浇筑混凝土、预施应力都在其上进行。完成本段施工后,挂篮对称向前各移动一节段,进行下一对梁段施工,循序前进,直至悬臂梁段浇筑完成。

①浇筑段落

悬浇梁体一般要分四大部分浇筑:

●墩顶梁段(0号块);

●0号块两侧对称悬浇梁段;

●边孔支架现浇梁段;

●主梁跨中合龙段。

②悬浇顺序

●在墩顶托架或膺架上浇筑0号段并实施墩梁临时固结;

●在0号块段上安装悬臂挂篮,向两侧依次对称分段浇筑主梁至合龙前段;

●在支架上浇筑边跨主梁合龙段;

●最后浇筑中跨合龙段形成连续梁体系。

在梁段混凝土浇筑前,应对挂篮(托架或膺架)、模板、预应力筋管道、钢筋、预埋件、混凝土材料、配合比、机械设备、混凝土接缝处理情况进行全面检查,经签认后方准浇筑。

③张拉及合龙顺序

预应力混凝土连续梁悬臂浇筑施工中,顶、腹板纵向预应力筋的张拉顺序一般为上下、左右对称张拉,设计有要求时按设计要求。

预应力混凝土连续梁合龙顺序一般是先边跨、后次跨、再中跨。

预应力混凝土连续梁支座反力调整,按设计要求程序施工。

④高程控制

预应力混凝土连续梁,悬臂浇筑段前端底板和桥面标高的确定是连续梁施工的关键问题之一,确定悬臂浇筑段前段标高时应考虑:

●挂篮前端的垂直变形值;

●预拱度设置;

●施工中已浇段的实际标高;

●温度影响。

因此,施工过程中的监测项目为前三项;必要时结构物的变形值、应力也应进行监测,以保证结构的强度和稳定。

1K412071斜拉桥施工控制的主要技术措施相关内容:

斜拉桥、悬索桥施工安全控制要点(最新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 斜拉桥、悬索桥施工安全控制要 点(最新版)

斜拉桥、悬索桥施工安全控制要点(最新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 1.斜拉桥和悬索桥(吊桥)的索塔施工,属于高处或超高处作业,应根据结构、高度及施工工艺的不同情况,制定相应的专门的安全施工组织设计、安全作业指导书(操作细则)。 一般情况,混凝土、钢筋混凝土及预应力混凝土索塔,参照墩台施工及滑模施工的安全控制要点。 电气设备和线路的绝缘必须良好,各种电动机械必须接地,接地电阻不得大于4Ω。电气设备和线路检修时,应先切断电源。 施工现场要有防火措施并备有消防器材,要防止电焊火花溅落在易燃物料上; 2.索塔分节立模浇筑前,应搭好脚手架,扶梯、人行道及护栏。每层脚手架的缝隙处,应设置安全网。两层间距不得超过8m; 3.浇筑塔身混凝土,应按规定挂好减速漏斗及保险绳,漏斗上口应堵严,以防石子下落伤人; 4.塔底与桥墩为铰接时,施工中,必须将塔底临时固定。塔身建

浅谈斜拉桥施工控制方法与发展

浅谈斜拉桥施工控制方法与发展 发表时间:2016-06-29T10:53:37.043Z 来源:《基层建设》2016年5期作者:曾余清[导读] 另外通过适时的检测可以了解关键测点,断面的内力和变形,为桥梁的施工能顺利的进行保驾护航。 攀枝花学院土木与建筑工程学院攀枝花市 617000 摘要:施工监控的目的就是消除误差[5],使桥梁能够安全的合龙,使结构的受力在可以控制范围以内,在施工和运营中不发生过大的挠度和变形,避免对桥梁结构产生重大影响的错误。另外通过适时的检测可以了解关键测点,断面的内力和变形,为桥梁的施工能顺利的进行保驾护航。 关键词:斜拉桥;施工监控;方法;发展 一、斜拉桥合龙施工与控制的重要性和发展情况 斜拉桥超静定次数高,结构非线性特征明显,而且施工阶段的内力和线形对成桥以后的内力和线形的影响也很大,再加上合龙时候可能会伴有结构体系的转换,施工难度大,内力和线形的变化也比较复杂,难以控制。为了保证施工中机构的安全,稳定性,和消除那么多的不安全和不确定因素,达到安全合龙。斜拉桥的施工监测与控制已经成为了大跨度斜拉桥建造工作中很重要的一部分。 我国对桥梁合龙控制技术方面的研究起步较晚[5],20世纪50年才开始关注施工中的结构内力和线形的控制。1982年首次运用国外控制理论建成了上海柳港大桥,在建设中进行了梁挠度进行计算和控制,以及索塔偏位的监测控制。从此我国拉开了现代桥梁施工控制理论的研究序幕。上世纪八十年代后期初步形成了斜拉桥施工监测与控制的完整理论和系统。控制分析的方法是对桥梁的施工进行软件模拟,按照桥梁施工的实际施工步骤施加工况,或者按照设计的成桥状态步步倒拆,来分析结构的受力,并且通过现代的监测技术,对实测数据和理论研究数据对比分析,桥梁诸多参数的识别和估计,对桥梁的结构内力和线形按照理想状态进行了控制和调整,实现了施工和控制的良好配合。最后达到了内力和线型的控制目标。使得施工的时候有目标可参,施工监测与控制理论用于本桥取得的巨大成功,也为以后桥梁的施工控制的发展走出了最艰难的一部,里面的控制方法,计算方法以及监测方法都促进这桥梁更高,更大,跨域能力更强的方向发展,之后我们也出现了世界上跨度领先,技术领先的桥梁。这些桥梁的成功在于有更先进的施工方法和施工控制理论[3]。 近年来,随着施工技术的不断完善,施工监测和控制手段越来越多,斜拉桥施工控制的研究在我国取得了一定的进展,发展到现在形成了比较成熟的理论,按设计—施工控制理论计算—施工—监测—参数识别—预报的程序[2],对桥梁的施工全过程以及运营过程进行了监测控制。 在未来,斜拉桥控制技术在随着有限元软件技术的进步会逐渐的成熟,完善。随着计算水平的提高,高强度材料的研发,以后的桥梁肯定会朝着跨度大,自重轻的方向发展,同时给施工带来的难度会更大,所以对单索面斜拉桥的施工技术,施工监控技术的自动化,精确化研究就显得非常重要。 二、斜拉桥施工控制的方法和发展 根据桥梁的施工方法,桥梁施工难度,以及设计等级的不同,可以选择不同的控制手段。常见的施工控制方法,主要有:开环控制(确定性控制),(反馈控制)闭环控制,以及自适应控制[3]。 ⑴开环控制 在控制之前预先建好桥梁的有限元模型,然后根据模型计算出成桥阶段荷载作用下的理想内力和变形。并且根据施工步骤计算出结构的预拱度,最后就是施工单位按照既定的预拱度进行施工。这种控制比较简单,它不用考虑施工过程中桥梁的实际受力状态。这是早期桥梁施工控制的方法,这种方法也可以用在中小型桥梁的施工控制中[3]。 ⑵闭环控制 在很多大跨度桥梁的实际控制中,开环控制已经不能满足控制的精度的时候,是很难达到控制精度的。在复杂的桥梁结构施工时,结构状态误差的影响会随着施工的进行而越来越大[5],这些参数误差会慢慢叠加起来。可能会导致桥梁合龙以后的成桥状态与设计的几何线形和内力出现较大的偏差。 为了解决这样的误差,我们又想到了在施工中把测量的状态与理论的状态做比较,把上一阶段的结构状态作为下一阶段的初态的叠代。这样的控制把结构的实际状态经反馈计算来确定而形成了一个闭环反馈系统[3]。 ⑶自适应控制 自适应控制是现代控制中常用的方法,比较适合大跨度和复杂结构桥梁的控制,自适应控制系统在闭环控制的基础上分析了计算参数与实际参数之间有偏差,然后通过对参数的估计和修正,并且将识别以后的参数用于下一节段的实时结构分析、重复循环,经过若干个施工阶段以后就会使得参数的取值趋于合理,使得软件模拟计算更适应于实际情况[3]。 国内外施工控制的技术发展还不完善,还有待进一步的研究,以上主要的控制方法都有没考虑到或者存在不合理之处。随着软件技术和计算机技术,以及新型材料的发展,桥梁设计和施工的要求也越来越高,桥梁的线形也成为了衡量一座桥好坏的标准之一,桥梁控制的方法和重点也应该在创新中不断的发展和完善。比如监控测量仪器更精密,测量更准确。另外数据采集更接近实际。其次是监控测量的自动化程度的提高,也会给施工监控的精度带来新进步。未来为了适应桥梁的发展要求,自动化科学化的控制方法是工程施工控制的发展方向[6]。 结语:随着软件技术和计算机技术,以及新型材料的发展,监控测量仪器更精密,测量更准确,数据采集更接近实际,监控测量的自动化程度的提高,也会给施工监控的精度带来新进步。未来为了适应桥梁的发展要求,自动化科学化的控制方法是工程施工控制的发展方向 参考文献: [1]刘士林.斜拉桥 [M].北京:人民交通出版社,2002 [2]韦远思.浅论桥梁施工质量的控制[J].科技资讯,2010,(27). [3]徐君兰.大跨度桥梁施工控制[M].北京:人民交通出版社,2000

大跨度预应力混凝土斜拉桥施工监控方法及内容

大跨度预应力混凝土斜拉桥施工监控方法及内容 发表时间:2016-04-05T14:40:42.500Z 来源:《基层建设》2015年21期供稿作者:王兴球[导读] 中山市地方公路管理总站大桥合龙精度高,建成后大桥线形优美,成桥线形与设计目标线形吻合一致。 中山市地方公路管理总站 摘要:以大南沙特大斜拉桥为背景,根据斜拉桥的结构特点确定施工控制内容,通过对几何变形、索力、应力和温度的监测确保施工的顺利进行。 关键词:斜拉桥;施工工艺;索力;应力监测;施工控制 Abstract:Using Nansha Xiaolan River cable-stayed bridge as the background,according to the structural characteristics of cable-stayed bridge,based on the supervisory control of geometric deformation,cable force,stress and temperature to insure the construction process. Keywords:cable-stayed bridge;construction technology;cable force;stress monitoring;construction control 一、工程概况 大南沙特大桥主桥为(90+200+90)m三跨双塔双索面预应力混凝土梁斜拉桥,全长380m。为单向行驶右幅桥,斜拉索布置在主梁两侧成空间双索面。桥幅布置为:(1.2m索带)+(0.5m防撞护栏)+(14.5m车行道)+(0.5m防撞护栏)+(1.2m索带)=全桥总宽17.9m。主梁采用预应力混凝土肋板式结构,主梁纵向按全预应力砼结构设计,横梁按部分预应力砼A类构件设计,桥面板按钢筋砼构件设计。为确保该施工阶段的安全与质量,必须对其整个施工过程进行有效监测,才能获得理想的测试结果。 二、施工控制 监控过程是与施工一一对应的。在各施工阶段中,通过各项测试取得反结构态的各种参数,和理论设计值相比较,发现偏离,采取相应措施及时纠偏,防止误差积累,所以监控过程是以理论设计值为基准的维持动态平衡的过程。其测试内容包括:施工记录,线形测量,索力测量,温度场测量,应力应变测量和高程测量。下面文章将分别讲述各项测试内容。 三、几何变形监测 几何形态监测的目的主要是获取(识别)已形成的结构的实际几何形态,其内容包括标高、跨长、结构或拉索的安装位置、结构变形或位移等。它对施工控制、预报非常关键。 目前用于桥梁结构几何形态监测的主要仪器包括水准仪、经纬仪、全站仪等。通常采用测距精度和测角精度不低于规定值(如±(2mm+2ppm)和±2’’)的全站仪并结合固定高亮度发光体照准目标作为需要全过程动态跟踪监测的三维几何形态参数(如索塔位置、主索鞍位置、主缆索和加劲梁线形、索夹位置等;斜拉桥索塔位置、斜拉索锚固位置、加劲梁平面位置(线形)等;桥梁中轴线线形、连续刚构桥墩位、悬臂施工主梁的平面位置等)的监测手段;采用精密水准仪和全站仪测量等作为一般的标高、变形(位)等的监测手段。 为确保桥梁施工放样和几何控制的精度,施工现场一般都建立有高精度的施工平面和高程控制网。在上述控制网的基础上,根据结构几何形态参数监测工作的可实现性和现场操作便利性要求,在进行局部控制网优化处理后,便可形成一个形变监测控制网,并以此作为结构几何形态参数监测的控制基准。形变监测控制网的精度满足设计、规范以及施工控制本身的要求。可以对监控控制点进行加密其精度确保满足施工监控的要求。 中山大南沙特大桥主梁线形控制实施过程如下:在悬臂施工过程中,通过施工控制计算预测,对各悬臂梁段的施工同步发布立模标高预拱度指令,指示下一阶段主梁预抬高度、做好挂篮变形等的施工测量工作,同步应力测试工作;实时施工误差分折、参数调整等,在整个悬臂浇筑期间,监控组共发布节段立模标高控制指令多份。 经过现场分析,每经过一个节段,都要准确的对建成的模型进行分析和计算模型对照,利用模糊模型预测机制,得出下个节段的理论应该的预拱度。 这一计算工作在桥梁整个施工过程中需要实时调整这些调整既包括各个直接的实时测贵参教也包括根据实侧数据通过反位分析等而得的辨识参数,还要视实际施工情况对计算模型、计算方法及计算内容等做出调整。 四、索力监测 大跨度桥梁采用斜拉桥、悬索桥等缆索承重结构越来越广泛,特别是跨径在500m以上时基本上是斜拉桥、悬索桥一统天下。斜拉桥的斜拉索、悬索桥主缆索及吊索索力是设计的重要参数,也是施工监控实施中需要监测与调整的施工控制参数之一。索力量测效果将直接对结构的施工质量和施工状态产生影响。要在施工过程中比较准确地了解索力实际状态,选择适当的量测方法和仪器,并设法消除现场量测中各种误差因素的影响非常关键。可供现场索力量测的方法目前主要有以下几种:(1)压力表量测法(2)压力传感器量测法(3)磁通量法(4)光纤光栅法(5)振动频率量测法。 4.1.施工要点 在实施振动频率法量测索力时,由于实际索股的振动是复杂的,即便是采用人工激振的方法也不一定能激发出索股基频的自由振动,而随机环境的激振更使索股产生复合振动,同时索股的刚度、挠度、斜度、温度对测量频率也是有一定的影响,因此,需在随机信号测量与处理技术基础上,对环境随机激振的振动信号进行测量与处理分析,获得被测索股的频率参数,再进行索力的分析计算,并进行数据对比分析,获得不同长度索股的修正系数,然后再进行大量的索力量测。 4.2.索力调整 斜拉桥成桥恒载索力将直接决定其内力分布,索力的合理与否是衡量设计优劣的重要标准之一。通过斜拉桥索力优化,可以得到合理的成桥索力,称之为设计索力。然而,设计索力还必须通过施工来实施。一般情况下,斜拉索是在不同的施工阶段逐根进行张拉安装的。在每一个施工阶段中,如何确定当前拉索的张拉力,以确保施工完毕时所有斜拉索的索力都达到设计索力,就是确定斜拉索施工张拉力的任务。确定斜拉桥施工张拉力的方法有:(1)倒退分析法(2)正装迭代法。

斜拉桥施工方案

8 xx斜拉桥施工方案 根据施工整体部署,斜拉桥分南、北两岸对称施工,上、下游幅(两幅的间距为)基本上并列施工。 南岸(北仑侧)工区负责施工的范围为:D o、D i、D2墩位范围的工程;北岸(镇 海侧)工区负责施工的范围为:D3、D4、D5墩位范围的工程。 索塔、主梁及斜拉索施工处于关键线路上,辅助墩、过渡墩、边跨支架段作为非关键工程,可根据关键线路上的工程进度,来确定其经济的开工日期、完工日期。 8.1索塔施工 8.1.1整体方案概述 8.1.1.1基本构造 索塔为双菱形联塔,可分为上游幅索塔、下游幅索塔,每幅索塔有内塔肢、外塔肢两个塔肢,塔肢高度上可分为下塔柱、中塔柱、上塔柱,连接内、外塔肢的结构有塔座、下横梁、上横梁。塔座采用C40纤维混凝土,下塔柱第1m高度内采用C50纤维混凝土,索塔其他部位采用C50混凝土。 塔肢(纵桥向)宽度由塔顶7.0m单斜率变化到塔底。 索塔一般构造图 塔肢(横桥向)宽度:中、上塔柱基本宽度为,为单箱单室横截面;单幅索塔的上塔柱内、外塔肢连成一体,形成单箱三室横截面;上、下游幅索塔的内塔肢在下横梁中线以上、以下范围内连成一体,形成实体断面(或者单箱小二室横截面);下塔柱由4.0m双斜率(塔肢内外侧面斜率不同)变化至塔座顶面的,为单箱单室横截面。 索塔上斜拉索锚固段设水平预应力钢绞线束来平衡斜拉索产生的水平力,预应力在上横梁及其以上高度的索塔内呈“井”字,锚固在索塔外表面;预应力在上横梁以下段呈“ U”型布置,锚固在索塔塔壁内。

8.1.1.2施工工艺流程图 索塔总体施工工艺流程图 8.1.1.3索塔分段、模板体系、基本工期 索塔分节示意图(含中、上塔柱脚手架) 塔柱总工期为:360d = 325d + 35d特别因素 8.1.1.4塔吊、电梯、砼泵管、水电布设,各种预埋件 8.1.141 塔吊 每个索塔选用1台波坦MC170A塔吊(臂长55m,起重量19kN;最大起重量80kN , 在范围内)安装在左右幅的中间、1台QTZ6015塔吊(臂长35m,起重量35kN ;最大起重量100kN,在范围内)安装在边塔柱的外侧,整个索塔都处于吊装范围内,两台塔吊安装高度分别为159m (塔柱高度)、149m。斜爬电梯安装在另一外塔肢的外侧。 制定塔吊台风期安全技术方案

钢箱梁斜拉桥施工控制要点分析

钢箱梁斜拉桥施工控制要点分析 摘要:以永川长江大桥施工监控为实例,分析介绍钢箱梁斜拉桥施工控制要点。 关键词:斜拉桥钢箱梁施工控制 1.前言 斜拉桥以其简洁优美的外形及良好的跨越能力被广泛地采用。近些年来, 随着交通量的剧增, 桥面宽度及跨径均呈上升趋势, 传统的混凝土斜拉桥已难以满足实用要求, 大跨钢箱梁斜拉桥也因此应运而生了。但该类桥的施工控制与以往的混凝土斜拉桥的施工控制存在着较大差异, 故而施工控制必须因桥而异, 采取有针对性的措施。本文结合永川长江大桥施工控制实践, 通过分析大跨钢箱梁斜拉桥结构本身的固有特点,介绍了在此类桥的施工控制过程中应注意的几个问题。 2. 工程概况 永川长江大桥主桥全长1008m,起止桩号分别为K40+663.650~K41+678.800,为64+2×68+608+2×68+64m的7跨连续半漂浮体系的双塔混合梁斜拉桥,边跨设置2个辅

助墩和1个过渡墩(台),桥梁荷载等级为公路I级,中跨为钢箱梁,边跨为预应力混凝土梁,两种梁顶板宽都为35.5m。主桥桥型布置见图1-1 全桥桥型布置示意图 索塔:索塔基础采用24根直径2.5m的钻孔灌注桩;索塔承台为八边形,平面最大尺寸为42×23.25m、厚6.0m的整体式实体混凝土结构。索塔为花瓶形,索塔高196.7m(32号)/206.4m(33号),索塔共设计上、中、下三道横梁。 主梁:主梁采用混合梁,边跨为混凝土梁,采用PK 断面,整幅箱梁由两个倒梯形的边箱及连接两个边箱的横隔板构成,材料为C55 混凝土。箱梁总宽37.6m(含风嘴装饰板),中心梁高3.501m,标准断面顶、底板厚35cm,腹板厚50cm;中跨为钢箱梁,采用与混凝土断面相适应的边箱封闭式流线型扁平钢箱梁,材料为Q345-D。宽37.6m(含风嘴),高3.5m,标准节段长15.5m。每隔3.1m 设一道横隔板。中跨主梁采用等高度的封闭式流线型扁平钢箱梁,桥面设置双向2%的横坡,采用正交异性钢桥面板。 斜拉索:斜拉索采用平行钢丝斜拉索,双索面扇形布置,每一扇面由19对斜拉索组成,全桥共设76对斜拉索,最大索长332.086m,最大索重24.2t,张拉最大索力约4400kN。斜拉索锚固于上塔柱内,1号斜拉索锚固于锚块上,其余均采用钢锚梁形式锚固。技术标准: ⑴公路等级:双向六车道高速公路+两侧人行道;

斜拉桥施工技术介绍PPT

斜拉桥施工技术 概述 中交第一公路工程局有限公司

1概述 2施工技术准备 2.1施工组织设计 2.2控制网、放样 3深水(沟)基础施工 4索塔施工 4.1索塔类型 4.2钢索塔施工 4.3混凝土索塔 4.4索塔的特殊施工方法 4.5混凝土 4.6施工预埋件设计 4.7其他关键技术 5主梁施工 5.1主梁类型

5.2预应力混凝土梁现浇施工 5.3预应力混凝土梁拼装施工 5.4钢箱梁施工 5.5钢桁梁施工 5.6钢-混凝土组合梁施工 5.7混合梁 5.8特殊施工方法 6斜拉索施工 6.1平行钢丝索施工 6.2钢铰线斜拉索施工 6.3临时减震 7施工监测与施工控制 8矮塔斜拉桥 9参考文献

1概述 斜拉桥是设计与施工必须高度藕合的结构,其施工方法及流程不但影响施工时的结构应力,而且将影响结构成桥时的应力状态 斜拉索的防火、保护预案,施工期减振措施 阵风、台风期影响主梁安全的预案 完善、连接良好的防雷系统 起重技术、专用设备的准备时间 专业队伍的选择(方式) 设计小组或者专业人员2~3名,软件 总工(技术人员)创造变更,与总经一起及时索赔

2施工技术准备2.1施工组织设计 1.要避免台风期进行大悬臂施工作业 措施:抗风立柱,既抗拉又抗压,装拆快速、简易

2.纳入技术准备、主要设备准备的网络计划 3.监控:监控、设计、施工、监理等进行深入、多次交流,在主梁开始安装前就确定了 详细的工况流程、荷载,施工中不仅不得变动,而且要想方设法达到相关要求。导致主梁标高、索力发生偏差的因素,按影响程度排列如下:①施工流程变动较大;②不平衡施工荷载;③斜拉索本身的匀质性、索力的精确性;④构件自重波动; 4.整体布置:平面上的文明施工,立体交叉带来的安全隐患

斜拉桥施工方案要点

南阳市光武大桥建设工程 斜拉索挂索、张拉专项施工方案 中铁十五局集团 南阳市光武大桥建设工程项目经理部 二0一二年三月

一、工程概况 光武大桥采用两联80+80m单塔双索面斜拉桥,塔高34.21米。全桥采用现浇预应力混凝土连续梁。斜拉索为双索面,每个箱梁中央布置一个索面,横桥向对称布置在索区里。斜拉索直接穿过中腹板锚固于箱梁底面。斜拉索在梁上索距为8.0m;塔上索距2.05m,等间距布置。拉索的水平倾角在25.153°~37.682°。 斜拉索采用防腐性能优越的喷涂环氧钢绞线斜拉索体系,规格为OVM250AT-61,两端采用可换索式250AT锚具。每个索塔斜拉索横向单排布置,斜拉索采用高强度低松弛单层环氧涂层无粘结钢绞线斜拉索体系,单根钢绞线直径15.24mm,钢绞线标准强度fpk=1860Mpa。斜拉索外包HDPE整圆式护套管规格为ф260mm。全桥斜拉索共12对拉索,钢绞线约191吨。整束斜拉索钢绞线防护体系由单根钢绞线PE管、哈弗管外套、锚具、锚头防腐固体油脂、锚头环氧砂浆等组成。 全桥斜拉索布置情况 二、编制依据 1、《南阳市光武大桥施工图设计》 2、《公路桥涵施工技术规范》(JTJ041—2000) 3、《公路工程质量评定标准》(JTGF80/1—2004) 4、《OVM平行钢绞线斜拉索施工指南》 三、OVM250AT斜拉索体系结构说明 斜拉索由锚固段+过渡段+自由段+抗滑锚固段+塔柱内索鞍段+抗滑锚固段+自由段+过渡段+锚固段构成, 1、锚固段

主要由锚板、夹片、锚固螺母、密封装置、防松装置及保护罩组成。在锚固段锚具中,夹片、锚板、锚固螺母是加工上主要控制件,也是结构上的主要受力件。 A.密封装置:其主要起防止漏油、防水的密封作用。它由防损板、内外密封板、密封圈构成。并在密封装置内注防腐油脂对剥除PE层的钢绞线段起防护作用。 B.防松装置:主要由空心螺栓和压板构成,在钢绞线张拉并预压结束后安装此装置,可实现有效地对单个锚固夹片保持夹紧力,从而对夹片起防松、挡护作用。 C.保护罩:保护罩安装在锚具后端,并涂抹无粘结筋专用防护油脂,主要对外露钢绞线起防护作用。 2、过渡段 主要由预埋管及锚垫板、减振器组成。 2.1预埋管及垫板:在体系中起支承作用,同时在垫板正下方最低处应设有排水槽,以便施工过程中临时排水。 2.2减振器:对索体的横向振动起减振作用,从而提高索的整体寿命。本桥拟采用可调式减振器,以充分发挥减振器的减振作用。 3、自由段 主要由带HDPE护套的无粘结镀锌钢绞线、索箍、HDPE外套管、梁端防水罩、塔端连接装置等构成。 3.1无粘结镀锌钢绞线:为拉索的受力单元。 3.2索箍:因受张力大而采用钢质索箍,它是在紧索完成后安装的。主要作用是将索体形成一个规则的几何整体形状。 3.3 HDPE外套管:主要对钢绞线拉索起整体防护作用,本工程采用规格分别为ф260mm,HDPE管的连接方式采用专用HDPE焊机进行对焊。 A.梁端防水罩:主要起支承HDPE外套管和防止雨水由梁端预埋管进入拉索锚具的防 护作用。 B.塔端连接装置:由于HDPE外套管的热胀冷缩特性,其主要为塔端HDPE自由端热胀冷缩过程中提供空间和起密封防护作用。 4、抗滑锚固段 主要由锚固筒、减振器、索箍组成。 4.1锚固筒:锚固筒安装在塔外预埋的索鞍(分丝管)钢垫板上,主要对减振器起支承作用。 4.2减振器:对索体的横向振动起减振作用,从而提高索的整体寿命。 4.3索箍:因受张力大而采用钢质索箍,它是在紧索完成后安装的。主要作用是将索体形成一个规则的几何整体形状。

浅析特大斜拉桥施工监控措施

龙源期刊网 https://www.360docs.net/doc/8e10276283.html, 浅析特大斜拉桥施工监控措施 作者:黄晓初 来源:《中国新技术新产品》2013年第07期 摘要:当今社会,高强度材料和预应力技术高速发展,与之俱来的是,斜拉桥得到了广 泛应用。在桥梁的建设中,施工监控是桥梁安全性和施工效益的保障,尤其是对于一些特大斜拉桥,对施工监控工作提出了新的标准,本文分析特大斜拉桥施工监控的内容和计算方法,探讨特大斜拉桥施工监控的应用措施。 关键词:特大;斜拉桥;施工监控;措施 中图分类号:U44 文献标识码:A 斜拉桥外观优美,结构坚固,经济成本适中,已经成为了大跨径桥梁的首先类型之一,斜拉桥通常都是高次超静定结构,对施工精确度的要求很高,从选定施工方案开始,每一环节都必须严格依照施工方案进行准确计算。然而,由于受到预应力、拉索垂度、施工荷载、温度变化、混凝土变化等因素的干扰,很容易导致施工误差,而且这种误差,很可能会随着施工进展而继续扩大,影响桥梁的安全性,因此,在特大斜拉桥施工过程中,必须要严格做好施工监控工作,确保选择最完善的施工工艺,对每个环节都进行精确的检测,确保施工方向按照正确的轨道前进,保障桥梁的使用安全性。 一、监控内容 施工控制工作需要准确的检测结果作为依据,在斜拉桥整个施工过程中的每一个阶段,都必须要认真检测各项施工参数,计算出施工活动中出现的误差,然后在依据误差值,通过精确的计算来调整下个阶段的施工参数。对于特大斜拉桥施工建设而言,施工检测主要包括线形检测,索力检测,应力检测,温度检测几个环节。 (一)桥梁位移及变形 1.主梁标高和挠度 主梁标高的检测结果,是控制斜拉桥线形的重要依据,为了避免温度给检测结果带来的干扰,斜拉桥主梁标高的检测工作最好在清晨日出之前进行,以保障检测结果具有足够的精确性。主梁挠度的监测结果,也是控制斜拉桥线形的重要依据,在实际检测时,可以在各个施工块件上全部都设置三个对称的观测点,在测量主梁竖向挠度的同时,测量主梁的横向变形。 要对斜拉桥的主梁进行检测,还要保证在每个悬臂施工阶段,都在以下六个环节分别对主梁进行检测:第一,浇筑块件之前;第二,浇筑块件之后;第三,预应力张拉之前;第四,预

斜拉桥线性控制方案

京沪高速铁路津沪、京沪联络线特大桥 线形控制方案 一、现浇段与挂篮预压方案 1、预压目的 预压的目的一是消除支架(挂篮)及地基的非弹性变形,二是得到支架(挂篮)的弹性变形值作为施工预留拱度的依据,三是测出地基沉降,为采用同类型的桥梁施工提供经验数据。 2、支架(挂篮)的预压方法 在安装好底模钢模及侧模后,可对支架(挂篮)进行预压。预压采用袋装砂子预压,加载顺序为与混凝土浇筑顺序相同(先底板(挂篮由端部向根部进行,0#段浇筑从两端开始向墩顶进行)浇至底板(靠腹板处)倒角顶,后腹板、再顶板)。满载后持荷时间不小于24h,预压重量为梁 的120%。加载时按照最大重量的50%、80%、100%、120%及其余可能使用到的重量设计荷载分级加载(采用吨包装砂,按每袋砂子1000kg,起重机吊装),加载时注意加载重量的大小和加荷速率,使其与地基的强度增长 相适应,地基在前一级荷载作用下,观测地基沉降速度已稳定后,再施加下一级荷载,特别是在加载后期,更要严格控制加载速率,防止因整体或局部加载量过大、过快而使地基发生剪切破坏。地基最大沉降量不能超过10mm/d;水平位移不能大于4mm/d。在预压前对底模的标高观测一次,在每加载一级后预压的过程中平均每2小时观测一次,观测至沉降速度已降到0.5~1.0mm/d为止,将预压荷载按加载级别卸载后再对底模标高观测一次,预压过程中要进行精确的测量,要测出梁段荷载作用下支架将产生的弹性变形值及地基下沉值,将此弹性变形值、地基下沉值与施工控制中

提出的因其它因素需要设置的预拱度叠加,算出施工时应当采用的预拱度,按算出的预拱度调整底模标高。同时要注意在支架外侧2米处设置临时防护设施,防止地表水流入支架区,引起支架下沉。测出各测点加载前后的高程。加载用编织袋装砂子过磅后均匀堆码,用吊车分码吊至支架顶,由人工配合摆放。加载中由技术人员现场控制加载重量和加载位置,避免出现过大误差而影响观测结果。 3、现浇段测量方法 (1)模板支架安装稳固后,测量箱梁底标高、支架底托标高、顶托标高 和原地面标高,并在相应位置标识清楚。 (2)预压后,在上述测量标识位置,重新测量箱梁底标高、支架底托标高、顶托标高和原地面标高,算出预压值。 (3)每次测量3个断面 (4)不同的测量点位分别记录计算。 4、挂篮 选择便于观测的3个断面进行。 5、数据的记录与处理 见观测数据处理表(附表) 塑形变形(非弹性变形)为最后沉降量。 塑性变形=预压前底模高程—卸载后底模高程 弹性变形为:加载100%时累计沉降量-塑形变形。 6、数据的采用 根据以上实测的变形值,结合设计标高和梁底预拱度值,确定和调整 梁底标高。梁底立模标高=设计梁底标高+支架弹性变形值(以底模处计)+

独塔小半径曲线斜拉桥施工关键技术解析

独塔小半径曲线斜拉桥施工关键技术解析 一、工程特点和施工的主要难点 1、工程特点 1)独特的塔梁索结构 其塔身呈仙鹤形状,桥的截面为空心不规则矩形,偏向于重心的设计方式;而在主梁设方面的设计主要采用半径以及宽都不相等的两段曲线单箱三室箱梁结构;而桥梁斜拉索方面也要设计出不对称的单索面,并且在塔的侧面还要加设锚墩和背索设计; 2)桥梁设计的几何结构较为复杂 根据塔梁索在结构设计方面具有其独特性,且主梁的位置处于整个桥梁的曲线上面,因此使得整个斜拉桥的结构处在了一个三维的空间当中,且对于它的坐标在计算也控制方面也是非常复杂的; 3)结构受力体系复杂 由于斜拉桥在结构方面的几何是非常复杂的,因此,整个主梁与异形的重心都偏向于塔柱,再由斜拉以及背索在水平方向的力的作用下,使得整个桥梁在维空间的受力情况下处于复杂且平衡的状态。 2、施工难点 1)桥梁的主边上的主梁是处在小半径曲线的位置上,由于桥梁在空间上的受力情况不同,因此对于桥梁的整体线形的有效控制的关键就是对于施工方案的选择以及对于施工工况的监控;

2)在桥梁施工的过程中,由于侧重主梁会对于主跨主梁造成纵向与横向的偏移情况,并导致斜拉索的支座受到一定程度的扭转,因此确定侧重主梁的施工方案就显得尤为重要了。 二、总体施工方案及主要施工流程 1、对于主边的跨主梁来讲,主要采用的是预偏位移支架的方法来对其进行施工,具体将其分成三段来全方位的实施现浇施工;对于配跨主梁来讲,主要采用的是端头悬挑支架的方式来对其进行现浇施工;对于主塔来讲,主要采用的是塔吊配合翻模的方法,来逐段进行浇筑施工;对于斜拉索来讲,主要采用的是分别挂设和单根不对称张拉有机结合的方式来进行施工; 2、从主要的施工流程上来看,首先施工的是32号主墩;其次施工的是0号主墩;第三施工的是索塔各个节段;第四施工的是锚墩;第五施工的是边跨的主梁;第六施工的是主跨的主梁;第七施工的是斜拉索第M01至M09以及S01至S09索;第八施工的是锚墩横梁合龙段;第九施工的是斜拉索第M10至M11以及S10至S11索;第十施工的是斜拉索B01、B02,M10至M11,以及S10至S11索;最后一步施工就是支架的拆除。 三、施工过程中的关键技术 1、主梁施工 小半径曲线的主梁在预应力与斜拉索的拉力共同的作用下,出现纵向压缩和横向方向的水平位移因此,在桥梁设计中所采用的支架以及模板等等结构会对于主梁的纵向与横向方面的变形与位移产生一定的约束力,

斜拉桥及悬索桥施工安全控制的要点示范文本

斜拉桥及悬索桥施工安全控制的要点示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

斜拉桥及悬索桥施工安全控制的要点示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 】1.斜拉桥和悬索桥(吊桥)的索塔施工,属于高处或 超高处作业,应根据结构、高度及施工工艺的不同情况, 制定相应的专门的安全施工组织设计、安全作业指导书 (操作细则)。 一般情况,混凝土、钢筋混凝土及预应力混凝土索 塔,参照墩台施工及滑模施工的安全控制要点。 电气设备和线路的绝缘必须良好,各种电动机械必须 接地,接地电阻不得大于4Ω。电气设备和线路检修时,应 先切断电源。 施工现场要有防火措施并备有消防器材,要防止电焊 火花溅落在易燃物料上;

2.索塔分节立模浇筑前,应搭好脚手架,扶梯、人行道及护栏。每层脚手架的缝隙处,应设置安全网。两层间距不得超过8m; 3.浇筑塔身混凝土,应按规定挂好减速漏斗及保险绳,漏斗上口应堵严,以防石子下落伤人; 4.塔底与桥墩为铰接时,施工中,必须将塔底临时固定。塔身建筑到一定高度后,必须设置风缆。斜缆索全部安装并张拉完成后,方可撤除风缆并恢复铰接; 5.斜拉桥的塔底与墩固结时,脚手架必须在墩上搭设。当索塔与悬臂段同时交错施工,并分层浇筑索塔时,脚手架不得妨碍索塔的摆动; 6.施工期间,应与当地气象站建立联系,密切注意天气变化,大风、雷雨时,应立即停止作为。 高处作业,其风力应根据作业高处的实际风力确定。如未设风力测定仪,可按当地天气预报数值推测作业高处

斜拉桥施工监控方案及施工控制措施[优秀工程方案]

斜拉桥施工监控方案及施工控制措施 一、项目概况 1.1、桥梁概况 项目区位置,起终点,桥梁形式、跨径、桥面布置.主要结构构件:主梁、主塔、拉索等的材料、形式、规格、约束状况等. 1.2、施工控制概况 (1)确保施工过程中的结构安全,施工过程中和竣工后结构的内力状况满足设计要求; (2)成桥的线型、索力逼近设计状态; (3)精度控制和误差调整的措施不对施工工期产生实质性的不利影响; (4)主梁合拢前两端标高误差、轴线偏差能够保证顺利合拢. (5)控制及监测精度达到施工控制技术要求的规定. 1.3、监控依据 《公路桥涵设计通用规范》(JTG D60-2015) 《公路斜拉桥设计细则》(JTG/T D65-01-2007) 《公路桥梁抗风设计规范》(JTG/T D60-01-2004) 《公路桥涵钢结构木结构设计规范》(JTJ025-86) 《铁路桥梁钢结构设计规范》(TB 10002.2-2005) 《公路桥涵施工技术规范》( JTG/T F50-2011) 《公路工程质量检验评定标准》(JTGF801-2012) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004) 《工程测量规范》(GB50026-2007) 《公路桥涵地基与基础设计规范》JTG_D63-2007 1.4、目的和意义 由于各种因素的随机影响,结构的初始理论设计值难以做到与实际测量值完全一致,两者之间会存在偏差.若对偏差不加以及时有效的调整,就会影响成桥的内力和线形.施工控制的目的,就是根据实际的施工供需,以及现场获取的

参数和数据,对桥跨结构进行实时误差分析和结构验算;对每一施工阶段,根据分析验算结果给出结构应力及变形等施工控制参数,分析并调整施工误差状态,建立预警体系对施工状态进行安全评价和控制.这样,才能保证结构的受力和变形始终处于安全合理的范围内,成桥后的结构内力和线形符合设计要求. 二、监控方案与内容 2.1 施工监控的内容 2.1.1 施工监控参数的选取 (1)索塔轴线、应力;通过施工过程中塔顶偏位的几何测量和关键截面的应力监测确保索塔的线形及应力满足要求. (2)主梁线形、应力; 通过调整拼装位置、索力等手段来确保主梁高程、轴线等线形指标满足要求;主梁应力可以作为误差控制的辅助指标和结构施工过程安全监测的预警指标. (3)斜拉索索力; 通过建立完善的误差调整与参数识别体系并采用多种方式对索力进行监测来保证斜拉索索力误差满足要求. (4)主梁合拢前大气温度与合拢端标高变化的对应关系. 2.1.2 施工监控计算内容 (1)施工过程安全复核计算 (2)拉索、主梁无应力制造线形/长度的复核计算 (3)施工控制误差分析及参数识别 (4)施工控制实时计算 (5)重要临时结构的计算 2.1.3 施工监控现场实测参数 (1)实际材料的物理力学性能参数:混凝土、斜拉索、索塔或凝土的弹性模量及容重 (2)实际施工中的荷载参数: 1)恒载:a. 主梁自重 b.二期恒载(桥面铺装、人行道板,栏杆、路缘石、灯柱、过桥管线 等) 2)施工荷载 3)临时荷载

矮塔斜拉桥施工控制要点

矮塔斜拉桥施工控制要点 矮塔斜拉桥施工控制要点 摘要:本文以津沪联络线特大桥矮塔斜拉桥为背景,介绍矮塔斜拉桥索塔和拉索施工控制要点。 关键词:斜拉桥施工控制 中图分类号:TU74 文献标识码:A 文章编号: 一、工程概况 津沪联络线特大桥-跨外环线斜拉桥段为4跨 (64.6m+115m+115m+64.6m) 一联360.6m单箱三室预应力混凝土矮塔斜拉桥,全桥位于直线及缓和曲线上。线路为双线,线间距4.2m,轨道形式为有砟轨道。桥梁结构采用三塔双柱式双索面预应力矮塔斜拉桥。 二、矮塔斜拉桥施工索塔和拉索施工控制要点 斜拉桥属于组合体系桥,它的上部结构由主梁、拉索和索塔三种构件组成。支撑体系以拉索受拉和索塔受压为主。该桥中塔采用塔墩固结体系,边塔采用塔梁固结体系。 (一)索塔施工控制要点 主塔形式为双柱式,距名义梁顶面以上结构高为15m,采用实心截面,中塔与边塔采用相同尺寸,塔底横桥向宽为2m,纵桥向宽为3.7m,墩身斜率为40:1。由于索塔截面不规则,且高度仅为15米,索塔施工采用搭架分节立模浇注法。斜拉桥的平面位置、轴线控制、截面尺寸、预埋件制作、安装精度等要求较高。且索塔施工系高空作业范畴,为此施工应特别注意严格遵守有关高空作业安全技术规定。主塔中未布设预应力钢筋。索塔断面尺寸较小,而且轴向压力非常大,故在施工中对索塔的尺寸和轴线位置的准确性应有一定的要求。对于索塔轴向的允许偏差应考虑下面两个原则,其一,偏差值对结构物受力的影响甚微;其二,施工中达到的精度。沿塔高每米高度允许偏差值为0.5mm,即倾角正切值tgα=1/2000。按照H/2000的垂

直度偏差允许值计算。 1、施工控制要点: 1)支架和操作平台应有足够的强度、刚度和稳定性,并应设置安全护栏,支架还应具有足够的抗风稳定性。支架顶端应有防雷击装置。 2)索塔砼性能良好,具有较高的弹性模量和较小的砼收缩、徐变性能,应采用高集料、低水灰比,低水泥用量,适量掺加粉煤灰和泵送剂,以满足缓凝、早强、高强、阻锈、低水化热、小收缩、可泵性好等要求。 3)建立完善的测量系统,索塔施工应用绝对高程放样,消除累计误差。应对其平面位置、垂直度、倾斜度、锚箱位置、锚箱各孔道的角度以及各部分几何尺寸进行检查,以上各项检查的误差必须在允许范围之内。 4)节段模板的强度、刚度和稳定性应满足要求。模板轴线、标高、垂直度或斜度、模内尺寸、预埋件和预留孔位置、内表面平整度和拼缝高差等检测项目,应满足设计和规范要求。 5)、斜拉索锚索管的定位与固定。安设斜拉索管道时,应设置稳定的钢筋骨架固定管道,防止在浇注混凝土时移位,在管道测量定位时,应考虑斜拉索应重力垂直而导致其端部角位移时的方向、位置、标高的改变。 6)、塔身混凝土浇注时应掌握均匀分层,有塔中向两端的原则。每次浇注的混凝土均应在混凝土的初凝时间内完成,并注意加强养护。 (二)、斜拉索施工施工要点 在斜拉索中恒载引起的内力平衡主要依靠索、塔及主梁的轴力来实现,因此,索力的微小偏差均能在主梁引起较大弯矩,这一点是施工阶段计算的重点。本桥采用的斜拉索为矮塔斜拉桥专用的高强钢绞线,抗拉强度为1860MPa的高强低松弛环氧喷涂钢绞线。采用可调换式250AT-31群锚体系,斜拉索锚头外露部分及预埋钢管均采用80μm 锌加防腐涂料防护。斜拉索为双索面,立面为半扇形布置。每索塔设7对斜拉索,斜拉索规格为31-7φ5,单根钢绞线规格直径为15.2mm,

上跨既有线斜拉桥施工控制关键技术

城市建筑┃施工技术┃U RBANISM A ND A RCHITECTURE ┃C ONSTRUCTION T ECHNOLOGY 113 上跨既有线斜拉桥施工控制关键技术 Key Technology Across Existing Lines in Cable-stayed Bridge Construction Control ■ 虞童儿 ■ Yu Tong'er [摘 要] 宁波市福明路跨宁波东站主桥是跨径布置为55+45+220+45+55=420 m 的双塔双索面斜拉桥。主梁采用混合主梁,其中两侧边跨各采用预应力砼箱梁,中跨197.2 m 范围内采用钢箱梁,钢箱梁与预应力混凝土箱梁相交位置为2m 长的钢混接合段,为半漂浮体系。主梁上跨宁波东站的位置处跨越甬台温铁路正线2条,到发线5条;跨越客车整备线5条,存车线7条;跨越辅助客站发线2条及基本站台和中间站台。针对主梁上跨既有线,索塔临近既有线,协调、组织难度大等特点,中跨钢梁采用步履式顶推的施工方案,索塔上塔柱采用液压爬模的施工技术。 [关键词] 上跨既有线 斜拉桥 钢箱梁 索塔 施工控制 [Abstract] In Ningbo Fuming road the bridge span across Ni- ngbo East Railway Station is a cable-stayed bridge with double cable planes of the Twin Towers 55+45+220+45+55=420m. Main beam using hybrid girder, the two sides across the prest- ressed concrete box girder, in the range of 197.2m with steel box girder, steel girder and prestressed concrete box girder intersection position is 2m long steel-concrete joint section, half floating system. The main girder span Ningbo East Rail- way Station location across the Ningbo-Taizhou-Wenzhou rai- lway line 2, and line 5; across the bus full of line 5, parking line 7; span and auxiliary station line 2 and the basic platform and the intermediate platform. In view of main girder cross lines, tower close to existing lines, the characteristics of organization and coordination are difficult, mid-span steel girder construction scheme with a push of the tower, tower construction technology with hydraulic climbing formwork. [Keywords] existing line on the top, cable-stayed bridge, steel box girder, pylon, construction control 一、 工程概况 宁波市福明路跨宁波东站主桥采用主跨220 m 的双塔双索面斜拉桥,边墩设置两个桥墩,跨径布置为55+45+220+45+55=420 m。主梁采用混合主梁,其中两侧边跨各采用预应力砼箱梁,并伸入主跨 9.4 m,中跨197.2 m 范围内采用钢箱梁,并在钢箱梁与预应力混凝土箱梁相交位置放置2 m 长的钢混结合段。桥面总宽度34.5 m,为双向六车道。主桥桥型布置见图1。 小里程 大里程 图1 桥型布置图(m) 主桥钢箱梁长201.2 m(含结合段长度),中间 159.87 m 长位于2 000 m 半径的竖曲线上,两侧各20.66 m 位于坡底4%的直线段上。钢箱梁顶面宽34.5 m,设2%的桥面横坡,底部为半径25 m 的圆弧,两侧配有风嘴,桥梁中线外梁高3.3 m,钢箱梁总重为3984t。桥塔为A 型,包括上塔柱,下塔柱及横梁,采用C60混凝土。塔身混凝土结构高71米,塔顶装饰高度3 m,共74 m。塔柱外侧斜率为1/3.828,内侧面横梁以上部分斜率为1/3.828,横梁以下部分采用垂线对下塔柱截面进行加厚。 桥中心相对杭深线里程为K319+221.64。主梁上跨宁波东站的位置处跨越甬台温铁路正线2条,到发线7条;跨越客车整备线5条,存车线7条;机待线2条共23股道及3个中间站台。主桥2#墩主塔中心相对杭深线里程为K319+193.64,位于宁波东站客整所南侧,临近客整所既有线路。主桥3#墩主塔中心相对杭深线里程为K319+249.64,位于宁波东站北侧。 二、 总体施工方案 1. 钢箱梁顶推施工方案 为了减少上部结构施工对桥下铁路运营的影响,保证施工及行车安全,福明路跨铁路宁波东站主桥中跨钢箱梁采用步履式多点同步顶推法施工。该方案能够较好的控制临时支墩上面的水平力;能够适应钢箱梁竖向线形;设备自成一体,中线自动纠偏;各顶推设备可以进行同步控制,安全稳定性高。 2. 索塔液压爬模施工方案 针对塔身斜率大,临近既有线,协调、组织难度大等特点,下塔柱采用了翻模施工,上塔柱采用了液压爬模施。该体系能够有效减少工序间的相互制约和干扰,在保证施工安全及质量的同时,可以较大幅度缩短工期,节约工程成本,节能环保,提高施工资源利用率。 三、 施工控制关键技术 1. 钢箱梁顶推施工 钢箱梁顶推施工采用步履式多点同步顶推方案,利用“顶”、“推”的两个步骤交替进行,先将整体钢箱梁托起;再向前托送;之后将钢箱梁置于桥墩临时结构上;顶推油缸缩缸到底,继续实现下 一个循环。通过往复顶推步骤的循环,最终将钢箱梁送到预定的位置。 步履式多点顶推设备是一套集顶升、平移、横向调整于一体的顶推设备,实现钢箱梁的顺桥向、竖向、横桥向的移动或调整,从而保证顶推施工的顺利进行。步履式多点顶推设备顶推流程见图 2。 步骤一:顶升-开启支撑顶升油缸,直至钢箱梁被托离临时钢垫梁 。 步骤二:顶推-开启顶推油缸,使钢箱梁与上部支撑结构整体往前 步骤三:降低-开启支撑顶升油缸,使钢箱梁与上部支撑结构整体 往下降,直至钢箱梁与上部支撑结构完全托离。 步骤四:回位-开启顶升油缸,使上部支撑结构往回移位直至顶 升油缸回位。 图2 步履式多点顶推设备顶推流程图 (1)临时墩设计 1)临时墩布置 按顶推施工工艺的要求本桥总共设置8个临时墩,其中在主塔之间共布置6个临时墩,钢箱梁拼装平台下布置两个临时墩,具体布置详见图 3。 图3 临时墩布置图 2)临时墩设计 L1#~L6#、L8#临时墩底横向布置两个分离的承台,尺寸为4.6×4.6×2.0 m,承台底各对称布置4根直径为φ1.0 m,长度为50 m 的钻孔灌注桩。L7#临时墩钢管立柱直接支撑在1#辅助墩上,无需另外进行地基处理。 L1#临时墩上无需布置顶推设备,在各分离承台上布置一根直径为1m 的C40混凝土墩柱,钢混结合段施工时L1#临时墩起到支撑钢箱梁的作用。 L2# 、L3#、L4#、L6#、L7#、L8#临时墩每个承台上各布置四根φ920×14 mm 的钢管墩柱,钢管柱间设置φ426×12 mm 的钢管平联及剪刀撑。墩柱上布置有钢箱梁顶推平台。L5#临时墩墩柱为混凝土墩柱,墩柱上布置有钢箱梁顶推平台。 (2)钢导梁设计 导梁全长46 m,分成6节,第一节长3.045 m,第二、第三、第四节长均为9 m,第五、第六节长均为8 m。导梁与钢箱梁间采用焊接连接、导梁节段之间上翼缘板、腹板采用高强螺栓连接。下翼缘板采用坡口焊接,导梁由钢板加工成工型,钢板材料为Q345B,两工型截面中心距为10 m,通过横向桁架连接。 顶推过程中需保证导梁到达临时墩横向两个墩顶时同时受力。钢导梁在工厂分单元制造并运输 至工地,在工地进行拼装。 (3)顶推设备及其顶推工艺 (下转第115页)

相关文档
最新文档