蛋白标记技术详解

蛋白标记技术详解
蛋白标记技术详解

蛋白标记技术详解

蛋白质标记的主要目的是监测生物过程、辅助检测(例如化合物的可靠定量、蛋白质修饰的特异性检测)或者纯化蛋白及其结合对象。蛋白质的标记能够提高检测灵敏度以及简化检测工作流程。

目前有多种蛋白质标记技术来帮助我们研究感兴趣的蛋白质的丰度、位置、相互作用、翻译后修饰、功能,乃至监测活细胞中的蛋白质运输等问题。目前有多种类型的标记物和标记方式可供选择,但是针对特定的应用应当选择适合的标记策略。

1.代谢标记策略

代谢标记策略是一种体内标记方法,在这种方法中,细胞被“喂养”了化学标记的营养物,然后这些标记物被掺入新合成的蛋白质、核酸或代谢物中。然后,我们可以收集细胞并分离这些分子以获得细胞生物过程的全局视图。

蛋白同位素标记

原理

蛋白同位素标记是一种经典的蛋白示踪和蛋白组学定量技术,用天然同位素(轻型)或稳定同位素(重型)标记的必需氨基酸取代细胞培养基中相应氨基酸,这样细胞新合成的蛋白质可以在细胞生长期间通过掺入含有不同同位素的氨基酸进行标记。

应用举例

蛋白质组学研究方向流行的代谢标记方法是SILAC(Stable Isotope Labeling with Amino acids in

Cell culture),即细胞培养中氨基酸的稳定同位素标记。结合质谱技术,SILAC 通过使用重型氨基酸(例如,15N-或13C-赖氨酸)标记其中一组培养物或细胞系,而向另一组添加正常的轻型氨基酸,从而量化两种培养物或细胞系之间蛋白质丰度的差异。然后将在这两种条件下生长的细胞的裂解蛋白按细胞数或蛋白量等比例混合,经分离、纯化后进行质谱鉴定,根据一级质谱图中两个同位素型肽段的

面积比较进行相对定量,得到两种条件下蛋白质丰度差异的相对评估。

图1 SILAC的工作流程

其他蛋白质代谢标记物

原理

如果不具备质谱实验条件,那么可以使用基于生物正交反应的代谢标记方法。在生物正交系统中,细胞被“喂食”标记有一些对天然生物反应基团无反应的化学基团的分子结构单元。添加含有该基团的反应配偶体的外源性化合物引发化学反应,将标记的生物分子偶联至所需的官能团。

应用举例

用含有叠氮基团的结构单元“喂养”细胞,然后在实验后用含有磷化氢基团的试剂进行处理,叠氮化物和磷化氢基团通过Staudinger连接反应偶联,叠氮化物和膦基团通常不存在于生物系统中,因此这些分子是惰性的。

图2 Staudinger连接反应

2.荧光标记策略

自发荧光蛋白、小分子荧光标志物染料、纳米晶体材料(即量子点材料)、小分子蛋白质标签等等这些材料都可以作为荧光标志物,结合荧光成像检测仪器可以对目标蛋白的表达情况、细胞中的定位情况、相互作用、活性状态等指标进行研究。

荧光蛋白标签

若将目的蛋白与荧光蛋白融合,则能够实现目的蛋白的细胞内观察,可用于多色标记和荧光共振能量转移(FRET)应用,用于可视化蛋白质与其他亚细胞结构的易位,研究蛋白质-蛋白质共定位,检测来自不同启动子的基因表达的开始,以及混合细胞群的分离。从早期的绿色荧光蛋白GFP发展到现在,我们已经拥有了覆盖多种光谱区域的荧光蛋白,包括绿色荧光蛋白、蓝色和蓝绿色荧光蛋白、黄色荧光蛋白、橙色荧光蛋白、红色荧光蛋白,不同光谱型的荧光蛋白在亮度、光稳定性、分子大小上有所不同。

图3 荧光蛋白标签

荧光染料蛋白体外标记

荧光染料标记蛋白或多肽技术是常见的蛋白体外标记技术,除了GFP等融合表

达荧光蛋白之外,目标蛋白经过荧光染料标记可以直接进行活体示踪、细胞分选等下游实验操作。

原理

荧光标记所依赖的化合物称为荧光物质。荧光物质是指具有共轭双键体系化学结构的化合物,受到紫外光或蓝紫光照射时,可激发成为激发态,当从激发态恢复基态时,发出荧光。蛋白荧光标记技术利用荧光物质共价结合在目标分子的某个基团上,利用它的荧光特性来提供被研究对象的信息。

应用和特点

活化的荧光染料,例如异硫氰酸荧光素(FITC)、7-氨基-4-甲基香豆素(AMC)、罗丹明B(Rhodamine B)或Alexa Fluor染料等,可用于标记抗体或蛋白功能基团,生成分子探针并通过荧光成像进行检测。当用荧光染料化学标记特异性抗体或其他纯化的生物分子时,它们成为用于检测靶抗原或相互作用配偶体的荧光探针,应用于细胞成像、流式细胞术、蛋白质印迹和酶联免疫吸附实验(ELISA)。因为荧光标记物具有无放射物污染、操作简便等优点,使其在蛋白功能研究、药物筛选等许多研究领域的应用日趋广泛。

图4 四种常见的荧光染料

蛋白量子点标记

原理

量子点(Quantum Dots)是一种无机纳米结晶体,它可以根据其大小发出特定波长的荧光,它具有非常高的消光系数,其消光系数要比小分子荧光基团和荧光蛋白高出10~100倍,同时量子点的量子产率也很好。典型的量子点都含有一个硒化镉(CdSe)或碲化镉(CdTe)核心,外面包裹一硫化锌(ZnS)外壳。量子点的吸收波长范围覆盖从非常短的波长至略低于其发射波长的广阔范围,因此一束单波长激发光就可以让量子点达到多重发射。

应用和特点

目前研究出的水溶性量子点和油溶性量子点可以与抗体、链霉亲和素等分子进行偶联,应用于生物标记检测、高通量编码、活体成像及动态示踪等领域。不过结合了生物大分子的水溶性量子点体积较大(直径约10 nm~30 nm),从而阻碍了它通过细胞膜结构,因此只能用于经过透化处理的细胞,或者只能对胞外蛋白或可以被细胞内吞的蛋白进行研究。

图5 量子点与麦芽糖结合蛋白(MBP)大小比较。每个直径为6 nm的量子点可附着约15~20

个MBP分子。

3.其他标记策略

生物素标记

原理

生物素(Biotin)是蛋白质检测、纯化和固定的有用标签,因为它可以高亲和力

地与链霉亲和素(Avidin)和链霉亲和素(Streptavidin,SA)结合。生物素-亲和素的亲和力至少比抗原-抗体结合力高百万倍,这种相互作用是蛋白质和配体之间最强的非共价相互作用之一。另外,生物素(MW = 244.3 Da)比酶标记物小得多,因此不太影响蛋白质本身的天然功能。总之,这些特征使得生物素-亲和素策略成为许多检测和固定应用的理想选择。

生物素化蛋白质是生物素与蛋白质共价结合的产物,因为生物素化蛋白质同时具备了高亲和力、高特异性和高灵敏度的优点,所以它提高了基于免疫方法的检测、纯化蛋白质技术的效率。

应用

生物素-亲和素系统广泛用于流式细胞术、荧光成像、蛋白质印迹和ELISA检测,以增加信号输出和更高的灵敏度。亲和素或链霉亲和素的荧光缀合物用于检测生物素化的生物分子。亲和素或链霉亲和素的酶缀合物,通常用于蛋白质印迹,ELISA和原位杂交成像应用。亲和素或链霉亲和素缀合的磁珠和树脂可用于分离蛋白质、细胞和DNA,也可用于免疫分析或生物筛检。

图6 蛋白质生物素化

酶蛋白偶联物

以辣根过氧化物酶(HRP)和碱性磷脂酶(AP)为代表的酶标记物适用于与蛋白偶联并为免疫检测制备抗体偶联物。这两种标记物常被用于标记抗体后用作ELISA检测。

HRP适用于快速显色反应,ELISA检测中加入底物后在5~10 min内即可到达OD450值1.8~2.5左右,而AP适用于慢速显色反应,其显色时间约4~8 h,催化形成的黄色化合物比较稳定,比较适合酶促动力学的定量检测。

图7 HRP/抗体缀合

参考文献

1. Ong, S. E. Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a

Simple and Accurate Approach to Expression Proteomics. Molecular and

Cellular Proteomics. 2002, 1(5): 376-386.

2. Ben N. G.; et al. The Fluorescent Toolbox for Assessing Protein Location and

Function. Science.2006, 312: 217-224.

3. Medintz I L.; et al. Quantum dot bioconjugates for imaging, labelling and

sensing. Nature Materials. 2005, 4(6): 435-446.

常见tag蛋白标签介绍

蛋白标签 蛋白标签(proteintag )是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia (复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag ?、Halo Tag?、AviTag ?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询克隆产品的结果列表里面看到各种推荐的蛋白标签和载体。 标签纯化促进溶解度抗体效价细胞标记 His6++/-+/- Flag++/-+ GST+++ MBP++++ His-MBP++++ HA+ eGFP/CFP/YFP+++ Myc+ His-Myc++ His-AviTag ?++++++ Sumo++++ His-Sumo+++++ SNAP-Tag ?++++++ Halo Tag ?++++++ TrxHIS His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特 的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点: 标签的分子量小,只有?0.84KD,而GST和蛋白A分别为?26KD和?30KD,—般不影响目标蛋白的功能; His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 可应用于多种表达系统,纯化的条件温和; 可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK ),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点:

常见tag蛋白标签介绍讲课讲稿

常见t a g蛋白标签介 绍

蛋白标签 蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 ?标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; ?His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; ?His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; ?His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 ?可应用于多种表达系统,纯化的条件温和; ?可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。 FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: ?FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 ?融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。?FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。 ?融合在N端的FLAG,其可以被肠激酶切除(DDDK),从而得到特异的目的蛋白。因此现FLAG标签已广泛的应用于蛋白表达、纯化、鉴定、功能研究及其蛋白相互作用等相关领域。 MBP(麦芽糖结合蛋白) MBP(麦芽糖结合蛋白)标签蛋白大小为40kDa,由大肠杆菌K12的malE基因编码。MBP可增加在细菌中过量表达的融合蛋白的溶解性,尤其是真核蛋白。MBP标签可通过免疫分析很方便地检测。有必要用位点专一的蛋白酶切割标签。如果蛋白在细菌中表达,MBP可以融合在蛋白的N端或C端。纯化:融合蛋白可通过交联淀粉亲和层析一步纯化。结合的融合蛋白可用10mM麦芽糖在生理缓冲液中进行洗脱。结合亲和力在微摩尔范围。一些融合蛋白在0.2% Triton X-100或0.25% Tween 20存在下不能有效结合,而其他融合蛋白则不受影响。缓冲条件为pH7.0到8.5,盐浓度可高达1M,但不能使用变性剂。如果要去除MBP融合部分,可用位点特异性蛋白酶切除。

荧光标记技术在蛋白质定位及功能研究中的应用

荧光标记技术在蛋白质定位及功能研究中的应用 Feb 20, 2010No Comments 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 ?0?2 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不断增加之中。不过由于这类染料对蛋白质缺乏特异性,因此多与抗体联用(图1A~C)。?0?2 荧光蛋白 第一批用于细胞生物学的荧光蛋白包括藻胆蛋白(phycobiliproteins)和从蓝藻

蛋白表达标签

蛋白质融合表达的标签及切割研究 蛋白质融合表达的标签及切割研究 摘要:随着蛋白质组学技术的迅猛发展,重组蛋白的使用在近年来大大增加。许多蛋白质、结构域或者肽类能与目标蛋白融合。利用融合蛋白的有助于目标蛋白的纯化和检测这个优点被广泛赞同。本文对多种融合标签及切割方法做了简单的概述。 引言 近年来,一些抗原表位的肽类和蛋白质已被用于大量生产重组蛋白质.这些亲和标签系统具有以下特征:(a)一步的吸附纯化,(b)对三级结构和生物活性影响小,(c)可方便且专一的去除以产生天然蛋白质,(d)在纯化过程中重组蛋白的分析简便准确,(e)适用于大量的不同蛋白质.有几种不同的策略用于大规模生产重组蛋白质.其中一种办法是使用很小的肽标签,这些标签不会与融合的蛋白质发生干扰.使用最为广泛的有多聚精氨酸,FLAG-,多聚组氨酸-, S-, and Strep II-tag等. 对于某些应用,小标签无需去除.这些标签不像大标签具有免疫原性,经常可以直接作为抗原用于产生抗体. 小标签对于融合蛋白的三级结构和生物活性的影响取决于标签的位置和氨基酸组成.另一种方法是使用大的肽类或蛋白质作为融合蛋白.,它们的使用可以增加目标蛋白的溶解性.缺点是对于一些应用如结晶或抗体产生等,标签必须加以去除.一般来说,对于特定的目标蛋白很难决定最佳的融合系统.这取决于目标蛋白本身(如稳定性,疏水性),表达系统,纯化后蛋白的用途. 1.融合标签 融合标签的作用是用于检测和纯化目的蛋白,有时也用来增加目的蛋白在细胞质中的可溶性或帮助将目的蛋白运转到细胞周质中以提高目的蛋白的生物活性。

1 .1多聚精氨酸-标签(Arg-tag) 精氨酸-标签通常由5或6个精氨酸组成.它已被成功用作细菌C末端标签,精氨酸是碱性最强的氨基酸,带5个精氨酸标签的蛋白质可以结合到阳离子交换树脂SP-Sephadex上, 而大部分杂蛋白不结合.结合后,带标签的蛋白质在碱性pH下运行线性NaCl梯度洗脱得到.当C末端为疏水性区域时,多聚精氨酸可能影响蛋白质的三级结构.氨酸残基的C末端序列可用羧肽酶B处理去除.这一酶促处理已被成功用于一些例子,但常常由 于低的切割得率或者在期望的蛋白质序列间发生不必要的切割而受到限制.然而精氨酸标签并不常用,与第二标签联用是很有趣的蛋白质纯化工具. 1.2 多聚组氨酸-标签(His-tag) 已广泛采用的方法是利用固定化金属螯合层析纯化带有由多聚组氨酸残基组成的一个短的亲和标签的重组蛋白质.固定化金属螯合层析的基础是固定在基质上的过渡态金属离子(Co2+, Ni2+,Cu2+, Zn2+)与特定的氨基酸侧链之间的相互作用.组氨酸是与固定化金属离子作用最强

常见tag蛋白标签介绍

蛋白标签 蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag ?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询克隆产品的结果列表里面看到各种推荐的蛋白标签和载体。 标签纯化促进溶解 度 抗体效价细胞标记 His6++/-+/- Flag++/-+ GST+++ MBP++++ His-MBP++++ HA+ eGFP/CFP/YFP+++ Myc+ His-Myc++ His-AviTag?++++++ Sumo++++ His-Sumo+++++ SNAP-Tag?++++++ Halo Tag?++++++ TrxHIS His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点: ·标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; ·His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; ·His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; ·His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 ·可应用于多种表达系统,纯化的条件温和; ·可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: ·FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 ·融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。·FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。·融合在N端的FLAG,其可以被肠激酶切除(DDDK),从而得到特异的目的蛋白。因此现FLAG标签已广泛的应用于蛋白表达、纯化、鉴定、功能研究及其蛋白相互作用等相关领域。

基因克隆载体上的各种常用蛋白标签

基因克隆载体上的各种常用蛋白标签 蛋白标签(proteintag)是指利用DNA体外重组技术,与目的蛋白一起融合表达的一种多肽或者蛋白,以便于目的蛋白的表达、检测、示踪和纯化等。随着技术的不断发展,研究人员相继开发出了具有各种不同功能的蛋白标签。目前,这些蛋白标签已在基础研究和商业化产品生产等方面得到了广泛的应用。 美国GeneCopoeia(复能基因)为客户提供50多种蛋白标签,可以满足客户的不同需求,包括各种最新型的标签,如:SNAP-Tag?、Halo Tag?、AviTag?、Sumo等;也提供齐全的各种常用标签,如eGFP、His、Flag等等标签。 以下是部分蛋白标签的特性介绍,更加详细的介绍可在查询产品的结果列表里面看到各种推荐的蛋白标签和载体。 TrxHIS His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。使用His-tag有下面优点: 标签的量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫并制备抗体。 可应用于多种表达系统,纯化的条件温和; 可以和其它的亲和标签一起构建双亲和标签。 Flag标签蛋白 Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。 FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。

比较蛋白质组学研究中的稳定同位素标记技术

进展评述 比较蛋白质组学研究中的稳定同位素标记技术 刘新1,2 应万涛1,2 钱小红1,23 (1军事医学科学院放射与辐射医学研究所 北京 100850;2北京蛋白质组研究中心 北京 102206) 摘 要 比较蛋白质组学是指在蛋白质组学水平上研究正常和病理情况下细胞或组织中蛋白质表达变化,以期发现具有重要功能的生物标识物,为疾病的早期诊断提供依据。近年来它正成为蛋白质组学研究的热点和发展趋势。比较蛋白质组学的研究方法和策略有多种,本文就最近几年来稳定同位素标记技术(体内代谢标记技术和体外化学标记技术)在比较蛋白质组学研究中的进展进行综述。 关键词 比较蛋白质组学 稳定同位素标记 体内代谢标记 体外化学标记 Application of Stable Isotope Labeling in Comparative Proteomics Liu X in1,2,Y ing Wantao1,2,Qian X iaohong1,23 (1Beijing Institute of Radiation Medicine,Beijing100850; 2Beijing Proteome Research Center,Beijing102206) Abstract C omparative proteomics is the research of protein expression changing between normal and pathological cell or tissue on the proteome level.P otential biomarkers w ould be discovered from the research by comparative proteomics, which will be helpful to the diagnosis and therapy of diseases.In the recent years,it has been becoming the hot spot of the proteomics research and many strategies used in comparative proteomics have been developed.During those approaches,the strategies based on stable is otopic labeling coupled with mass spectrometry have been extensively used and lots of success ful applications have been reported.In contrast to the traditional radioactive is otope labeling method,stable is otope labeling technique was not radioactive and the operation is simple.Metabolic labeling in viv o and chemical labeling in vitro are tw o parts of stable is otope labeling technique,which both have various advantages and disadvantages.This paper reviewed the progress of stable is otope labeling technique in comparative proteomics. K ey w ords C omparative proteomics,S table is otope labeling,Metabolic labeling in viv o,Chemical labeling in vitro 随着人类基因组精确图谱的公布,基因组功能的阐明已经成为生命科学研究中一项极重要的任务[1]。蛋白质是基因的最终产物同时也是基因功能的最终执行体,因而人类基因的表达及其功能有待于在蛋白水平上揭示。蛋白质组学的研究目的是分离和鉴定组织或细胞中的所有蛋白质。生物体在生长发育过程中,基因组是相对稳定的,而蛋白表达是高度动态变化的,并且具有严格调控的时间和空间特异性[2]。为了研究生物体在不同状态下表达的所有蛋白质的动态变化,比较蛋白质组学应运而生,即在蛋白组学水平上,研究在正常生理和病理状态,或受到不同的外部环境刺激下,或在突变等因素影响下,蛋白质表达的变化情况,以期发现生物体内关键的调控分子及与疾病相关的蛋白质标志物,最终为疾病的防诊治、新型疫苗的研发等提供理论依据。 为了研究蛋白质表达的动态变化,基因表达检测技术,如微阵列法[3]、DNA(脱氧核糖核酸)芯片法[4]等曾被广泛使用。这些方法虽然能够实现对mRNA(信使核糖核酸)进行定性和定量分析,但 刘新 男,27岁,博士生,现从事比较蛋白质组学研究。 3联系人,E2mail:qianxh1@https://www.360docs.net/doc/8e13135284.html, 国家自然科学基金(20505019、20505018)、国家重点基础研究发展规划项目(2004C B518707)和北京市科技计划重大项目(H030230280190)资助项目 2006207220收稿,2006209221接受

蛋白标签技术简介及常用蛋白标签

蛋白标签技术简介及常用蛋白标签 蛋白质作为生命活动的主要执行者,人们对其功能和生物学机能的研究逐步深入。那么如何分离和研究某一特定蛋白呢?蛋白标签技术的广泛应用可以有效的解决这令许多研究者颇为头疼的问题。目前,一些肽类和蛋白质被广泛的用于大量生产重组蛋白,它们与目的蛋白融合表达,以便于目的蛋白表达、检测、示踪和纯化。这类多肽或蛋白,被称为蛋白标签(Protein Tag)。例如MyC、His、GST、HA等。而标签抗体可以高特异地结合对应的标签融合多肽或蛋白,籍以分离纯化和分析检测目的蛋白。目前,云克隆推出了一系列蛋白标签抗体,让您从容面对蛋白实验。 先简单介绍一下系列蛋白标签。 HA标签蛋白,标签序列YPYDVPDYA,源于流感病毒的红细胞凝集素表面抗原决定簇,9个氨基酸,对外源靶蛋白的空间结构影响小,容易构建成标签蛋白融合到N端或者C端。易于被Anti-HA抗体检测和ELISA检测。 MYC标签蛋白,MYC标签蛋白是一个含11个氨基酸的小标签,标签序列Glu-Gln-Lys-Leu-Ile-Ser-Glu-Glu-Asp-Leu,这11个氨基酸作为抗原表位表达在不同的蛋白质框架中仍可识别其相应抗体。Myc tag已成功应用在Western-blot杂交技术、免疫沉淀和流式细胞计量术中,可用于检测重组蛋白质在靶细胞中的表达。 FLAG,Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。 GST,谷胱甘肽巯基转移酶在解毒过程中起到重要作用,它的天然大小为26KD。由于GST高度可溶,可增加外源蛋白的可溶性,另外GST融合表达系统广泛应用于各种融合蛋白的表达,可提高表达量。GST标签蛋白可直接从细菌裂解液中利用含有还原型谷胱甘肽琼脂糖凝胶(Glutathione sepharose)亲和树脂进行纯化。而且,GST标签蛋白可在温和、非

常见蛋白质标签总结

https://www.360docs.net/doc/8e13135284.html,/bbs/home.php?mod=space&uid=34800&do =blog&id=38530 常见蛋白质标签总结(Flag、HA、cMyc、CBP等) Protein tags are peptide sequences genetically grafted onto a recombinant protein. Often these tags are removable by chemical agents or by enzymatic means, such as proteolysis or intein splicing. Tags are attached to proteins for various purposes. 一、氨基酸标签(含小肽标签) A stretch of amino acids is added to the protein and enables the recovery of the labelled protein by its unique affinity. Usually its easiest to add the tag to either end of the protein to ensure its accessibility and not to disturb the protein folding. 1.组氨酸标签(His tag)一般为6个组氨酸,用Ni2+(Cu2+)亲和层析纯 化 2.FLAG tag :N-DYKDDDDK-C ,recovered with specific antibody 3.HA tag: an epitope derived from the Influenza protein haemagglutinin (HA, 禽流感病毒血凝素),e.g. N-YPYDVPDYA-C,recovery with an HA antibody 4.MYC tag: an epitope derived from the human proto-oncoprotein MYC,e.g. N-ILKKATAYIL-C, N-EQKLISEEDL-C,recovery with an MYC antibody 5.SBP tag:Streptavidin Binding Peptide,链霉亲合素结合肽,38 amino acid tag (MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP), 更多参考在Sigma 6.CBP tag:钙调蛋白结合肽(CBP; 26aa)钙调蛋白结合肽与钙调素结合 是Ca2+依赖的,这种结合不受标签所处的位置影响(N端和C端均 可),在中性pH条件下使用2mM EGTA可以很方便的将目标蛋白洗 脱下来。这一系统有如下优点:1 特异性很高,因为大肠杆菌没有可以 和钙调素结合的蛋白;2 与His标签相比可以在强还原性条件下纯化。 7.纤维素结合肽(CBD):能与纤维素介质特异性的结合,可以在温和的 条件下洗脱(乙二醇或低盐条件),pET CBD 载体含有纤维素结合肽 (CBD)的序列,可方便构建。 二、蛋白质标签 Rather than adding only a few amino acids a whole protein is fused to the protein to be purified or detected. The affinity of the attached protein enables the recovery of the artificial fusion protein. As for the peptides, the protein tag is added to either end of the target protein. 1.GST tag: the small glutathione-S-transferase (GST; 26 kDa),recovery by affinity to substrate glutathione bound to a column, e.g. glutathione sepharose 2.MBP tag:麦芽糖结合蛋白(MBP; 40kDa)载体:pMAL

常见蛋白质标签

常见蛋白质标签总结 2008-12-08 22:06 Protein tags are peptide sequences genetically grafted onto a recombinant protein. Often these tags are removable by chemical agents or by enzymatic means, such as proteolysis or intein splicing. Tags are attached to proteins for various purposes. 一、氨基酸标签(含小肽标签) A stretch of amino acids is added to the protein and enables the recovery of the labelled protein by its unique affinity. Usually its easiest to add the tag to either end of the protein to ensure its accessibility and not to disturb the protein folding. 组氨酸标签(His tag)一般为6个组氨酸,用Ni2+ (Cu2+)亲和层析纯化 FLAG tag :N-DYKDDDDK-C ,recovered with specific antibody HA tag:an epitope derived from the Influenza protein haemagglutinin (HA,禽流感病毒血凝素),e.g. N-YPYDVP-C,recovery with an HA antibody MYC tag:an epitope derived from the human proto-oncoprotein MYC,e.g. N-ILKKATAYIL-C, N-EQKLISEEDL-C,recovery with an MYC antibody SBP tag:Streptavidin Binding Peptide,链霉亲合素结合肽,38 amino acid tag (MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP),更多参考在Sigma CBP tag:钙调蛋白结合肽(CBP; 26aa)钙调蛋白结合肽与钙调素结合是Ca2+依赖的,这种结合不受标签所处的位置影响(N端和C端均可),在中性pH条件下使用2mM EGTA可以很方便的将目标蛋白洗脱下来。这一系统有如下优点:1 特异性很高,因为大肠杆菌没有可以和钙调素结合的蛋白;2 与His标签相比可以在强还原性条件下纯化。 纤维素结合肽(CBD):能与纤维素介质特异性的结合,可以在温和的条件下洗脱(乙二醇或低盐条件),pET CBD 载体含有纤维素结合肽(CBD)的序列,可方便构建。 二、蛋白质标签 Rather than adding only a few amino acids a whole protein is fused to the protein to be purified or detected. The affinity of the attached protein enables the recovery of the artificial fusion protein. As for the peptides, the protein tag is added to either end of the target protein. GST tag:the small glutathione-S-transferase (GST; 26 kDa),recovery by affinity to substrate glutathione bound to a column, e.g. glutathione sepharose MBP tag:麦芽糖结合蛋白(MBP; 40kDa)载体:pMAL IMPACT:Intein-Mediated Purification with an affinity Chitin-binding Tag(几丁质结合肽) 硫氧还蛋白:Thioredoxins are proteins that act as antioxidants by facilitating the reduction of other proteins by cysteine thiol-disulfide exchange. Protein A:a 40-60 kDa MSCRAMM surface protein originally found in the cell wall of the bacteria Staphylococcus aureus. It has found use in biochemical research because of its ability to bind immunoglobulins. It binds proteins from many of

荧光技术

https://www.360docs.net/doc/8e13135284.html,/?p=21977 首页专题译述会议展览技术方法教学视频热点话题生命百态研究前沿科研综述电子杂志RSS 订阅当前位置: 生命奥秘> 技术方法> 文章正文荧光标记技术在蛋白质定位及功能研究中的应用 cyq 发表于2010-02-20 14:48 | 来源:| 阅读 随着分子生物学、有机化学以及材料科学等学科的进展,最近我们又获得了好几种新型的荧光蛋白标签,这些标签可以用于细胞生物学成像研究。本文将对荧光标志物在蛋白质研究中的优势及劣势进行一番详细的介绍,文章中将重点介绍如何使用荧光标志物研究活体细胞(而不是固定细胞)中的靶蛋白。使用该方法可以对靶蛋白的表达情况、细胞中的定位情况、活性状态等指标进行研究,还将介绍将荧光显微镜与电子显微镜技术相结合的可行性问题。小分子荧光标志物染料、纳米晶体材料,即所谓的“量子点(quantum dots)”材料、自发荧光蛋白、小分子蛋白质标签等等这些材料都可以作为荧光标志物,而且将这几种材料“混合”起来是一种非常有前途的荧光标志物研究新思路。 我们使用荧光技术来研究细胞生物学已经好多年了,而且在从微小的分子层面到完整的有机体层面等各个层面都可以使用荧光技术进行研究。最开始使用的方法是将小分子有机染料与各种抗体相连接,来研究各种目的蛋白。不过这种使用抗体的方法如果需要对细胞内的蛋白质进行研究时,还需要对细胞进行固定和透化操作。因此后来又发展出可以直接在活体细胞内标记某种细胞器、核酸分子或某些离子的荧光标志物。在最近这10年里,荧光蛋白的出现使得进行非侵入性的活体细胞成像成为了可能。使用这种荧光蛋白标志物,我们可以研究目的基因的表达情况,蛋白质运输情况以及各种细胞内动态的生物化学信号通路。使用经过遗传修饰的小分子有机荧光标志物构建的混合系统,我们还可以对蛋白质的寿命进行研究,如果再结合电镜技术和快速光淬灭技术(rapid photoinactivation)还可以对蛋白质的定位情况进行研究。与此同时,半导体纳米晶体材料技术也得到了高度的发展,现在,这种新型的材料在亮度和光稳定性方面都要比传统的荧光标志物好得多,只不过现在这种材料的靶向性还不是很好。本文中我们将对目前荧光标志物及其相关技术的发展进行介绍,同时还将介绍荧光标志物在蛋白质表达、蛋白质活性以及蛋白质功能研究工作中的作用进行介绍。 荧光标志物 小分子有机染料 小分子有机染料是指分子量小于1KD的小分子物质,这种小分子有机染料可以通过与生物大分子共价连接的方式对其进行标记,我们现在对这种染料的最佳检测波长范围、亮度,即吸光系数、光稳定性和自我淬灭特性都有了比较详尽的了解。利用荧光染料的分子策略包括扩展共轭双键、额外添加环状结构增强其刚性、用氟或磺酸盐这类吸电子性的或带电荷的物质进行修饰等。现在市面上已经有数百种这类荧光染料的商业化产品可供选择,而且还在不

绿色萤光蛋白

绿色萤光蛋白(green fluorescent protein),简称GFP,这种蛋白质最早在一种学名Aequorea victoria的水母中发现。其基因所产生的蛋白质,在蓝色波长范围的光线激发下,会发出绿色萤光。这个发光的过程中还需要冷光蛋白质Aequorin的帮助,且这个冷光蛋白质与钙离子(Ca+2)可产生交互作用。 由水母Aequorea victoria中发现的野生型绿色萤光蛋白,395nm和475nm分别是最大和次大的激发波长,它的发射波长的峰点是在509nm,在可见光绿光的范围下是较弱的位置。由海肾(sea pansy)所得的绿色萤光蛋白,仅有在498nm有一个较高的激发峰点。 在细胞生物学与分子生物学领域中,绿色萤光蛋白基因常被用作为一个报导基因(reporter gene)。一些经修饰过的型式可作为生物探针,绿色萤光蛋白基因也可以克隆到脊椎动物(例如:兔子上进行表现,并拿来映证某种假设的实验方法。 我们这边细胞组的基本上都在用这个东东。标记细胞 GFP的分子结构和发光机制 绿色荧光蛋白为一个由238个氨基酸残基组成的单链,GFP有两个吸收峰,主峰在395nm,次峰在470nm,其荧光发射峰在509nm。GFP 的化学性质相当稳定,其变性需要在90℃或pH<4或pH>12的条件下用6mollL盐酸胍处理,这一性质与GFP的结构特性相关。 Yang等的研究表明,GFP是由两个相当规则的内含一个α-螺旋和外面包围l1个β-折叠的β-桶状结构组成的二聚体,β-桶状结构直径约3nm,高约4nm。β折叠彼此紧密结合,象桶板一样形成桶状结构的外围,并且形成了一个规则的氢键带。桶状结构和位于其末端的短α螺旋以及环状结构一起组成一个单独的致密结构域,没有可供扩散的配体进入缝隙。这种坚实的结构保证了其稳定和抗热、抗变性的特点。 GFP的生色基团附着于α-螺旋上,几乎完美的包被于桶状结构中心。位于圆桶中央的α-螺旋含有一个由六肽组成的发光中心,而发光团是由其中的三肽Ser65-Tyr66-Gly67经过环化形成了对羟基苯咪唑啉酮。GFP的生色基团是蛋白质自身催化环化的结果,环化是一个有氧过程,在严格厌氧条件下GFP不能形成荧光,因为GFP的生色团形成需要O2使Tyr66脱氢氧化。生色基团通过Tyr66的脱质子(酚盐)和质子化状态(羟酚基)的转换决定荧光发射,此模型为Yang等的晶体学证据所支持。 GFP在生物技术中的应用研究 1.分子标记 作为一种新型的报告基因,GFP已在生物学的许多研究领域得到应用。利用绿色荧光蛋白独特的发光机制,可将GFP作为蛋白质标签(protein tagging),即利用DNA重组技术,将目的基因与GFP基因构成融合基因,转染合适的细胞进行表达,然后借助荧光显微镜便可对标记的蛋白质进行细胞内活体观察。由于GFP相对较小,只有238个氨基酸,将其与其他蛋白融合后不影响自身的发光功能,利用GFP的这一特性已经加深了我们对细胞内一些过程的了解,如细胞分裂、染色体复制和分裂,发育和信号转导等。1996年,Ehrdardt等人首次报道了利用GFP的特性研究细胞分化蛋白FtsZ的定位。研究显示FtsZ在细胞分裂位点形成了一个环状物,且至少有9种蛋白在细胞分裂中起重要作用,尽管对这些蛋白功能仍然不是很清楚,但是利用GFP融合蛋白已经搞清楚了它们聚合的顺序以及在蛋白定位中的一些特征。利用GFP来检测目标蛋白的定位已为我们提供了一种对细胞内的一些基本的生理过程进行更详尽观察的新方法。 除用于特定蛋白的标记定位外,GFP亦大量用于各种细胞器的标记如细胞骨架、质膜、细胞核等等。Shi等人曾报道将GFP融合到大肠杆菌细胞膜表面用作标记蛋白,这一技术将有助于提高多肽库的筛选效率、疫苗的研制、构建细胞生物传感器用作环境检测以及探测信号转导过程等等。这些都为传统生物学研究提供了新思路和新方法,成为交叉学科研究的热点。 2.药物筛选 许多新发展的光学分析方法已经开始利用活体细胞来进行药物筛选,这一技术能从数量众多的化合物中快速筛选出我们所感兴趣的药物。基于细胞的荧光分析可分为三类:即根据荧光的密度变化、能量转移或荧光探针的分布来研究目标蛋白如受体、离子通道或酶的状态的变化。荧光探针分布是利用信号传导中信号分子的迁移功能,将一荧光蛋白与信号分子相偶联,根据荧光蛋白的分布情况即可推断信号分子的迁移状况,并推断该分子在迁移中的功能。由于GFP分子量小,在活细胞内可溶且对细胞毒性较小,因而常用作荧光探针。 在细胞体内分子之间的相互作用非常复杂,其中很多涉及到信号分子在细胞器之间的迁移。例如当信号分子和某一特殊受体结合后常会导致配体-受体复合物从某一细胞区域迁移到另一区域,而这一迁移过程通常会介导一重要的生理功能。因而,这些受体常常被用作药物筛选的目标,若某一药物具有与信号分子类似的功能,那么该药物即具有潜在的医药价值。利用GFP荧光探针,将很容易从数量众多的化合物中判断出那些化合物具有与信号分子相似的能引起配体一受体复合物迁移并介导生理反应的功能,且这一筛选过程简单方便,所需成本也很低。利用这一原理,已经成功构建了一个筛选模型用于研究药物介导的糖皮质激素受体(hGR)的迁移过程。在一96孔板中培养细胞,并以一编码hGR GFP蛋白的质粒转染该细胞。当细胞用待筛选的药物处理后,hGR-GFP从细胞质迁移人细胞核的过程可实时或在某一时段

常用的几种蛋白标签

重组蛋白表达技术现已经广泛应用于生物学各个具体领域。特别是体内功能研究和蛋白质的大规模生产都需要应用重组蛋白表达载体。 美国GeneCopoeia的蛋白表达载体按照表达宿主的不同新推出3类,分别为表达宿主为大肠杆菌,哺乳动物细胞的,以及慢病毒载体,宿主可以为哺乳动物细胞和原代细胞。 除了必要的复制和筛选的元件,协助表达和翻译的元件外,本文将各类载体分别按照功能标签的不同确定种类并将个标签的功能初步介绍如下: His6: His6是指六个组氨酸残基组成的融合标签,可插入在目的蛋白的C末端或N末端。当某一个标签的使用,一是能构成表位利于纯化和检测;二是构成独特的结构特征(结合配体)利于纯化。组氨酸残基侧链与固态的镍有强烈的吸引力,可用于固定化金属螯合层析(IMAC),对重组蛋白进行分离纯化。 使用His-tag有下面优点: 1.标签的分子量小,只有~0.84KD,而GST和蛋白A分别为~26KD和~30KD,一般不影响目标蛋白的功能; 2.His标签融合蛋白可以在非离子型表面活性剂存在的条件下或变性条件下纯化,前者在纯化疏水性强的蛋白得到应用,后者在纯化包涵体蛋白时特别有用,用高浓度的变性剂溶解后通过金属螯和亲和层析去除杂蛋白,使复性不受其它蛋白的干扰,或进行金属螯和亲和层析复性; 3.His标签融合蛋白也被用于蛋白质-蛋白质、蛋白质-DNA相互作用研究; 4.His标签免疫原性相对较低,可将纯化的蛋白直接注射动物进行免疫制备抗体; 5.可应用于多种表达系统,纯化的条件温和; 6.可以和其它的亲和标签一起构建双亲和标签。 Flag: Flag标签蛋白为编码8个氨基酸的亲水性多肽(DYKDDDDK),同时载体中构建的Kozak序列使得带有FLAG的融合蛋白在真核表达系统中表达效率更高。FLAG作为标签蛋白,其融合表达目的蛋白后具有以下优点: 1.FLAG作为融合表达标签,其通常不会与目的蛋白相互作用并且通常不会影响目的蛋白的功能、性质,这样就有利用研究人员对融合蛋白进行下游研究。 2.融合FLAG的目的蛋白,可以直接通过FLAG进行亲和层析,此层析为非变性纯化,可以纯化有活性的融合蛋白,并且纯化效率高。 3.FLAG作为标签蛋白,其可以被抗FLAG的抗体识别,这样就方便通过Western Blot、ELISA等方法对含有FLAG的融合蛋白进行检测、鉴定。 4.融合在N端的FLAG,其可以被肠激酶切除(DDDK),从而得到特异的目的蛋白。因此现FLAG标签已广泛的应用于蛋白表达、纯化、鉴定、功能研究及其蛋白相互作用等相关领域。 MBP: MBP(麦芽糖结合蛋白)标签蛋白大小为40kDa,由大肠杆菌K12的malE基因编码。MBP可增加在细菌中过量表达的融合蛋白的溶解性,尤其是真核蛋白。MBP 标签可通过免疫分析很方便地检测。有必要用位点专一的蛋白酶切割标签。如果蛋白在细菌中表达,MBP可以融合在蛋白的N端或C端。 纯化:融合蛋白可通过交联淀粉亲和层析一步纯化。结合的融合蛋白可用10mM

相关文档
最新文档