丙酮碘化反应

丙酮碘化反应
丙酮碘化反应

项目十丙酮碘化反应

一、实验目的

(1)通过实验加深对复杂反应特征的理解。

(2)测定酸催化时丙酮碘化反应的速率常数、活化能。

(3)掌握722型可见分光光度计的使用方法。

二、实验原理

不同的化学反应其反应机理是不相同的。按反应机理的复杂程度之不同可以将反应分为基元反应(简单反应)和复杂反应两种类型。简单反应是由反应物粒子经碰撞一步就直接生成产物的反应。复杂反应不是经过简单的一步就能完成的,而是要通过生成中间产物的许多步骤来完成的,其中每一步都是一个基元反应。常见的复杂反应有对峙反应(或称可逆反应,与热力学中的可逆过程的含义完全不同)。平行反应和连续反应等。

丙酮碘化反应是一复杂反应,反应方程式为:

H+是催化剂,由于反应本身能生成H+,所以,这是一个自动催化反应。一般认为该反应的反应机理包括下列两步:

这是一个连续反应。反应(1)是丙酮的烯醇化反应,它是一个可逆反应,进行得很慢。反应(2)是烯醇的碘化反应,它是一个快速且能进行到底的反应。由于反应(1)速率很慢,而反应(2)的速率又很快,中间产物烯醇一旦生成又马上消耗掉了。根据连续反应的特点,该反应的总反应速率由反应(1)所决定,其反应的速率方程可表示为:

式中C A为丙酮的浓度;C D为产物碘化丙酮的浓度;C H+为氢离子的浓度;K为丙酮碘化反应的总的速率常数。

由反应(2)可知,如果测得反应过程中各时间碘的浓度,就可以求出

。由于碘在可见光区有一个比较宽的吸收带,所以本实验可采用分光光度法来测定不同时刻反应物的浓度。

若在反应过程中,丙酮的浓度为0.1~0.6mol·dm-3,酸的浓度为0.05~0.5mol·dm-3时,可视丙酮与酸的浓度为常数。将(3)式积分得:

按朗怕-比耳定律,若指定波长的光通过碘溶液后光强为I,通过蒸馏水后的光强为I0,则透光率可表示为:

并且透光率与碘的浓度有如下关系:

式中,l为比色皿光径长度;K',是取10为底的对数时的吸收系数。又因,积分后可得:

将式(5)、(6)代入式(4)中整理后得:

或:

式中,K'l“可通过测定一已知浓度的碘溶液的透光率T代入式(5)而求得。当C A与

C H+浓度已知时,只要测出不同时刻反应物的透光率,就可利用(8)式求出丙酮碘化反应的速率常数K。

三、仪器和药品

1、带恒温装置的722型可见分光光度计;

2、超级恒温槽;

3、秒表;

4、100mL磨口锥形瓶1个;

5、50mL容量瓶2个;

6、5mL移液管3支。

7、0.01mol/L碘溶液(KIO

3 + 5KI + 6HCI = 3I

2

+ 6KCI + 3H

2

O):

准确称取 KIO

3

0.1427g,在50mL烧杯中加入少量水微热溶解,加入 KI 1.1g加热溶解,再加入2ml的盐酸10mL混和,倒入100mL容量瓶中,稀释至刻度。

8、2mol/L丙酮

9、1mol/L盐酸

四、实验步骤

(1)将超级恒温槽的温度调至20℃。

(2)调整分光光度计:

1.在使用仪器前,应该对仪器进行检查,电源接线应牢固,通地要良好。各个调节旋钮的起始位置应该正确,然后再接通电源开关。

2.将灵敏度旋钮调置“1”档(放大倍率最小)。

3.开启电源,指示灯亮,选择开关置于“T’,波长调到560nm的位置上,然后将比色架(带有恒温水套)放入暗箱中盖好箱盖)仪器预热20min。

4.打开试样室盖(光门自动关闭),调节“0”旋钮,使数字显示为“00.0”。盖上试样室盖,将装有蒸馏水的比色皿(光径长为2cm)放到比色架上,使之处在光路中。调节透光率“100%”旋钮,使数字显示为“100.0”。如果显示不到“100.0”,则可适当增加微电流放大器的倍率档数,但尽可能使用低档,这样仪器将有更高的稳定性。改变倍率后,必须重新校正“0”和“100%”。

(3)求K'l值:

取另一比色皿,注入已知浓度的碘溶液、放到比色皿架的另一档位置上,测其透光率T

(注意刻度盘上读出的“透光率”,相当于公式,当I0=100时的I值,所以透光率T=I 读

x0.01),利用(5)式求出K'l值。

(4)测定丙酮碘化反应的速度常数K:

在一洗净的50mL容量瓶中,用移液管移入5mol 2mol/L丙酮溶液,加入少量蒸馏水(为什么?)。取另一洗净的50ml容量瓶,用移液管移入5ml实验用碘溶液。再用另一支移液管移入5mlHCl溶液,于100ml磨口带盖锥形瓶中注入蒸馏水。三瓶各自盖好塞子,一起放入恒温槽中恒温。待达到恒温后(10min左右),将丙酮溶液倒入盐酸和碘溶液容量瓶中,用恒温的蒸馏水洗丙酮瓶3~4次,洗涤液倒入混合液瓶中,用恒温蒸馏水稀释至刻度。此步骤在恒温槽小孔口中进行。取出此容量瓶,摇匀后迅速倒入比色皿中,用擦镜纸擦于玻璃外壁,放入比色皿架上。以下与步骤(3)相同,测其透光率T。每隔3min量一次,直至24min左右。在测量过程中,需经常检查检流计零点和蒸馏水空白的透光率。

(5)分别升温至25℃、30℃,35℃,测以上各温度时透光率T。

五、数据处理

1.利用(5)式,求出K’l。

2.由lgT对时间t作图,应得一直线,求此直线斜率,再由斜率m求出K总。

(注意C A,C H+应取值若干?)

3.求活化能:

由阿累尼乌斯公式

以lgK对1/T作图,由斜率m求E n。

六、思考题

1.动力学实验中,正确计量时间是实验的关键。本实验将反应开始混合,到起算反应时间,中间有一段不算很短的操作时间。这对实验有无影响?为什么?

2.丙酮的卤化反应是复杂反应,为什么?

丙酮碘化实验报告

“复杂反应------丙酮碘化反应”实验报告 刘若晴 2007011980 材 72 同组实验者姓名:穆浩远 实验日期:2008年9月22日 提交报告日期:2008年10月11日 带实验的老师或助教姓名:王 实验日期:2008年9月20日 1 引言(简明的实验目的/原理) 本实验的目的有(1)采用分光光度法测定用酸作催化剂时丙酮碘化反应的速率系数、反应级数和活化能。(2)通过本实验加深对复合反应特征的理解。(3)熟练掌握分光光度计的原理和使用方法。 只有少数化学反应是由一个基元反应组成的简单反应,大多数化学反应并不是简单反应,而是由若干个基元反应组成的复合反应。大多数复合反应的反应速率和反应物浓度间的关系,不能用质量作用定律表示。因此用实验测定反应速率与反应物或产物浓度间的关系,即测定反应对各组分的分级数,从而得到复合反应的速率方程,乃是研究反应动力学的重要内容。 对于复合反应,当知道反应速率方程的形式后,就可以对反应机理进行某些推测。如该反应究竟由哪些步骤完成,各个步骤的特征和相互联系如何等等。 实验测定表明,丙酮与碘在稀薄的中性水溶液中反应是很慢的。在强酸(如盐酸)条件下,该反应进行得相当快。但强酸的中性盐不增加该反应的反应速率。在弱酸(如醋酸)条件下,对加快反应速率的影响不如强酸(如盐酸)。 酸性溶液中,丙酮碘化反应是一个复合反应,其反应式为: + H +32332 (CH )CO+I CH COCH I+H +2I ??→-- (1) 该反应由H +催化,而反应本身又能生成H +,所以这是一个H +自催化反应,其速率方程为: ()()()()()()3αβδ+ 3 -dc I -dc A dc E r ====kc A c I c H dt dt dt - - (2) 式中:r —反应速率; k —速率系数; ()c A 、()3c I -、()+ c H 、()c E —分别为丙酮、碘、氢离子、碘化丙酮的浓度, -3mol dm g ; α、β、γ—分别为反应对丙酮、碘、氢离子的分级数。 反应速率、速率系数及反应级数均可由实验测定。 丙酮碘化对动力学的研究是一个特别合适而且有趣的反应。因为3I -在可见光区有一个比较宽的吸收带,而在这个吸收带中,盐酸和丙酮没有明显的吸收,所以可以采用分光光度计测定光密度的变化(也就是3I -浓度的变化)来跟踪反应过程。

丙酮碘化反应数据处理

丙酮碘化反应 物理化学实验报告2010-05-09 18:29:22 阅读70 评论0 字号:大中小订阅 一、实验目的 1.利用分光光度计测定酸催化时丙酮碘化反应的反应级数、速度常数; 2.掌握分光光度计的使用方法; 二、实验原理 丙酮碘化反应是一复杂反应,反应方程式为: H+是反应的催化剂,因丙酮碘化反应本身有H+生成,所以,这是一个自动催化反应,又因为反应并不停留在生成一元碘化丙酮上,反应还继续下去。所以应选择适当的反应条件,测定初始阶段的反应。因碘溶液在可见光区有宽的吸收带,而在此吸收带中盐酸、丙酮、碘化丙酮和碘化钾溶液则没有明显的吸收,所以可采用分光光度计法直接观察碘浓度的变化,从而测量反应的进程。 根据公式:al=(lg100-lgT)/CI2 求得比色皿的al值 该反应的速率方程可表示为: v=dC E /dt = -dC A/dt = -dC I 2/dt = kC p A C q I 2 C r H+ 式中CE,CA,CI2,CH+ 分别为碘化丙酮,丙酮,碘,盐酸的浓度;k为速度常数;指数p,q,r分别为丙酮,碘和氢离子的反应 级数。 实验证实在本实验条件下,丙酮碘化反应对碘是零级反应,即q为零。所以, v= dC E /dt = kC p A C r H+ 对上式积分后可得: C E = kC p A C r H+ t + C 又由于dC E /dt = -dC A/dt = -dC I 2/dt A = alC I2( 比尔-兰伯定理:A为吸光度;T为透光度) A = -lg T al=(lg100-lgT)/C I2 得:lg T = k(al) C p A C r H+ t + B 由lgT对t做图,通过其斜率m可求得反应速度,即:m=k(al) C p A C r H+ 又有:v =m/(al)

丙酮碘化实验报告

丙酮碘化实验报告 姓名:团团1372 学号:200800 物化实验第九组 08 级10-24 实验二十二丙酮碘化 【实验目的】 1. 测定用酸作催化剂时丙酮碘化反应的速率常数及活化能。 2. 初步认识复杂反应机理,了解复杂反应的表观速率常数的求算方法。【实验原理】一般认为按照两步进行: 第一步为丙酮烯醇化反应,其速率常数较小,可逆反应(速控步骤) 第二步是烯醇碘化反应,它是一个快速的且能进行到底的反应。 由此,丙酮的烯醇化反应的速率取决于丙酮及氢离子的浓度,如果以碘化丙酮浓度的增加来表示丙酮碘化反应的速率,则此反应的动力学方程式可表示为: 式中,C为碘化丙酮的浓度;C为氢离子的浓度;C为丙酮的浓度;k表示丙酮碘化反应总的EH+A 速率常数。由第二步反应可知,则本实验利用分光光度计时刻监测丙酮碘化反应过程中碘的浓度,从而求出反应的速率常数。若在反应过程中,丙酮的浓度远大于碘的浓度且催化剂酸的浓度也足够大时,则可把丙酮和酸的浓度看作不变,则可得:

按照朗伯-比耳(Lambert-Beer)定律:透光率可表示为: 透光率与碘的浓度之间的关系可表示为: 综上两式可得: 由lgT对t作图可得一直线,直线的斜率为kεlCC。式中εl可通过测定一已知浓度AH+ 的碘溶液的透光率,由(7)式求得,当C与C浓度已知时,只要测出不同时刻 丙酮、酸、碘AH+ 的混合液对指定波长的透光率,就可以利用上式求出反应的总速率常数k。 由两个或两个以上温度的速率常数,就可以根据阿累尼乌斯(Arrhenius)关系 式估算反应的活化能。 姓名:团团1372 学号:200800 物化实验第九组 08 级10-24 【仪器试剂】 分光光度计1套;容量瓶(50mL)3只;超级恒温槽1套;带有恒温夹层的比色皿1个;移 -3-3液管(10mL)3只. 碘溶液(=0.01979mol?dm);标准盐酸溶液(1.869mol?dm);丙酮溶液CI2 -3(1.9994mol?dm)。 【实验步骤】 1、打开恒温槽设定温度为30?0.1?。

复杂反应——丙酮碘化反应

复杂反应——丙酮碘化反应 姓名:*** 学号:2015012*** 班级:化学**班 实验日期:2018年4月4日提交报告日期:2018年4月6日 带课老师/助教:*** 1 引言(简明的实验目的/原理) 2 实验操作 2.1 实验药品、仪器型号及测试装置示意图 计算机与接口1套,722S型分光光度计(比色皿2个),恒温槽1套,10mL刻度移液管1支,5mL 刻度移液管3支,25mL容量瓶1个,镊子,洗瓶,滴管。 0.02145mol·L-1碘溶液,2.500mol·L-1丙酮溶液,1.075mol·L-1HCl溶液,去离子水。 2.2 实验条件 实验室室温:15.5℃;气压:102.64kPa。 2.3 实验操作步骤及方法要点 1. 准备: 检查仪器、药品,接通电源。将装有碘溶液、丙酮溶液、盐酸溶液和去离子水的玻璃瓶放入恒温槽中恒温。打开恒温槽电源,设定恒温槽温度在25℃。 2. 设定分光光度计: 开启分光光度计和电脑。打开分光光度计控制软件,点击右方“联机”连接仪器。在“功能选择”菜单中选择“定点扫描”。通过拉动样品架拉杆,使得下方样品仓对准分光光度计光路。仪器预热10min后,点击“调0”,放入黑色塑料块挡住光路,点击确定,等待调0完毕;取出黑色塑料块,点击“调100”,放入装有去离子水的比色皿作为空白,点击确定,等待调100完毕。 3. 测定ε(I3-)L值:

用5 mL带刻度移液管移取2.5 mL碘溶液于25 mL棕色容量瓶中,用恒温槽中的去离子水稀释至刻度,摇匀。润洗比色皿3次,加入碘溶液至大约2/3容量,放入分光光度计样品仓,点击右方“数据选取”,即显示碘溶液吸光度值,保存数据。 注:依据原理,在实验条件(565nm)下,ε(I3-)=ε(I2),为了书写方便,下文简记为ε,即ε=ε(I3-)=ε(I2)。 4. 测定反应速率: 按照表1,用移液管快速移取相应体积的三种溶液于容量瓶中(碘溶液最后加入),滴管移取恒温去离子水稀释至刻度,摇匀,润洗比色皿3次,加入混合溶液至大约2/3容量,放入分光光度计样品仓。 在“功能选择”菜单中选择“时间扫描”,点击右方“参数设置”,“时间”设定为20分(可根据实验情况终止数据采集),“测量模式”改为“吸光度”,点击“确定”。点击右方“开始”,开始数据采集。可通过“坐标扩展”修改横纵轴上下限。采集合适时间后,点击右方“停止”,保存数据并导出到Excel。 表1 反应溶液的配比表 序号温度碘溶液V/mL 丙酮溶液V/mL 盐酸溶液V/mL I 25℃ 5 5 5 II 25℃ 5 2.5 5 III 25℃ 5 5 2.5 IV 25℃7.5 5 5 V 35℃7.5 5 5 5. 结束实验,关闭仪器,收拾实验台。 注意事项: 1. 测定波长必须保持565nm,否则影响结果准确性,光谱仪上不要放物品,避免误触旋钮改变波长; 2. 配液要快,碘液要最后加入,碘会刺激呼吸道,眼睛粘膜,含碘废液瓶须加塞,并及时处理; 3. 使用分光光度计时,注意确认光路通畅,实验中避免触碰拉杆改变其位置,比色皿装液不宜太满。 3 结果与讨论 3.1 原始实验数据 3.1.1 εL值的测定 所用碘液被稀释了10倍,故c(I2)=0.002145mol·L-1;分光光度计测定吸光度A=0.3665。 3.1.2 反应速率的测定 第I~V组实验的吸光度-时间曲线(A-t曲线)如图1~图5。

丙酮碘化反应速率常数的测定讲义

丙酮碘化反应速率常数的测定 一、实验目的 1、掌握利用分光光度法测定酸催化时丙酮碘化反应速度常数及活化能的实验方法。 2、加深对复杂反应特征的理解。 二、实验原理 酸溶液中丙酮碘化反应是一个复杂反应,反应方程为: CH 3H 3C O +I 2 H + CH 2I H 3C O +I -+H + H +是反应的催化剂,由于丙酮碘化反应本身生成H +,所以这是一个自动催化反应。 实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。反应式中包含产物,其动力学方程式为: r q p A A H c I c kc dt I dc dt dc )()()(22+=-=- =υ (1) 式中υ为反应速率,A c 、)(2I c 、)(+ H c 分别为丙酮、碘、盐酸的浓度(mol/L ),κ为反应速率常数,p 、q 、r 分别为丙酮、碘和氢离子的反应级数。速率、速率常数和反应级数均可由实验测定。 实验证明丙酮碘化反应是一个复杂反应,一般认为可分成两步进行,即: H + 2 C CH 2 H 3C OH C CH 2 H 3C O ( i ) C H 3C O C CH 2 H 3C OH I 2 CH 2I I - k 3 (ii) 反应(i)是丙酮的烯醇化反应,反应可逆且进行的很慢。反应(ii)是烯醇的碘化反应,反应快速且能进行到底。因此,丙酮碘化反应的总速度可认为是由反应(i)所决定。丙酮碘化反应对碘的反应级数是零级,故碘的浓度对反应速率没有影响,即动力学方程中q 为零,原来的速率方程可写成: r p A I H c kc dt dc )(2+=- =υ (2)

由于反应并不停留在一元碘化丙酮上,还会继续反应下去,故采取初始速率法,因此丙酮和酸应大大过量,而用少量的碘来限制反应程度。这样在碘完全消耗之前,丙酮和酸的浓度基本保持不变。由于反应速率与碘浓度无关(除非在酸度很高的情况下),因而直到碘全部消耗前,反应速率是常数。即: 常数==- =+r p A I H c kc dt dc )(2υ (3) 因此,将)(2I c 对时间t 作图为一直线,直线斜率即为反应速率。 为了测定指数p ,需要进行两次实验。先固定氢离子的浓度不变,改变丙酮的浓度,若分别用I 、II 表示这两次实验,使)(II A c =u )(I A c ,)(+ II H c = )(+ I H c ,由式子(3)可得: p I p I p p I r I p II r II p I II u A C A C u H C A kC H C A kC ===++ ) ()()()()()(υυ (4) u p I II lg lg =υυ (5) u p I II lg /lg υυ= (6) 同样方法可以求指数r 。使)(II A c =)(I A c I ,)(+ II H c =w )(+ I H c ,可得出: w r I III lg /lg υυ= (7) 根据式子(2),由指数、反应速率和浓度数据就可以计算出速率常数κ。由两个温度下的速率常数,由阿累尼乌斯公式: 1 21221lg 303.2k k T T T T R E -= (8) 求得化学反应的活化能E 。 因碘溶液在可见区有宽的吸收带,而在此吸收带中,盐酸、丙酮、碘化丙酮和碘化钾溶液则没有明显的吸收,所以可采用分光光度法直接测量碘浓度的变化,以跟踪反应进程。在本实验中,通过测定溶液510nm 光的吸收来确定碘浓度。溶液的吸光度A 与浓度c 的关系为: A=Kcd (9) 其中A 为吸光度,K 为吸光系数,d 为溶液厚度,c 为溶液浓度(mol/L )。在一定的溶质、

丙酮碘化反应

物理化学实验丙酮碘化反应动力学C202 2010-03-29 T= P= 一、实验目的 1.根据实验原理由同学设计实验方案,包括仪器、药品、实验步骤等 2.测定反应常数k、反应级数n、活化能Ea 3.通过实验加深对复杂反应的理解 二、实验原理 丙酮碘化反应是一个复杂反应,其反应式为: 实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。反应式中包含产物,故本反应是自催化反应,其动力学方程式为: -dC A/dt=-dC/dt=kC AαC HβCγ 式中C为各物质浓度(mol/L),k为反应速率常数或反应比速,指数为反应级数n。 丙酮碘化反应的反应机理可分为两步: 第一步为丙酮烯醇化反应,其速率常数较小,第二部是烯醇碘化反应,它是一个快速的且能进行到底的反应。用稳态近似法处理,可以推导证明,当k2C H>>k3C I时,反应机理与实验证明的反应级数相符。 丙酮碘化反应对碘的反应级数是零级,级碘的浓度对反应速率没有影响,原来的速率方程可写成 -d C/dt=kC AαC Hβ 为了测定α和r,在C A>> C、C H>>C2及反应进程不大的条件下进行实验,则反应过程中,C A和C H可近似视为常数,积分上式的: C=- kC AαC Hβt+A’ C以对t作图应为直线。与直线的斜率可求得反应速率常数k及反应级数n。 在某一指定的温度下,进行两次实验,固定氢离子的浓度不变,改变丙酮的浓度,使其为C A=mC A,根据-d C/dt=kC AαC Hβ得:n B=(lg(r i/r j))/lgm 若测得两次反应的反应速率,即求得反应级数p。用同样的方法,改变氢离子的浓度,固定丙酮的浓度不变,也可以得到对氢离子的反应级数r。 若已经证明:p=r=1,q=0,反应速率方程可写为:-dC/dt=kC A C H在大量外加酸存在下及反应进程不大的条件下,反应过程的氢离子可视为不变,因此,反应表现为准一级反应或假一级反应:-dC/dt=k'C A式中k'=k C H,k'为与氢离子浓度有关的准反应比速。 设丙酮及碘的初始浓度为C A0、C0.侧有:C A= C0-(C0- C)由数学推导最终可得: C= - C A0 k't+ C A0C'+ C0 若在不同的时刻t,测得一系列C,将其对t作图,得一直线,斜率为- C A0 k',即可求得k'的值。在不同的氢离子浓度下,k’值不同。 分光光度法,在550 nm跟踪I2随时间变化率来确定反应速率。 三、仪器及药品 721分光光度计1套丙酮标准液*L-1)

实验十一丙酮碘化反应级数的测定

丙酮碘化反应级数的测定 一、 目的要求 1. 掌握用孤立法确定反应级数的方法。 2. 测定酸催化作用下丙酮碘化反应的速率常数。 3. 通过本实验加深对复杂反应特征的理解。 4. 掌握722s 型分光光度计的基本原理及使用方法。 二、 实验原理 大多数化学反应是复杂反应,其中包含了许多个基元反应,反应级数是根据实验的结果而确定的,并不能从化学计量方程式简单的利用质量作用定律推得。反应级数的确定是很重要的,它不仅告诉我们浓度是怎样影响反应速度,从而通过调整浓度来控制反应速度,而且可以帮助我们推测反应机理,了解反应真实过程。 确定反应级数的方法通常有孤立法(微分法)、半簑期法、积分法,其中孤立法是动力学研究中的常用方法。本实验用孤立法确定丙酮碘化反应级数,从而确定丙酮碘化反应速率方程。 酸催化的丙酮碘化反应是一个复杂反应,初始阶段反应为: + H -+ 33232CH COCH +I CH COCH I +I +H H +是反应的催化剂,因丙酮碘化反应本身有H +生成,所以,这是一个自催化反应。设反应动力学方程为: 2+2I I H x y z dc kc c c dt - =A (1) 式中:c A ,+H c ,2I c 分别为碘化丙酮(A )、丙酮、碘、盐酸的浓度,mo l ·L -1 ;x , y ,z 分别代表丙酮、氢离子、碘的反应级数,k 为速率系数。将上式两边取对数得: 2 +2I A I H lg lg lg lg lg dc k x c y c z c dt ?? - =+++ ??? (2) 从上式可以看出,反应级数,,x y z 分别是2I lg dc dt ?? - ??? 对A lg c 、+H lg c 、2I lg c 的偏微 分,如果用图解法,我们可以这样处理:在三种物质中,固定两种物质的浓度,配 制出第三种物质浓度不同的一系列溶液,以2 I lg dc dt ?? - ??? 对该组分浓度的对数作图,所得斜率即为该物质在此反应中的反应级数。

丙酮碘化反应的速率方程实验报告(仅供参考)

实验五 丙酮碘化反应的速率方程 一. 实验目的 1. 掌握用孤立法确定反应级数的方法; 2. 测定酸催化作用下丙酮碘化反应的速率常数; 3. 通过本实验加深对复杂反应特征的理解。 二. 实验原理 孤立法,即设计一系列溶液,其中只有某一种物质的浓度不同,而其他物质的浓度均相同,借此可以求得反应对该物质的级数。同样亦可得到各种作用物的级数,从而确立速率方程。 丙酮碘化是一个复杂反应,其反应式为 CH 3 C O CH 3+I 2 CH 3 C CH 2I O +H ++I -H + 设丙酮碘化反应速率方程式为: z I y HCL x COCH CH I C C kC dt dC 2 332??=- (1) 式中k 为反应速率常数,指数x 、y 、z 分别为丙酮,酸和碘的反应级数。将该式取对数后可 得: 2332 lg lg lg lg lg I HCL OCH CH I C z C y C x k dt dC +++=??? ? ??- (2) 在上述三种物质中,固定其中两种物质的浓度,配置第三种物质浓度不同的一系列溶液,则反应速率只是该物质浓度的函数。以lg(-dC 碘/dt)对该组分浓度的对数作图,所得直线即为该物质在此反应中的反应级数。同理,可得其他两个物质的反应级数。 碘在可见光区有很宽的吸收带,可用分光光度计测定反应过程中碘浓度随时间变化 的关系。按照比尔定律可得: 20lg lg A I abC I I T =??? ? ??-=-= (3) 式中A 为吸光度,T 为透光率,I 和I 0分别为某一特定波长的光线通过待测溶液和空白溶液后的光强,a 为吸光系数,b 为样品池光径长度,以A 对时间t 作图,斜率为ab(-dC 碘/dt).测得a 和b ,可算出反应速率。 若C 丙酮≈C HCl ﹥﹥C 碘 ,发现A 对t 作图后得一直线。显然只有在(-dC 碘/dt)不随时间 改变时才成立,意味着反应速率与碘的浓度无关,从而得知该反应对碘的级数为零。 当控制碘为变量时,反应过程中可认为丙酮和盐酸的浓度不变,又因为z 为0,则由(2)积分可得: )(酸丙碘碘12y x 21t C C t kC C -=-

【清华】复杂反应_------_丙酮碘化反应_598101725

复杂反应 ------ 丙酮碘化反应 实验目的 1. 采用分光光度法测定用酸作催化剂时丙酮碘化反应的速率系数、反应级数和活化能。 2. 通过本实验加深对复合反应特征的理解。 3. 熟练掌握分光光度计的原理和使用方法。 实验原理 只有少数化学反应是由一个基元反应组成的简单反应,大多数化学反应并不是简单反应,而是由若干个基元反应组成的复合反应。大多数复合反应的反应速率和反应物浓度间的关系,不能用质量作用定律表示。因此用实验测定反应速率与反应物或产物浓度间的关系,即测定反应对各组分的分级数,从而得到复合反应的速率方程,乃是研究反应动力学的重要内容。 对于复合反应,当知道反应速率方程的形式后,就可以对反应机理进行某些推测。如该反应究竟由哪些步骤完成,各个步骤的特征和相互联系如何等等。 实验测定表明,丙酮与碘在稀薄的中性水溶液中反应是很慢的。在强酸(如盐酸)条件下,该反应进行得相当快。但强酸的中性盐不增加该反应的反应速率。在弱酸(如醋酸)条件下,对加快反应速率的影响不如强酸(如盐酸)。 酸性溶液中,丙酮碘化反应是一个复合反应,其反应式为: + H +32332(CH )CO+I CH COCH I+H +2I ?? →-- (1) 该反应由H +催化,而反应本身又能生成H +,所以这是一个H +自催化反应,其速率方程为: ()()()()()()3αβδ+3-dc I -dc A dc E r ====kc A c I c H dt dt dt - - (2) 式中:r —反应速率; k —速率系数; ()c A 、()3c I -、()+ c H 、()c E —分别为丙酮、碘、氢离子、碘化丙酮的浓度, -3mol dm ; α、β、γ—分别为反应对丙酮、碘、氢离子的分级数。 反应速率、速率系数及反应级数均可由实验测定。 丙酮碘化对动力学的研究是一个特别合适而且有趣的反应。因为3I - 在可见光区有一个比较宽的吸收带,而在这个吸收带中,盐酸和丙酮没有明显的吸收,所以可以采用分光光度计测定光密度的变化(也就是3I - 浓度的变化)来跟踪反应过程。 虽然在反应(1)中没有其它试剂吸收可见光,但却存在下列一个次要却复杂的情况,即在溶液中存在3I - 、2I 和I - 的平衡:

丙酮碘化反应思考题答案.doc

丙酮碘化反应思考题答案 【篇一:丙酮碘化反应】 3-29 t=286.15k p=85.02kpa 一、实验目的 1.根据实验原理由同学设计实验方案,包括仪器、药品、实验步骤 等2.测定反应常数k、反应级数n、活化能ea 3. 通过实验加深对复 杂反应的理解 二、实验原理 丙酮碘化反应是一个复杂反应,其反应式为: 实验测定表明,反应速率在酸性溶液中随氢离子浓度的增大而增大。反应式中包含产物,故本反应是自催化反应,其动力学方程式为: 2 2 式中 c 为各物质浓度(mol/l ),k 为反应速率常数或反应比速,指数 为反应级数n。丙酮碘化反应的反应机理可分为两步: 第一步为丙酮烯醇化反应,其速率常数较小,第二部是烯醇碘化反应,它是一个快速的且能进行到底的反应。用稳态近似法处理,可以推导证明,当k2ch+k3ci 时,反应机理与实验证明的反应级数相 符。 2 丙酮碘化反应对碘的反应级数 是零级,级碘的浓度对反应速率没有影响,原来的速率方程可写成 2 2 + + 似视为常数,积分上式 的: 2 ci 以对t 作图应为直线。与直线的斜率可求得反应速率常数k 及反应级数n。 2 在某一指定的温度下,进行两次实验,固定氢离子的浓度不变,改 变丙酮的浓度,使其为ca=mca ,根据 2

1 2 若测得两次反应的反应速率,即求得反应级数p。用同样的方法, 改变氢离子的浓度,固定丙酮的浓度不变,也可以得到对氢离子的 反应级数r。 若已经证明:p=r=1 ,q=0 ,反应速率方程可写为:-dci/dt=kcach+ 在大量外加酸存在下及反应进程不大的条件 2 下,反应过程的氢离子可视为不变,因此,反应表现为准一级反应 或假一级反应:-dci/dt=kca 式中k=k ch+ , 2 k 为与氢离子浓度有关的准反应比速。 设丙酮及碘的初始浓度为ca0 、ci0. 侧有:ca= ci0- (ci0- ci )由数 学推导最终可得: 2 2 2 2 ci= - ca0 kt+ ca0c+ ci0 2 2 若在不同的时刻t,测得一系列ci ,将其对t 作图,得一直线,斜率 为- ca0 k ,即可求得k 的值。在不同的氢离 2 子浓度下,k’值不同。 分光光度法,在550 nm 跟踪i2 随时间变化率来确定反应速率。 三、仪器及药品 721 分光光度计 1 套丙酮标准液(2.000mol*l-1) 秒表 1 块hcl 标准液(1.000mol*l-1) 碘瓶(50ml )6 个i2 标准液 (0.01mol*l-1) 刻度移液管(20ml )5 支 四、实验步骤 1.仪器准备:实验前先打开光度计预热。 2.标准曲线法测定摩尔吸光系数。(每组配一种浓度,共 5 个浓度,在一台仪器上测出吸光度,数据共享) 3. 丙酮碘化过程中吸光度的测定:迅速混合,每隔 1 分钟记录光度计读数,记录至少15 分钟。记住先加丙酮、碘,最后加盐酸!

物理化学实验丙酮碘化

丙酮碘化反应速率常数测定 引言:首先我们已知溴与碘为同主族元素,故溴与碘在化学 性质上应该非常相似,故我们可模拟丙酮溴化实验来设计该实验。查找文献知丙酮溴化为二级反应,丙酮碘化为零级反应。因此设计本实验采用722型分光光度计测定丙酮碘化反应速率常数。 摘要:介绍一种简单的测 丙酮碘化反反应率常数的 化 学方法 ,误差小,线性关系好,测量结果可靠。 关键词:丙酮碘化反应 速率常数 时间 反应速率常数即化学反应进行的快慢。用单位时间内反应物浓度的减少或生成物浓度的增加量来表示,而反应物或生成物浓度的减少或增加如果用常规的化学方法测量会比较困难,且准确度不高.故可用一个可表征物质浓度变化且便于测量的物理量来代替化学测量的麻烦.我们选择的物理量是吸光度。在一定波长的光照射下,不同浓度的物质溶液对应有不同的吸光度,本实验中只有碘在可见光区有宽的吸收带,故可用吸光度反应碘溶液的浓度,朗伯比尔定律:A=BC 2 I (A为吸光度,B 为常数) 实验部分:

1 实验原理 丙酮碘化反应方程式为: H +是反应的催化剂,由于丙酮碘化反应本身生成H +,所以,是一个自动催化反应,实验证明丙酮碘化反应是一个复杂反应,一般认为分两步进行,即: C H 3 C O C H 3 H + C H 3 C O H C H 2 (1) C H 3 C O C H 2I H + C H 3 C O H C H 2 +I 2 +H +I - + (2) 反应(1)是丙酮的烯醇化反应,它是一个可逆并且进行得很慢的反应。 反应(2)是烯醇的碘化反应,它是一个快速且能进行到底的反应,因此丙酮碘化反应的总反应速率是由反应(1)所决定,反应的动力学方程式可表示为: E A H d C kC C d t + = 式中C E 为碘化丙酮的浓度,H C + 为氢离子浓度,C A 为丙酮的浓度,k 为丙酮碘化反应总的速率常数。 在实验中,C A (4M )和H C + (2M )比C 2 I (0.02M )大得多,则C A 、H C + 可 看做常数,则(3)式积分得 -C 2 I =KC A H C + t+Q(Q为常数) 在本实验中,只有碘溶液在可见光区有宽的吸收带,由分光光度法可确定反应中碘的浓度,由朗伯比尔定律:A=BC 2 I (A为吸光度,B 为常数) 通过测定A确定对应的浓度C,可由C对t作图得直线,由斜率能求出反应速率常数K。【1】 查找文献所有试验波长550nm 的光【2】【3】 2 仪器与材料 722S 可见分光光度计;50mL 容量瓶3个;50mL 碘量瓶3个;10mL 移液管3个;25mL 移液管1个;丙酮4mol/L ;盐酸2mol/L ;I 20.1mol/L ;秒表;

物理化学实验实验十四 复杂反应——丙酮碘化

实验十四 复杂反应—— 丙酮碘化 1 实验目的 (1) 了解丙酮碘化反应的机理及动力学方程式,测定用酸作催化剂时丙酮碘化反应的速率 常数及活化能。 (2) 明确所测物理量(透光率)与该反应速率常数之间的关系 (3) 了解分光光度计的结构,掌握其使用方法。 2实验原理 第一步是丙酮的烯醇化反应,它是一个很慢的可逆反应,第二步是烯醇的碘化反应,它是一个快速且趋于进行到底的反应。因此,丙酮碘化反应的总速率是由丙酮的烯醇化反应的速率决定,丙酮的烯醇化反应的速率取决于丙酮及氢离子的浓度,如果以碘化丙酮浓度的增加来表示丙酮碘化反应的速率,则此反应的动力学方程式可表示为: (2.14.1) 式中,C E 为碘化丙酮的浓度,C H+为氢离子的浓度;C A 为丙酮的浓度;k 表示丙酮碘化反应总的速率常数。 由反应(2)可知 (2.14.2) 因此,如果测得反应过程中各时刻碘的浓度,就可以求出dC E /dt 。由于碘在可见光区有一个比较宽的吸收带,所以可利用分光光度计来测定丙酮碘化反应过程中碘的浓度,从而求出反应的速率常数。若在反应过程中,丙酮的浓度远大于碘的浓度且催化剂酸的浓度也足够大时,则可把丙酮和酸的浓度看作不变,把(2.14.1)式代入(2.14.2)式积分得 (2.14.3)

按照朗伯-比耳(Lambert-Beer)定律,某指定波长的光通过碘溶液后的光强为I,通过蒸馏水后的光强为I0,则透光率可表示为 (2.14.4) 并且透光率与碘的浓度之间的关系可表示为 (2.14.5) 式中,T为透光率,d为比色槽的光径长度,ε是取以10为底的对数时的摩尔吸收系数。将(2.14.3)式代入(2.14.3)式得 (2.14.6) 由lg T对t作图可得一直线,直线的斜率为kεdC A C H+。式中εd可通过测定一已知浓度的碘溶液的透光率,由(2.14.5)式求得,当C A与C H+浓度已知时,只要测出不同时刻丙酮、酸、碘的混合液对指定波长的透光率,就可以利用(2.14.6)式求出反应的总速率常数k。 由两个或两个以上温度的速率常数,就可以根据阿累尼乌斯(Arrhenius)关系式估算反应的活化能。 (2.14.7)或 (2.14.8) 为了验证上述反应机理,可以进行反应级数的测定。根据总反应方程式,可建立如下关系式: 式中α,β,γ分别表示丙酮、氢离子和碘的反应级数。若保持氢离子和碘的起始浓度不变,只改变丙酮的起始浓度,分别测定在同一温度下的反应速率,则 (2.14.9) 同理可求出β,γ (2.14.10) 3 仪器、药品 分光光度计1套;容量瓶(50mL)3只;容量瓶(100mL)2只;比色皿1个;移液管(10mL)3只。 碘溶液(含4%KI)(0.03mol·dm-3);标准盐酸溶液(1mol·dm-3);丙酮溶液(2mol·dm-3)。

试验丙酮碘化反应速率常数的测定

实验 丙酮碘化反应速率常数的测定 一、实验目的 1.利用分光光度计测定酸催化时丙酮碘化反应的反应速率常数。 2.初步认识复杂反应机理,了解复杂反应的表观速率常数的求算方法。 3. 进一步掌握分光光度计的使用方法。 二、实验背景 醛酮分子中的,氢原子容易被卤素取代,在卤素的碱性溶液中丙酮容易发生多卤代反应,而且还可进一步发生卤仿反应。但在酸性溶液中,可控制反应条件使卤代反应只进行一步, 因此,可在酸性条件下测定上述反应在某温度下的速率常数。该反应为一复杂反应。其步骤为: O H 3C CH 3H C H 3C CH 2(1) (2)C H 3C CH 2+X 2C O H 3C CH 2X +HX 先生成丙烯醇,然后卤素与丙烯醇反应生成卤化丙酮。反应(1)进行的比较慢,而反应(2)则很迅速,因此丙酮卤化反应速度取决于反应的第一步。大量的实验证明,在酸的浓度不很高时,丙酮卤化反应对卤素是零级。当卤素的浓度比丙酮和酸的浓度小很多时,反应中卤素的消耗,对丙酮和酸的浓度基本没什么影响,即反应速率几乎与卤素的种类及其浓度无关,但却与溶液中丙酮和酸的浓度密切相关。由于Cl 2和Br 2的挥发性和毒性,所以一般选用I 2进行丙酮卤化反应动力学的测定。 三、实验原理 大多数化学反应是有若干个基元反应组成的。这类复杂反应的反应速率不遵循质量作用定律,它们的反应速率方程式需通过一系列实验获得可靠数据,进而建立,并以此为基础,推测其反应机理,提出反应模式。 酸催化的丙酮碘化反应是一个复杂反应,初始阶段反应为: H +是反应的催化剂,因丙酮碘化反应本身有H +生成,所以,这是一个自动催化反应。又因反应并不停留在生成一元碘化丙酮上,反应还继续下去。所以应选择适当的反应条件,测定初始阶段的反应速度。其速度方程可表示为: r H q I p A I E c c kc dt dc dt dc 22+=-= (19-2) 式中E c 、A c 、2I c 、+H c 分别为碘化丙酮、丙酮、碘、盐酸的浓度(单位:mol·L -1);k 为速 度常数;指数p 、q 、r 分别为丙酮、碘和氢离子的反应级数。 如反应物碘是少量的,而丙酮和酸对碘是过量的,则反应在碘完全消耗以前,丙酮和酸的浓度可认为基本保持不变。实验证实:在本实验条件(酸的浓度较低)下,丙酮碘化反应对碘是零级反应,即q 为零。实验测得,p=1,r=1,故实验测得丙酮碘化反应动力学方程为: +=-=H A I E c kc dt dc dt dc 2 (19-3) (19-1)

物理化学实验课后思考题

物理化学实验课后思考题 燃烧热的测定 1.本实验中,哪些是体系?哪些是环境?试根据所得到的雷诺校正图,解释体系与环境的热交换的情况? 答:体系指卡计本身及氧弹周围介质(包括氧弹、水、桶、搅拌器等),环境即量热系统以外的部分。图见书上136页。在反应初期,由于环境的热辐射以及搅拌引起体系的温度升高为EE′段应扣除,而反应末期由于体系的温度高于环境的温度,体系向环境热漏这部分热量为CC′应该补偿,EC′即为反应物燃烧前后的温度变化ΔT。 2.水桶中的水温,为什么要选择比环境温度低0.5~1℃?否则有何影响? 答:为了作雷诺校正图,得到准确的ΔT,否则由于环境热辐射和搅拌引起的升温无法扣除。 3.如何用萘的燃烧热数据计算萘的标准生成热? C10H8 +12O2 →10CO2+4H2O 答:萘的燃烧热等于该反应的反应热,该反应的反应热又等于生成物焓的总和与反应物的焓的总和之差。 Pb-Sn二元金属相图的绘制 1.对于不同成分的混合物的步冷曲线,其水平段有什么不同?为什么? 答:对于不同成分的混合物的步冷曲线水平段的长短不同,因为水平段的长短与物质的性质,冷却速度和记录速度有关, 2.解释一个典型步冷曲线的每一部分的含义? 答:当熔融的系统均匀冷却时,如果系统不发 生相变,则系统的温度随时间的变化是均匀的,冷 却速率较快(如图ab线段);若在冷却过程中发生 了相变,由于在相变过程中伴随着放热效应,所以 系统的温度随时间变化的速率发生改变,系统的冷 却速率减慢,步冷曲线上出现转折(如图b点)。当 熔液继续冷却到某一点时(如图c点),此时熔液系 统以低共熔混合物固体析出。在低共熔混合物全部凝固以前,系统温度保持不变,因此步冷曲线上出现水平线段(如图cd 线段);当熔液完全凝固后,温度才迅速下降(如图de线段)。 3.对于粗略相等的两组分混合物,步冷曲线上的第一个拐点将很难定,而其低共熔温度却可以准确确定。相反,对于一个组分的含量很少的样品,第一个拐点将可以准确确定,而第二个拐点将难确定测定。为什么? 答:当固体析出时放出凝固热,因而步冷曲线发生转折,折变是否明

丙酮碘化反应速率常数的测定(精)

实验十四 丙酮碘化反应速率常数的测定 一、实验目的 1、掌握利用分光光度法测定酸催化时丙酮碘化反应速度常数及活化能的实验方法。 2、加深对复杂反应特征的理解。 3、掌握2100型分光光度计的使用方法。 二、实验原理 丙酮碘化反应方程为: -+++?→?++ I H I COCH CH I COCH CH H 23233 H +是反应的催化剂,由于丙酮碘化反应本身生成H +,所以这是一个自动催化反应。实验证 明丙酮碘化反应是一个复杂反应,一般认为可分成两步进行,即: 3332CH COCH H CH COH CH ++== ⑴ -+++?→?+=I H I COCH CH I CH COH CH 23223 ⑵ 反应⑴是丙酮的烯醇化反应,反应可逆且进行的很慢。反应⑵是烯醇的碘化反应,反应快速 且能进行到底。因此,丙酮碘化反应的总速度可认为是由反应⑴所决定,其反应的速率方程可表示为: +=- H A I c kc dt dc 2 ⑶ 式中+H A I c c c 、、2分别是碘、丙酮、酸的浓度;k 为总反应速率常数。如果反应物碘是少量的,而丙酮和酸对碘是过量的,则可认为反应过程中丙酮和酸的浓度基本保持不变。实验又证实:在酸的浓度不太大的情况下,丙酮碘化反应对碘是零级反应,对⑶式积分得: B t c kc c H A I +=-+2 ⑷ 式中的B 是积分常数。由2I c 对时间t 作图,可求的反应速率常数k 值。 因碘溶液在可见区有宽的吸收带,而在此吸收带中,盐酸、丙酮、碘化丙酮和碘化钾溶液则没有明显的吸收,所以可采用分光光度法直接测量碘浓度的变化。 根据朗伯—比耳定律: 2I c l a A = ⑸ 将⑷式代入⑸式得:'A H A k a l c c t B +=-- ⑹ 在⑹式中l a 可通过测定一已知碘浓度的溶液的吸光度A ,代入⑸式而求得。当A c 、+H c 浓度已知时,只要测出不同时刻反应物的吸光度A ,作A —t 图得一直线,由直线的斜率便可求的反应的速率常数k 值。由两个温度下的速率常数,由阿累尼乌斯公式 1 21221lg 303.2k k T T T T R E -= 可求得化学反应的 活化能E 。 三、仪器与药品 1.2100型分光光度计(附比色皿) 1台

丙酮碘化反应的速率方程实验报告

丙酮碘化反应的速率方 程实验报告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

实验五 丙酮碘化反应的速率方程 一. 实验目的 1. 掌握用孤立法确定反应级数的方法; 2. 测定酸催化作用下丙酮碘化反应的速率常数; 3. 通过本实验加深对复杂反应特征的理解。 二. 实验原理 孤立法,即设计一系列溶液,其中只有某一种物质的浓度不同,而其他物质的浓度均相同,借此可以求得反应对该物质的级数。同样亦可得到各种作用物的级数,从而确立速率方程。 丙酮碘化是一个复杂反应,其反应式为 设丙酮碘化反应速率方程式为: z I y HCL x COCH CH I C C kC dt dC 2 332??=- (1) 式中k 为反应速率常数,指数x 、y 、z 分别为丙酮,酸和碘的反应级数。将该式取对数后 可得: 2332 lg lg lg lg lg I HCL OCH CH I C z C y C x k dt dC +++=??? ? ??- (2) 在上述三种物质中,固定其中两种物质的浓度,配置第三种物质浓度不同的一系列溶液,则反应速率只是该物质浓度的函数。以lg(-dC 碘/dt)对该组分浓度的对数作图,所得直线即为该物质在此反应中的反应级数。同理,可得其他两个物质的反应级数。 碘在可见光区有很宽的吸收带,可用分光光度计测定反应过程中碘浓度随时间变化 的关系。按照比尔定律可得: 20lg lg A I abC I I T =??? ? ??-=-= (3) 式中A 为吸光度,T 为透光率,I 和I 0分别为某一特定波长的光线通过待测溶液和空白溶液后的光强,a 为吸光系数,b 为样品池光径长度,以A 对时间t 作图,斜率为ab(-dC 碘/dt).测得a 和b ,可算出反应速率。 若C 丙酮≈C HCl ﹥﹥C 碘 ,发现A 对t 作图后得一直线。显然只有在(-dC 碘/dt)不随时间改变时才成立,意味着反应速率与碘的浓度无关,从而得知该反应对碘的级数为零。 当控制碘为变量时,反应过程中可认为丙酮和盐酸的浓度不变,又因为z 为0,则由(2)积分可得: 将(3)代入后可得: 三. 仪器与试剂

丙酮碘化反应的速率方程实验报告+(2)

丙酮碘化反应的速率方程 班级:2010级化一 学号:20105051117 姓名:杨美玲 成绩: 一、实验目的 1、掌握用孤立法确定反应级数的方法; 2、测定酸催化作用下丙酮碘化反应的速率常数; 3、通过本实验加深对复杂反应特征的理解。 二、实验原理 大多数化学反应都是由若干个基本反应组成的。以实验方法测定反应速率和反应活度的计量关系,是研究反应动力学的一个重要内容。孤立法是动力学研究中常用的一种方法。设计一系列溶液,其中只有某一种物质的浓度不同,而其他物质的浓度均相同,借此可以求得反应对该物质的级数。同样亦可得到各种作用物的级数,从而确立速率方程。 丙酮碘化是一个复杂反应,其反应式为: CH 3 C O CH 3+I 2 CH 3 C CH 2I O +H ++I -H + 设丙酮碘化反应速率方程式为: -t c d d 碘=k 丙酮c 积分可得: 碘c = -k 丙酮c t (1) 式中k 为反应速率常数。 碘在可见光区有很宽的吸收带,可用分光光度计测定反应过程中碘浓度随时间变化的关系。按照比尔定律可得: A= -lg T = -lg( I I )=碘lC ε (2) 式中A 为吸光度,T 为透光率,I 和I 0分别为某一特定波长的光线通过待测溶液和空白溶液后的光强,ε为吸光系数,l 为样品池光径长度,以A 对时间t 作图,斜率为εl(-d 碘C /dt)。测得ε和l ,可算出反应速率。

当控制碘为变量时,反应过程中可认为丙酮和盐酸的浓度不变,将(2)代入后可得: A= -k l c t 丙酮 三、仪器和试剂 7230分光光度计容量瓶(50 mL) 移液管(5 mL,刻度)丙酮标准液 (2.00 mol·L-3) 标准液 (0.02 mol·L-3) 盐酸标准液 (2.00 mol·L-3) I 2 四、实验步骤 1.用蒸馏水作为参比溶液,在1cm比色皿样品池里装2/3的蒸馏水。打开分光光度计,将波长调至520 nm处,合上盖板,调节拉杆位置及100旋钮使透光率在100位置上。打开盖板,用透光率旋钮调到0.000。打开盖板观察是否显示1。 2.在50mL容量瓶中分别移入10 mL的2.00 mol·L-3盐酸和10mL的0.02 mol·L-3的碘溶液,稀释至30mL,加入10mL丙酮溶液,稀释至刻度。迅速混匀后,尽快倒入样品池中。读取吸光度读数A,以后每隔5 min读数一次。 五、数据处理 1、溶液的吸光度随时间t的变化:(测试波长为520 nm) (T=25℃) t/min 0 5 10 15 20 25 30 35 40 A 0.527 0.440 0.367 0.307 0.243 0.162 0.116 0.059 0.012 2、溶液的吸光度A随时间t的变化曲线:

相关文档
最新文档