实验三贪心算法应用

实验三贪心算法应用
实验三贪心算法应用

实验三贪心算法的应用

一、实验目的

1.掌握贪心算法的基本思想、技巧和方法。

2.熟练贪心算法的基本要素:贪心选择性和最优子结构。

3.学会利用贪心算法解决实际问题。

二、实验内容

1.问题描述:

题目一:编程实现下述活动的最佳安排

joblist = [['a', 8, 10], ['b', 1, 5], ['c', 4, 8], ['d', 1, 3], ['e', 6, 9], ['f', 2, 4], ['g', 4, 7], ['h', 1, 5], ['i', 6, 12]]

题目二:编程实现用dijkstra算法解决单源最短路径问题

graph = {'s': {'a': 4, 'c': 11, 'b':6},

'a': {'b': 3},

'c': {'d': 2},

'b': {'c': 5, 'e': 4},

'e': {'c': 7, 'd': 3},

'd': {}}

2.要求:

1)完成程序代码的编写

2)独立完成实验及实验报告

三、实验步骤

1.理解算法思想和问题要求;

2.编程实现题目要求;

3.上机输入和调试自己所编的程序;

4.验证分析实验结果;

5.整理出实验报告。

四、程序及运行结果

题目一

题目二

五、心得体会

算法设计与分析实验报告贪心算法

算法设计与分析实验报告 贪心算法 班级:2013156 学号:201315614 姓名:张春阳哈夫曼编码 代码 #include float small1,small2; int flag1,flag2,count; typedefstructHuffmanTree { float weight; intlchild,rchild,parent; }huffman; huffmanhuffmantree[100]; void CreatHuffmanTree(intn,int m) { inti; void select(); printf("请输入%d个节点的权值:",n); for(i=0;i

printf("\n"); for(i=0;i

算法设计与分析实验三

实验三分治算法(2) 一、实验目的与要求 1、熟悉合并排序算法(掌握分治算法) 二、实验题 1、问题陈述: 对所给元素存储于数组中和存储于链表中两中情况,写出自然合并排序算法. 2、解题思路: 将待排序元素分成大小大相同的两个集合,分别对两个集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合.自然排序是通过一次扫描待排元素中自然排好序的子数组,再进行子数组的合并排序. 三、实验步骤 程序代码: #include const int N=100;//定义不可变常量N //各个函数的声明 void ScanTarget(int target[], int n, int head[], int tail[]); int CountHead(int head[]); void MergeSort(int a[], int head[], int tail[], int m); void MergePass(int x[], int y[], int s, int a[], int b[], int m); void Merge(int c[], int d[], int l, int m, int r); //主函数的定义 void main() { char a; do {

int target[N],head[N],tail[N]; int i=0,n,m; for(; i>n; cout<<"请输入需要排序的数列:" <>target[i]; ScanTarget(target,n,head,tail); m=CountHead(head);//调用求长度的函数 MergeSort(target,head,tail,m);//调用归并排序函数 cout<<"排序后:"<>a; } while(a!='n' && a!='N'); } void ScanTarget(int target[], int n, int head[], int tail[])//定义扫描待排数组的函数;{ int i,j=0,k=0; head[k]=0;

《算法设计与分析》上机实验报告(3)

福州大学数学与计算机科学学院《算法设计与分析》上机实验报告(3)

求任一字符的代码都不是其他字符代码的前缀。这种编码称为前缀码。编码的前缀性质可以使译码方法非常简单;例如001011101可以唯一的分解为0,0,101,1101,因而其译码为aabe。 哈夫曼提出了构造最优前缀码的贪心算法,由此产生的编码方案称为哈夫曼算法。 2.算法的设计思想 哈夫曼编码依据贪心算法来构造最优前缀码,构造思想步骤如下: (1)哈夫曼算法以自底向上的方式构造表示最优前缀码的二叉树T。 (2)算法以|C|个叶结点开始,执行|C|-1次的“合并”运算后产生最终所要求的树T。 (3)假设编码字符集中每一字符c的频率是f(c)。以f为键值的优先队列Q用在贪心选择时有效地确定算法当前要合并的2棵具有最小频率的树。一旦2棵具有最小频率的树合并后,产生一棵新的树,其频率为合并的2棵树的频率之和,并将新树插入优先队列Q。经过n-1次的合并后,优先队列中只剩下一棵树,即所要求的树T。 构造过程如图所示: 3.算法正确性证明

由此可知,树T和T'的前缀码的平均码长之差为:

码长,同时,仅最优一位编码不同。 (2)最优子结构性质 二叉树T表示字符集C的一个最优前缀码,x和y是树T 中的两个叶子且为兄弟,z是它们的父亲。若将z当作是具有频率f(z)=f(x)+f(y)的字符,则树T’=T-{x,y}表示字符集C’=C-{x, y} ∪ { z}的一个最优前缀码。因此,有: 如果T’不是C’的最优前缀码,假定T”是C’的最优前缀码,那么有 ,显然T”’是比T更优的前缀码,跟前提矛盾!故T'所表示的C'的前缀码是最优的。 由贪心选择性质和最优子结构性质可以推出哈夫曼算法是正确的,即HuffmanTree产生的一棵最优前缀编码树。 4.哈夫曼编码算法的程序代码 (1)huffman.cpp,程序主文件 1.//huffman 贪心算法哈夫曼算法 2.#include "stdafx.h" 3.#include "BinaryTree.h"

算法设计与分析实验报告

本科实验报告 课程名称:算法设计与分析 实验项目:递归与分治算法 实验地点:计算机系实验楼110 专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真 指导教师:郝晓丽

2018年05月04 日 实验一递归与分治算法 1.1 实验目的与要求 1.进一步熟悉C/C++语言的集成开发环境; 2.通过本实验加深对递归与分治策略的理解和运用。 1.2 实验课时 2学时 1.3 实验原理 分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。 需要注意的是,分治法使用递归的思想。划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。 1.4 实验题目 1.上机题目:格雷码构造问题 Gray码是一个长度为2n的序列。序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。 对于给定的正整数n,格雷码为满足如下条件的一个编码序列。 (1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2)序列中无相同的编码。 (3)序列中位置相邻的两个编码恰有一位不同。 2.设计思想:

根据格雷码的性质,找到他的规律,可发现,1位是0 1。两位是00 01 11 10。三位是000 001 011 010 110 111 101 100。n位是前n-1位的2倍个。N-1个位前面加0,N-2为倒转再前面再加1。 3.代码设计:

贪心算法0-1背包问题(算法实验代码)

实验三、0-1背包问题(贪心算法) 实验代码: #include int max(int a,int b) { if(a>b) return a; else return b; } void Knapsack(int *v,int *w,int *x,int c,int n, int m[8][100]) { int i,j; for(j=0;j=1;i--) { for(j=w[i];j<=c;j++) m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]); } for(i=1;i

printf("物品总数为:7\n"); printf("物品重量和价值分别为:\n"); printf("\n重量价值\n"); for (i=1;i<=n;i++) printf("%d %d \n",w[i],v[i]); int m=15; int array[8][100]={0}; Knapsack(v,w,x,m,7,array); printf("背包能装的最大价值为: %d\n",array[1][m]); printf("贪心算法的解为: "); for(i=1;i<=n;i++) { if(i==1) printf("%d",x[i]); else printf(" %d",x[i]); } printf("\n"); return 0; } 测试截图为:

实验三.哈夫曼编码的贪心算法设计

实验四 哈夫曼编码的贪心算法设计(4学时) [实验目的] 1. 根据算法设计需要,掌握哈夫曼编码的二叉树结构表示方法; 2. 编程实现哈夫曼编译码器; 3. 掌握贪心算法的一般设计方法。 实验目的和要求 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用 (4)证明哈夫曼树满足最优子结构性质; (5)设计贪心算法求解哈夫曼编码方案; (6)设计测试数据,写出程序文档。 实验内容 设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。 核心源代码 #include #include #include typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 ∑=j i k k a

//选择两个parent为0,且weight最小的结点s1和s2 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min; for(i=1; i<=n; i++)

C++算法设计(完整版)

本科实验报告 课程名称:算法设计与分析(C++语言) 实验项目:算法设计与分析(C++语言) 实验地点:行勉楼B211 专业班级:软件1426 学号:2014006281 学生姓名:李鹏 指导教师:张晓霞 年月日

实验一分治法合并排序 一、实验目的 1.掌握合并排序的基本思想 2.掌握合并排序的实现方法 3.学会分析算法的时间复杂度 4.学会用分治法解决实际问题 二、实验内容 随机产生一个整型数组,然后用合并排序将该数组做升序排列,要求输出排序前和排序后的数组。 三、实验环境 程序设计语言:c++ 编程工具:microsoft visual studio 2010 四、程序代码 // 实验1_1_随机数组合并排序.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include #include //用于p[i] = rand()%100; #include //用于srand((unsigned long)time(0)); #include using namespace std; constint N = 10; //产生长度为N的数组 //输入数组函数 void input(int *p,int n){ //添加时间种子,可在每次运行产生不同的伪随机数 srand((unsigned long)time(0)); for(inti=0;i

实验3. 贪心算法

实验3.贪心算法 一、实验目的 1.理解贪心算法的基本思想。 2.运用贪心算法解决实际问题。 二、实验环境与地点 1.实验环境:Windows7,Eclipse 2.实验地点:网络工程实验室 三、实验内容与步骤 编写程序完成下列题目,上机调试并运行成功。 1.活动安排问题。 问题:有n个活动的集合A={1,2,…,n},其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。 求解:安排尽量多项活动在该场地进行,即求A的最大相容子集。 设待安排的11个活动的开始时间和结束时间按结束时间的升序排列如下: 将此表数据作为实现该算法的测试数据。 (1)给出算法基本思想; (2)给出用java语言实现程序的代码; 算法: public static int greedySelector(int[] s, int[] f, boolean a[]) { int n = s.length - 1; a[1] = true; int j = 1; int count = 1; for (int i = 2; i <= n; i++) { if (s[i] >= f[j]) { a[i] = true; j = i; count++; } else a[i] = false; } return count; }

2.哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。统计字符串中各个字符 出现的频率,求各个字符的哈夫曼编码方案。 输入:good good study,day day up 输出:各字符的哈夫曼编码。 算法: 算法中用到的类Huffman定义为: private static class Huffman implements Comparable { Bintree tree; float weight;// 权值 private Huffman(Bintree tt, float ww) { tree = tt; weight = ww; } public int compareTo(Object x) { float xw = ((Huffman) x).weight; if (weight < xw) return -1; if (weight == xw) return 0; return 1; } } 算法huffmanTree描述如下: public static Bintree huffmanTree(float[] f) { // 生成单结点树 int n = f.length; Huffman[] w = new Huffman[n + 1]; Bintree zero = new Bintree(); for (int i = 0; i < n; i++) { Bintree x = new Bintree(); x.makeTree(new MyInteger(i), zero, zero); w[i + 1] = new Huffman(x, f[i]); } // 建优先队列 MinHeap H = new MinHeap(); H.initialize(w, n); // 反复合并最小频率树 for (int i = 1; i < n; i++) { Huffman x = (Huffman) H.removeMin(); Huffman y = (Huffman) H.removeMin(); Bintree z = new Bintree();

实验三算符优先分析算法设计与实现

实验三算符优先分析算法的设计与实现 (8学时) 一、实验目的 根据算符优先分析法,对表达式进行语法分析,使其能够判断一个表达式是否正确。通过算符优先分析方法的实现,加深对自下而上语法分析方法的理解。 二、实验要求 1、输入文法。可以是如下算术表达式的文法(你可以根据需要适当改变): E→E+T|E-T|T T→T*F|T/F|F F→(E)|i 2、对给定表达式进行分析,输出表达式正确与否的判断。 程序输入/输出示例: 输入:1+2; 输出:正确 输入:(1+2)/3+4-(5+6/7); 输出:正确 输入:((1-2)/3+4 输出:错误 输入:1+2-3+(*4/5) 输出:错误 三、实验步骤 1、参考数据结构 char *VN=0,*VT=0;//非终结符和终结符数组 char firstvt[N][N],lastvt[N][N],table[N][N]; typedef struct //符号对(P,a) { char Vn; char Vt; } VN_VT; typedef struct //栈 { VN_VT *top; VN_VT *bollow; int size; }stack; 2、根据文法求FIRSTVT集和LASTVT集 给定一个上下文无关文法,根据算法设计一个程序,求文法中每个非终结符的FirstVT 集和LastVT 集。

算符描述如下: /*求 FirstVT 集的算法*/ PROCEDURE insert(P,a); IF not F[P,a] then begin F[P,a] = true; //(P,a)进栈 end; Procedure FirstVT; Begin for 对每个非终结符 P和终结符 a do F[P,a] = false for 对每个形如 P a…或 P→Qa…的产生式 do Insert(P,a) while stack 非空 begin 栈顶项出栈,记为(Q,a) for 对每条形如 P→Q…的产生式 do insert(P,a) end; end. 同理,可构造计算LASTVT的算法。 3、构造算符优先分析表 依据文法和求出的相应FirstVT和 LastVT 集生成算符优先分析表。 算法描述如下: for 每个形如 P->X1X2…X n的产生式 do for i =1 to n-1 do begin if X i和X i+1都是终结符 then X i = X i+1 if i<= n-2, X i和X i+2 是终结符, 但X i+1 为非终结符 then X i = X i+2 if X i为终结符, X i+1为非终结符 then for FirstVT 中的每个元素 a do X i < a ; if X i为非终结符, X i+1为终结符 then for LastVT 中的每个元素 a do a > X i+1 ; end 4、构造总控程序 算法描述如下: stack S; k = 1; //符号栈S的使用深度 S[k] = ‘#’ REPEAT

贪心算法 找零钱问题

学号 《算法设计与分析》 实验报告三 学生姓名 专业、班级 指导教师 成绩 电子与信息工程系

实验三:贪心算法运用练习 一、实验目的 本次实验是针对贪心算法运用的算法设计及应用练习,旨在加深学生对该部分知识点的理解,提高学生运用该部分知识解决问题的能力。 二、实验步骤与要求 1.实验前复习课程所学知识以及阅读和理解指定的课外阅读材料; 2.学生独自完成实验指定内容; 3.实验结束后,用统一的实验报告模板编写实验报告。 4.提交说明: (1)电子版提交说明: a 需要提交Winrar压缩包,文件名为“《算法设计与分析》实验二_学号_姓名”, 如“《算法设计与分析》实验二_09290101_张三”。 b 压缩包内为一个“《算法设计与分析》实验二_学号_姓名”命名的顶层文件夹, 其下为两个文件夹,一个文件夹命名为“源程序”,另一个文件夹命名为“实验 报告电子版”。其下分别放置对应实验成果物。 (2)打印版提交说明: a 不可随意更改模板样式。 b 字体:中文为宋体,大小为10号字,英文为Time New Roman,大小为10号 字。 c 行间距:单倍行距。 (3)提交截止时间:2012年12月7日16:00。 三、实验项目 1.传统的找零钱问题的算法及程序实现。 2.特殊的0-1背包问题的求解:本次求解的0-1背包问题的特点为每种物品各有M件,已知每个物品的单位价值,求使得所获价值最大的装包方案。 四、实验过程 找零钱问题: #include using namespace std; void Zl(double num) { int leave=0; int a[8]; leave = (int)(num*10)%10; a[1] = leave/5;

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

贪心算法解汽车加油问题实验报告

计算机算法与分析 设计报告 班级:信管一班信管二班 姓名(学号):赵立贺(060340219) 赵艳(060340114)刘辉(060340125)王勇(060340116)万玉琪(060340213)刘旺(060340205)指导教师:赵晓峰姚天祥 设计地点:信息系统实验室 信息管理系 2008年12月13日

一、实验名称: 用贪心算法、回溯算法、动态规划等解决汽车加油次数最少问题。 二、实验目的: 课程设计是《计算机算法与设计》课程不可缺少的重要实践性环节。通过实践教学,要达到以下目的: (1)使学生掌握线性表、栈、队列、串、树、二叉树、图、集合等各种典型抽象数据类型的数学模型及其所支持基本运算的实现方法; (2)使学生掌握以抽象数据类型为模块的面向对象程序设计方法; (3)使学生提高对实际问题的分析、设计和实现能力; (4)为学生后续课程的学习及课程设计打下坚实的实践基础。 三、使用的策略: 贪心算法、回溯算法等。 四、实验内容: (一)问题描述 一辆汽车加满油后可以行驶N千米。旅途中有若干个加油站。指出若要使沿途的加油次数最少,设计一个有效的算法,指出应在那些加油站停靠加油。 给出N,并以数组的形式给出加油站的个数及相邻距离,指出若要使沿途的加油次数最少,设计一个有效的算法,指出应在那些加油站停靠加油。要求:算法执行的速度越快越好。 (二)问题分析(前提行驶前车里加满油) 对于这个问题我们有以下几种情况:设加油次数为k,每个加油站间距离为a[i];i=0,1,2,3……n 1.始点到终点的距离小于N,则加油次数k=0; 2.始点到终点的距离大于N, A 加油站间的距离相等,即a[i]=a[j]=L=N,则加油次数最少k=n; B 加油站间的距离相等,即a[i]=a[j]=L>N,则不可能到达终点; C 加油站间的距离相等,即a[i]=a[j]=L

第4章 贪心算法实验指导

第4章贪心算法 实验4.1 贪心算法的实现与时间复杂度测试 1. 实验目的 编程实现经典的贪心算法,理解贪心算法设计的基本思想、程序实现的相关技巧,加深对贪心算法设计与分析思想的理解。通过程序的执行时间测试结果,与理论上的时间复杂度结论进行对比、分析和验证。 2. 原理解析 贪心算法的基本思想 贪心算法求解优化问题的基本思想是:采用逐步构造最优解的方法。在每个阶段,都做出一个当前最优的决策(在一定的标准下)。决策一旦做出,就不可再更改(做出贪心决策的依据称为贪心准则)。贪心算法的一般步骤如下: (1) 根据拟解决问题选取一种贪心准则; (2) 按贪心准则标准对n个候选输入排序(以这一方法为代表,仍可基于堆来存储候选); (3) 依次选择输入量加入部分解中:如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 贪心算法的基本设计范式如下: Greedy(A,n) A: include n inputs Solution=Ф for i=1 to n do x=Select(A) if Feasible(solution,x) then solution=Union(solution,x) end if end for

return solution 测试算法 背包问题是使用贪心算法求解的代表问题,算法如下: KnapsackGreedy(p,w,m,x,n) //v[1..n]和w[1..n]分别含有按vi/wi v(i+1)/v(i+1)排序的n 件物品的价值和重量。M是背包的容量大小,而x[1..n]是解向量// for i=1 to n do xi=0 //将解向量初始化为零// end for cu=m //cu是背包剩余容量// for i=1 to n do if wi>cu then exit end if xi=1 cu=cu-wi repeat if i≤n then xi=cu/wi end if 算法的时间复杂度取决于对v i/w i排序的时间复杂度,例如,若选择MergeSort 排序算法,则以上算法的时间复杂度为O(n log n)。 3. 实验内容 (1)编程实现以上求解背包问题的贪心算法,并通过手动设置、生成随机数获得实验数据。记录随着输入规模增加算法的执行时间,分析并以图形方式展现增长率;测试、验证、对比算法的时间复杂度。 (2)利用贪心算法思想,设计实现单源最短路径问题的算法,并编程实现。 4. 实验步骤和要求 实验内容(1)步骤: (1) 编程实现以上KnapsackGreedy算法,并进行测试,保证程序正确无误。

实验 1 贪心算法实现最小生成树

实验一用贪心算法实现最小生成树问题 一.实验目的 1.熟悉贪心算法的基本原理和使用范围。 二.实验内容及要求 内容:任选一种贪心算法(prim或Kruskal),求解最小生成树。对算法进行编程。 要求:使用贪心算法编程,求解最小生成树问题 三.程序列表 (1)prim算法 #include #define INF 32766 #define max 40 void prim(int g[][max],int n) { int lowcost[max],closest[max]; int i,j,k,min; for(i=2;i<=n;i++) { lowcost[i]=g[1][i]; closest[i]=1; } lowcost[1]=0; for(i=2;i<=n;i++) { min=INF; k=0; for(j=2;j<=n;j++) { if((lowcost[j]

for(j=2;j<=n;j++) { if(g[k][j]

算法与设计实验报告

算法与分析实验报告软件工程专业 安徽工业大学 指导老师:许精明

实验内容 1:杨辉三角 2:背包问题 3:汉诺塔问题 一:实验目的 1:掌握动态规划算法的基本思想,学会用其解决实际问题。 2:通过几个基本的实验,提高算法分析与设计能力,提高动手操作能力和培养良好的编程习惯。 二:实验内容 1:杨辉三角 2:背包问题 3:汉诺塔问题 实验一:杨辉三角

问题分析: ①每行数字左右对称,由1开始逐渐变大,然后变小,回到1。 ②第n行数之和为2^n。 ③下一行每个数字等于上一行的左右两个数字之和。 算法设计及相关源代码: public void yanghui(int n) { int[] a = new int[n]; if(n==1){ System.out.println(1); }else if(n==2) { System.out.print(1 + " " +1); }else{ a[1]=1; System.out.println(a[1]); a[2]=1;

System.out.println(a[1]+" "+a[2]); for(int i=3;i<=n;i++){ a[1]=a[i]=1; for(int j=i-1;j>1;j--){ a[j]=a[j]+a[j-1]; } for(int j=1;j<=i;j++){ System.out.print(a[j]+" "); } System.out.println(); } } } 实验结果:n=10 实验二:0-1背包问题 问题分析::令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就 j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数: (1) V(i,0)=V(0,j)=0 (2) V(i,j)=V(i-1,j) j

实验二(贪心算法)

华东师范大学计算机科学技术系上机实践报告 课程名称:算法设计与分析年级:05上机实践成绩: 指导教师:柳银萍姓名:张翡翡 上机实践名称:贪心算法学号:10052130119上机实践日期:2007-4-10 上机实践编号:NO.2组号:上机实践时间:10:00-11:30 一、目的 了解熟悉掌握贪心算法实质并学会灵活运用,从而解决生活中一些实际问题。 二、内容与设计思想 1.超市的自动柜员机(POS)要找给顾客各种数值的现金,表面上看,这是一个很简单的任务,但交给机器办就不简单了。你作为一个计算机专家,要求写一个程序来对付这个“简单”的问题。 你的自动柜员机有以下的币种:100元,50元,20元,10元,5元,2元,1元。你可以假设每种钱币的数量是无限的。现在有一笔交易,需要找个客户m元,请你设计一个算法,使得找给顾客的钱币张数最少。 要求: 输入:第一行仅有一个整数n(0

算法设计与分析实验报告 统计数字问题

算法设计与分析实验报告 实验名称统计数字问题评分 实验日期年月日指导教师 姓名专业班级学号 一.实验要求 1、掌握算法的计算复杂性概念。 2、掌握算法渐近复杂性的数学表述。 3、掌握用C++语言描述算法的方法。 4.实现具体的编程与上机实验,验证算法的时间复杂性函数。 二.实验内容 统计数字问题 1、问题描述 一本书的页码从自然数1 开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6 页用数字6 表示,而不是06 或006 等。数字计数问题要求对给定书的总页码n,计算出书的全部页码中分别用到多少次数字0,1,2, (9) 2、编程任务 给定表示书的总页码的10 进制整数n (1≤n≤109) 。编程计算书的全部页码中分别用到多少次数字0,1,2, (9) 三.程序算法 将页码数除以10,得到一个整数商和余数,商就代表页码数减余数外有多少个1—9作为个位数,余数代表有1—余数本身这么多个数作为剩余的个位数,此外,商还代表1—商本身这些数出现了10次,余数还代表剩余的没有计算的商的大小的数的个数。把这些结果统计起来即可。 四.程序代码 #include int s[10]; //记录0~9出现的次数 int a[10]; //a[i]记录n位数的规律 void sum(int n,int l,int m) { if(m==1) {

int zero=1; for(int i=0;i<=l;i++) //去除前缀0 { s[0]-=zero; zero*=10; } } if(n<10) { for(int i=0;i<=n;i++) { s[i]+=1; } return; }//位数为1位时,出现次数加1 //位数大于1时的出现次数 for(int t=1;t<=l;t++)//计算规律f(n)=n*10^(n-1) { m=1;int i; for(i=1;i

哈夫曼编码_贪心算法

淮海工学院计算机工程学院实验报告书 课程名:《算法分析与设计》 题目:实验3 贪心算法 哈夫曼编码 班级:软件102班 学号:11003215 姓名:鹿迅

实验3 贪心算法 实验目的和要求 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用 (4)证明哈夫曼树满足最优子结构性质; (5)设计贪心算法求解哈夫曼编码方案; (6)设计测试数据,写出程序文档。 实验内容 设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。 实验环境 Turbo C 或VC++ 实验学时 2学时,必做实验 数据结构与算法 struct huffman { double weight; //用来存放各个结点的权值 int lchild,rchild,parent; //指向双亲、孩子结点的指针 }; 核心源代码 #include #include using namespace std; struct huffman { double weight; int lchild,rchild,parent; }; static int i1=0,i2=0; int Select(huffman huff[],int i) { ∑=j i k k a

int min=11000; int min1; for(int k=0;k

相关文档
最新文档