放射生物学复习重点

放射生物学复习重点
放射生物学复习重点

1、名词解释:间期死亡、增殖死亡、急性放射病、慢性放射病、骨痛症候群,

衰变常数、半衰期、氧效应、相对生物学效应;

间期死亡:指细胞受较大剂量(100Gy或更大)照射后,不经有丝分裂,在几个小时内就开始死亡。

增殖死亡:即细胞受照后经历1个或几个有丝分裂周期后,丧失了继续增殖的能力而引起的死亡。

急性放射病:机体在短时间(数秒-数天)内受到大剂量(>1Gy)电离辐射照射引起的全身性疾病。

慢性放射病:指机体在较长时间内连续或间歇受到超当量剂量限值的电离辐射作用,达到一定累计计量后引起多系统损害的全身性疾病,通常以造血组织损伤作为主要表现。

骨痛症候群:受亲骨性核素损伤的病人,出现四肢骨、胸骨、腰椎等部位的疼痛,其特点是疼痛部位不确切,与气候变化无一定关系。

衰变常数λ:每秒衰变的核数为原有放射性核数的几分之几

半衰期T?=0.693/λ:放射性核数因衰变而减少到原来的一半所需要的时间

氧效应:受照组织、细胞或者溶液系统,其辐射效应随周围介质中氧浓度的增加而增加的现象

相对生物学效应:由于各种辐射的品质不同,在相同吸收剂量下,不同辐射的生物效应也是不同的,反映这种差异的量称之为相对生物效应。

2、熟悉哪些是电离辐射(直接、间接),非电离辐射;

电离辐射:凡能引起物质的原子或分子发生电离作用的辐射,均称为电离辐射。(不仅包括粒子辐射,还包括了部分电磁辐射X、γ)

紫外线及能量低于紫外线的电磁辐射都属于非电离辐射。

电磁辐射:实质是电磁波,相对于粒子辐射而言的。

3、熟悉传能线密度的概念

带电粒子在物质中穿行单位路程时,由能量转移小于能量截止值的历次碰撞所造成的能量损失

4、熟悉元素、同位素、同质异能素。

元素:原子核内具有相同电荷数的同一类原子。

核素:原子核内质子数、中子数和能态完全相同的一类原子。

同位素:原子核内质子数相同、中子数不同的多种核素。

同质异能素:中子数和质子数都相同而仅仅是能量状态不同的两种核素。

5、熟悉结合能、平均结合能的含义?反映原子核的稳定性的指标是什么?

结合能:由若干个核子结合成原子核的过程中释放的能量叫做该原子核的结合能。

平均结合能:核子结合成原子核时平均每个核子释放出的能量叫做该原子核的平均结合能。

原子核的稳定性指标:平均结合能

6、熟悉核衰变的类型及其反应式,会简单计算。

α衰变:X→Y+He+Q 主要在重核中发生,由重核原子衰变成轻核原子,释放出氦的原子核。

Β正衰变:X→Y+e++v+Q (e为正电子v为中微子,质子数为0,质量数为0)原子核中的一个质子转变为中子,同时释放出一个正电子

β负衰变:X→Y+e-+v+Q (e为负电子v为中微子,质子数为0,质量数为0)原子核中的一个中子转变为质子,同时释放出一个负电子

γ衰变:X→Y+γ+Q 原因:原子核处于激发态

7、带电粒子;γ射线与物质相互作用方式。

带电粒子:

1电离带电粒子通过介质时,直接与介质的原子核的壳层电子碰撞,或者发生静电库仑作用,带电粒子将一部分能量或全部能量传给壳层电子,使壳层电子脱离原子核的束缚而成为自由电子。这个过程也叫做电离。而这个自由电子和相对应的正离子通常被称为离子对。脱离出原子核束缚的自由电子又可以作为一个带电粒子继续在介质中引起其它原子或分子的电离称为次级电离。

2激发在上述过程中如果壳层电子获得的能量还不够大,不能成为自由电子,而只是从较低的能态跃迁到较高的能态,这个过程称为激发。一个原子经过激发后的状态我们把它叫做激发态,处于激发态的原子是不稳定的,他必定会向稳态跃迁,跃迁时还会放出其它的电磁辐射。

3散射质量很轻的带电粒子在介质中通过时,由于它们和核或核外电子的电场相互作用而产生运动方向的偏转,而不发生能量的改变,这时候我们说带电粒子与介质发生了散射。

4轫致辐射在带电粒子与物质的相互作用时,还有一种情况比较特殊,就是轫致辐射。当高速电子从介质原子核的电场中通过的时候,由于电子和原子核强烈的相互作用,即核电荷对电子的作用力,引起电子运动径迹发生弯曲,以加速度弯曲运动(速度急降)。但是加速运动的粒子会放射能量,从而减低运动速度,放射的能量就是轫致辐射,是连续能谱的x射线。是x线机的工作原理。

5吸收带电粒子在物质中不断发生电离、激发、散射、轫致辐射等相互作用,能量逐渐减低,甚至是耗尽了能量,在宏观上表现为被物质吸收。

γ射线与物质相互作用方式:

1光电效应(在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电)当光子通过物质时,可以击中物质中原子核外的一个电子,并把其全部能量传递给电子后即行消失,核外电子获得的能量一部分用于克服它自己在原子内的结合能,剩余的能量使它从轨道上被抛射出来成为初级电子,也成为光电子。光电子继续引起介质的电离和激发。

2康普顿效应(短波(X,伽马射线)电磁辐射的光子跟物质相互,因失去能量而导致波长变长的的现象)。当入射光子的能量远远大于电子在原子中的结合能(约为1000

倍)时,光子与物质发生康普顿效应。因为康普顿效应是光子与物质中的电子弹性相互碰撞的结果,整个过程要满足能量和动量都守恒的条件。因此,只有当光子与物质中的自由电子或弱束缚电子相互作用时,这个条件才成立。

3电子对效应(在核库仑场作用下,辐射光子转化成一个正电子和一个负电子,这种过程称作电子对效应。)当入射光子的能量继续增大,足够大到光子与靶物质的原子核相互作用时,光子本身即行消失,同时将它的全部能量转化成两个粒子,一个是具有动能为T-的负电子和一个动能为T+的正电子。由于一个电子的静止质量等效于0.511 MeV,所以要产生一个电子对,入射光子的能量必须大于 1.022 MeV。

8、辐射量的各种单位?及其换算。辐射防护里面常用的量是什么?

最常用的是当量计量。

9、电离辐射对生物大分子作用的基本原理?形成自由基的方式有哪些?

电离辐射可通过直接作用和间接作用引起生物分子的电离和激发,大致经过物理、物理化学、化学、生物化学和早期生物学五个阶段造成生物分子的损伤,表现出严重的放射生物学效应。

1自由基(free radical)独立存在、带有不成对电子(一个或多个)的原子、离子、分子或基团。

形成自由基的方式:直接作用、间接作用。

直接作用:电离辐射直接引起靶分子电离和激发而发生物理化学变化,生成生物分子自由基的作用称之为直接作用。

间接作用:电离辐射作用于水分子产生的自由基在与生物分子发生物理化学

变化,生成生物分子自由基的作用称之为间接作用。(有加成,抽氢,电子俘获)10、细胞辐射敏感性的特点。能分辨不同细胞,不同细胞周期辐射敏感性的

差异。

碱基辐射敏感性:TCAG

细胞辐射敏感性特点:细胞的辐射敏感性同细胞的分化程度成反比,同细胞的增殖能力成正比。

辐射敏感细胞:造血细胞,小肠上皮细胞、肿瘤细胞

细胞周期辐射敏感性:

(1)处于或接近有丝分裂期的细胞最敏感

(2)S早期敏感性高,S后期具有抗性

(3)如果G1期长,则早期具有抗性、晚期敏感

(4)G2期通常都敏感,大致与M期相等。

11、电离辐射对DNA损伤。(大点)

DNA合成抑制的原因:

碱基的改变、DNA链断裂、分子交联、二聚体形成、(氢键)二级和三级结构的变化

合成抑制的机理:

(1)DNA模板受到破坏

(2)DNA合成所需的四种脱氧核糖核苷酸形成障碍;

(3)MIT膜结构受到破坏,功能障碍,细胞氧化磷酸化受到抑制,能量代谢障碍;

(4)DNA合成有关的酶活性降低等。

DNA分解代谢增强

分解代谢机理:

辐射破坏了溶酶体膜和细胞核膜等膜结构,

DNAase释放和DNA接触等

12、电离辐射对Pr(蛋白质)和酶的影响的特点。检测机体受低水平照射后

的敏感且易行的指标

分子结构被破坏:由于1、肽键断裂2、二硫键还原3羟基氧化使得Pr和酶的分子结构被破坏

代谢的影响:

合成代谢:总体规律:大部分受到抑制,但有少数例外,有的蛋白质合成可呈现增强的现象,有些呈现双向。尽管蛋白的合成代谢情况比较特殊,但是受照后,蛋白质的净合成仍然是降低的。白球比(A/G)降低α球蛋白/γ球蛋白增高

分解代谢:原因:1照后食欲降低、胃肠道消化吸收功能减弱、由于恶心、呕吐等胃肠道功能紊乱,机体处于饥饿状态;2辐射生成的自由基使Pr肽键断裂;3射线破坏胞浆内溶酶体膜结构,释放大量的组织蛋白分解酶类,使Pr分解加速; 4氧化磷酸化抑制与代谢障碍,Pr合成抑制。

尿中氨基酸排出量明显增多,氨基酸尿是低水平照射的一个敏感指标:牛磺酸、肌酸、尿素等。

13、辐射引起的细胞周期阻滞

受照细胞由G

1期和S期移入G

2

期,因剂量不同而延缓不同时间进入M期,在

分裂前被阻滞于靠近G

2期中期的某一特定点。此即G

2

阻滞(G

2

阻断)。

14、细胞的死亡类型,放射生物学上,鉴定细胞是否存活的标准

存活的标准:细胞在照射后是否保留无限增殖的能力。

细胞坏死、细胞凋亡、增值死亡、间期死亡。

15、剂量存活曲线的四个参数及其含义

Dq:拟预计量

Do:平均致死剂量

D37:存活率由1降至0.37时所需的剂量

n:外推值

n和Dq都是反映曲线肩部的大小。

16、熟悉细胞损伤的类型有哪些

第一类:致死性损伤:间期死亡、增殖死亡

第二类:亚致死性的损伤

第三类:潜在致死性损伤

(查资料)

17、熟悉早期效应,远期效应,随机性效应,确定性效应

早期效应:照射后立即或数小时出现的变化

远期效应:照射后经一段时间间隔(>6小时)表现出的变化

确定性效应:也称为非随机性效应,是指发生的效应的严重程度和照射剂量的大小成正比,而且存在阈剂量的效应。

随机性效应:是指效应的发生率(而非严重程度)与剂量的大小有关,不存在阈剂量的效应。遗传效应和辐射致癌效应就属于随机性效应。

18、理解影响辐射生物学效应的因素(大点)

辐射本身的因素:辐射类型、剂量和剂量率、照射方式

机体因素:种系差异、性别、年龄、生理状态、健康状况

介质因素:有无防护剂或辐射增敏剂

19、机体局部照射的辐射敏感性顺序。

腹部>胸部>头部>四肢

20、肿瘤放疗科是什么样的科室

放射肿瘤科是临床学科,是用射线治疗癌症,和肿瘤内科、肿瘤外科一样的学科。区别是肿瘤内科是用药物治疗癌症,肿瘤外科采用手术治疗癌症,放射肿瘤科用射线治疗癌症。

21、经典的分割放疗方案

2Gy/d、5次/W

22、临床上常用的放射治疗设备有哪些?

X线治疗机、60Co治疗机、医用加速器、后装治疗机等。

23、分割放疗的4R(大点)

放射损伤的修复(repair of SLD)

细胞周期再分布(redistribution within the cell cycle)

乏氧细胞的再氧合(re-oxygenation)

细胞再增殖和补充增殖(repopulation)

24、理解提高放疗疗效的途径?

1、高LET射线

2、加热放疗

3、氧效应的应用

4、时间剂量分割

5、放射增敏

25、提高对肿瘤内乏氧细胞氧含量的方法

吸入高浓度氧

利用能携带氧的化学物质将氧带入肿瘤

纠正贫血

修饰HbO

的亲和力

2

26、急性放射病的概念、分型分度,以及临床分期,诊断依据、急性放射病

感染和出血的特点?

机体在短时间(数秒-数天)内受到大剂量(>1Gy)电离辐射照射引起的全身性疾病。

凡是利用核能的地方,都有可能发生ARS

中度和重度:初期,假逾期,极期,恢复期。

主要依据:病史,尤其是照射史;初期症状和体症(受照后1-2d);实验室检查。

急性放射病感染的特点

早期:口腔G+球菌为主:牙龈炎,咽峡炎,扁桃体炎

晚期:G-杆菌为主:肺炎,尿路、肠道感染乏炎细胞性的炎症反应,红肿不明显,

而出血坏死严重,渗出少。

感染是引起死亡的第一位原因,可加重出血

27、急性放射病在照后会出现白细胞一过性升高,其升高的病理基础是什

么?

骨髓细胞在照射后早期锻造的加速成熟和加快释放,以及循环池和边缘池白细胞的重新分配。

28、急性放射病剂量估算时,当生物剂量和物理剂量相抵触时,应采纳什么

剂量

29、急性放射病使用抗菌素的指针

①皮肤黏膜出血

②发现感染灶

③血沉明显加快

④白细胞降到L

×

39

10

/

⑤毛发明显脱落

30、几个辐射防护剂的特点。

半胱氨酸(CSH):SH-OH2-CHCOOH巯基防护剂

特点:照前短时间给药有效,药效与纯度有关,静注优于皮下注射,口服无效

半胱氨(MEA):SH-CH2-CH2-NH2

特点:巯基防护剂,药效是CSH的五倍,有效防护期短,在空气中极不稳定,制备方便,但毒性大

氨基丙胺基乙基硫代磷酸单钠盐(WR-2721)

200mg/kg,人可耐受且具有防护作用

目前临床上用得最多,选择性分布于正常组织,增强对肿瘤放疗效果,能保护血小板

雌激素(E)

特点:能刺激造血干细胞增殖分化,抗放剂量范围宽,作用时间长,既可预防用药,也可治疗用药,重复给药,可延长作用时间

31、急性放射病的骨髓移植的适应症

受照剂量>7Gy

32、中重度骨髓型急性放射病的主要临床表现,病理基础,治疗原则,治疗

方法等;骨髓型急性放射病的早期分类诊断,恢复等的指标?

初期:主要症状:神经系统先兴奋,以后转为抑制,胃肠功能紊乱,造血功能障碍,代谢紊乱。

病理表现:淋巴细胞迅速降低,白细胞一过性增加。

假逾期:主要症状:病人除了稍感疲乏外,无其他明显的症状,精神状态明显好转。

病理表现:造血机能迅速恶化,外周血有形成分迅速减少,减少程度和病情平行。

极期: 体温升高、食欲降低、呕吐腹泻、全身衰竭。

主要症状:造血功能的严重障碍;严重感染;明显的出血;严重的物质代谢障碍。

恢复期:机体逐步好转的时期(照射后35~60天)

治疗原则:以造血损伤为中心,采用分期分度,有指针的选用综合治疗的措施。

治疗方法:

一:消毒隔离、周密护理;

二:早期使用抗放药,使用改善微循环的药;

三:极期抗感染、抗出血;抗感染:在战时注意霉菌和病毒的感染

四:刺激造血机能中重度骨髓型ARS:胎肝细胞移植外周造血干细胞移植

早期分类诊断:

病史(照射史)

事故性质,辐射源类型和活度,照射时间,有无屏蔽,照射剂量估算(个人剂量仪估算)初期症状(1-2天):尤其是胃肠道症状

恢复指标:网织红细胞(未成熟的红细胞)的增加是观察ARS的造血恢复的敏感指标

33、如何利用初期症状和外周血淋巴细胞绝对值对急性放射病进行早期分类

诊断

初期症状:肠胃症状如上图

34、慢性放射病的特点、分类方法、辅助诊断指标

指较长时间内连续或者间断受到超剂量当量限值的电离辐射作用,达到一定累积剂量后引起的多系统损害的全身性疾病,通常以造血系统的损伤为主要表现。

特点:

起病慢,病程长;

&症状多,阳性体征少;

&症状出现早于外周血象改变,外周血象改变早于骨髓造血的改变

&症状的消失、外周血WBC数的升降与接触时间长短和剂量大小密切相关

分类:

根据射线照射方式:

慢性内照射放射病

慢性外照射放射病

慢性内外混合性照射放射病

根据发病原因:

事故性慢性照射

职业慢性照射

无力症候群、骨痛症候群

淋巴细胞微核和双核淋巴细胞

当>3%时,是诊断的辅助指标

中性粒比例下降,淋巴细胞相对增多;

35、近些年,呈上升趋势的核辐射事故是哪一类。

外照射事故:常由于工作中的失误、机械失灵、放射源的丢失等造成的射线从体外照射对生物体产生超剂量照射而引起的事故。

36、国际核事故分级表中,哪些需要场外应急,哪些是事故

37、历史上最严重的辐射事故

1986年切尔诺贝利的核事故

38、核事故的分级医疗救治

一级医疗救治,又称现场救护或场内救治

二级医疗救治,又称地区救治

三级医疗救治,又称专科救治

39、核事故、辐射事故的特点

核事故:

1 事故突发性和迅速性

2 照射来源和照射途径多

放射性烟羽;直接作用、生物链

事故早期:惰性气体和碘(稳定性KI);

事故晚期:长寿命的核裂变产物,如90Sr,140Ba

3.影响范围广、作用时间长;甚至可以导致全球受照

4 可造成较大的社会、心理和生理学影响;源于人们对射线的恐惧心理

5 需军民警结合,共同救援

辐射事故:

1 突发性,不明性

2 可造成较大的社会和心理影响

3 需较大的救援力量也需要国家、社会和家庭在救援上都付出了巨大的代价。尤其是在辐射源丢失事故当中,往往需要花费卫生部、公安部的大量的人力、物力。

40、核事故医学应急救援时,应对人员应采取的防护措施

1 隐蔽:减少放射性微尘和气体与人接触的机会,使人尽量少受到伤害。

2 服用稳定性碘

3 撤离、搬迁并控制通路

4 加强个人防护和除沾染

5 控制食品、水的进入量,使用贮存的粮食和饲料

41、我国现行的辐射防护标准是什么?何时颁布,何时实施?

现行标准:《电离辐射防护与辐射源安全基本标准》2002.10.8发布,2003.4.1 正式实施42、放射卫生防护的目的和任务

放射卫生防护的任务:

既要积极有效的进行有益于人类的伴有电离辐射的实践活动,又要最大限度的预防和缩小电离辐射对人类的危害。制定放射防护标准体系是放射卫生防护的重要内容。

放射卫生防护的目的:

一防止确定性效应的发生:

二限制随机性效应的发生率,使之达到被认为可以接受的水平:

43、熟悉权重因子和危险度之间的计算

单位当量剂量引起某种随机性效应的发生几率定义为危险度

危险度

实验组人群总数部分

后发病率高于对照组的

受照Sv

1

r=

44、辐射防护的三大基本原则及其他们之间的关系

(1)实践的正当化

(2)防护的最优化

(3)剂量限值

辐射防护三项原则是辐射防护的一个完整体系:最优化是辐射防护的基本要求,正当化是实现最优化的前提,个人剂量限值是最优化过程的约束条件

年有效剂量:1mSv;

特殊情况下,如果5个连续年的年平均剂量不超过1mSv,则某一单一年份的有效剂量可提高到5mSv;

眼晶状体的年当量剂量:15mSv;

皮肤的年当量剂量:50mSv;

46、电离辐射的标志,含义,背景

含义:使人们注意可能发生的危险。

背景:黄色。正三角形边框及电离辐射标志图形均为黑色。

47、外照射防护的基本措施和基本原则?

时间防护-缩短受照时间

除非工作需要,应避免在电离辐射场中做不必要的逗留,即使是工作需要,也必须尽量减少在电离辐射场中逗留的时间

距离防护-增大与放射源的距离

对于点状源,人体受到照射的剂量率与距离的平方成反比

屏蔽防护-设置防护屏障

屏蔽中子源采用低原子序数的物质,且含氢较多:如水和石蜡;Χ,γ-ray采用高原子序数的物质:铅、铁、混凝土;β辐射常采用低原子序数的铝或者有机玻璃。

48、熟悉放射性工作场所分类、分级

等效年用量:开放型放射性工作单位所使用的放射性核素的年用量(放射性活度),分别乘以各核素的毒性组别系数,其积之和即为等效年用量。

工作场所分类

工作场所分级:

49、个人卫生防护措施

1严格遵守安全操作规程

2使用个人防护器材

3注意个人卫生4药物预防50、放射性三废的处理方法

“浓缩储存”,“稀释排放”

放射生物学课件

临床放射生物学分次照射中的生物因素4R

放射治疗中的分次照射 分次照射的治疗模式是以时间—剂量因子对生物效应的影响和作用机制为基础的,通过调整每次照射的时间间隔和照射剂量,达到保护周围正常组织,并最大限度的杀灭肿瘤组织,获得最佳治疗效果。

放射治疗中的分次照射 放射治疗从一开始基本就是一种分次治疗的模式: ?1896年1月29日芝加哥报道开始为一位乳腺癌病人进行了每天一次,共18次的治疗。?第一例单纯采用放射治疗治愈的肿瘤病人是一位49岁的患鼻根部基底细胞癌的妇女。治疗开始于1899年7月4日共照射了99次。治疗30年后也没发现有残余病灶的证据,说明完全治愈了。

放射治疗中的分次照射?自20世纪30年代以来,以临床实践经验为基础建立起来的分次照射治疗方法(每周5次,每次2Gy)已被认为是标准方法。?长期大量的临床实践表明,这种方法基本上符合大多数情况下正常组织和肿瘤组织对射线反应差异的客观规律,起到了保护正常组织和保证一定肿瘤细胞群杀灭率的作用。

分次照射中的生物因素(4R)?放射损伤的修复(R epair of radiation damage) ?再群体化(R epopulation) ?细胞周期的再分布(R edistribution within the cell cycle) ?乏氧细胞的再氧化(R e-oxygenation of hypoxia cel

(一)放射损伤的修复 (R epair of radiation damage) 1.细胞的放射损伤 ?任何活体组织及细胞都会有其耐受剂量,人体正常组织也不例外,当肿瘤致死剂量超过了正常组织的耐受剂量时,治愈肿瘤将会使正常组织出现不可接受的放射损伤。 ?放射损伤的关键靶是DNA,造成DNA链的断裂(SSB和DSB) ?放射损伤概括为亚致死性损伤·潜在致死性损伤和致死性损伤

肿瘤放射生物学期末复习

肿瘤放射生物学 一、名解 1、核反应:指在具有一定能量的粒子轰击下,入射粒子(或原子核)与原子核(称靶核)碰撞导致原子核状态发生变化或形成新核的过程。 2、核衰变:原子核自发射出某种粒子而变为另一种核的过程。 3、半衰期:放射性核素衰变其原有核素一半所需的时间。 4、原初效应:指从照射之时起到在细胞学上观察到可见损伤的这段时间内,在细胞中进行着辐射损伤的原初和强化过程。 5、继发效应:是指在原发作用发生的基础上,因原发作用形成的各种活性基团不断攻击生命大分子,导致生物显微结构的破坏,继而发生一系列生物学、生物化学的损伤效应。 6、直接作用:电离辐射的能量直接沉积于生物大分子,引起生物大分子的电离和激发,破坏机体的核酸、蛋白质、酶等具有生命功能的物质,这种直接由射线造成的生物大分子损伤效应称为直接作用。 7、间接作用:电离辐射首先作用于水,使水分子产生一系列原初辐射分解产物(H·,OH·,水合电子等),再作用于生物大分子引起后者的物理和化学变化。 8、确定性效应:指发生生物效应的严重程度随着电离辐射剂量的增加而增加的生物效应。这种生物效应存在剂量阈值,只要照射剂量达到或超过剂量阈值效应肯定发生。 9、随机性效应:指生物效应的发生概率(而不是其严重程度)与照射剂量的大小有关的生物效应。这种效应在个别细胞损伤(主要是突变)时即可出现,不存在剂量阈值。 10、辐射旁效应:电离辐射引起受照细胞损伤或功能激活,产生的损

伤或激活信号可导致其共同培养的未受照射细胞产生同样的损伤或 激活效应,称辐射旁效应。 11、十日法规:对育龄妇女下腹部的X射线检查都应当在月经周期第1天算起的10天内进行,以避免对妊娠子宫的照射 12、复制叉:DNA在复制时复制区域的双螺旋解开所产生的两条单链和尚未解开的双螺旋形成的“Y”形区。 13、半保留复制:一个DNA分子可复制成两个DNA分子,新合成的两个子代DNA分子与亲代DNA分子的碱基顺序完全一样。每个子代DNA 中有一条链来自亲代DNA,另一条链是新合成链,这种合成方式称为半保留复制。 14、分子交联:生物大分子与生物大分子发生互相连结,电离辐射作用后,可通过自由基的作用,产生DNA-DNA交联、DNA-蛋白质交联。导致DNA正常分子结构的破坏。 15、亚致死损伤修复:将预定的照射剂量分次给予,生物效应明显减轻,表明在两次照射间隔中细胞有所修复,这种修复称作SLDR 16、潜在致死损伤修复:照射后改变细胞所处的状态和环境,如延长接种或给予不良的营养和环境条件,均能提高存活率。 17、损伤的“耐受”:DNA分子的损伤有时不能立即修复。特别是在复制已经开始,而损伤又在复制叉附近时,细胞会通过另一些机制,使复制能进行下去,待复制完成后,再通过某种机制修复残留的损伤。复制时损伤并未消除,故称“耐受”。 18、原癌基因:在正常细胞内,调控细胞增殖和分化的重要基因,当受到物理、化学、病毒等生物因素作用被活化而失调时,才会导致正常细胞的恶性转化。

临床放射生物学基础

临床放射生物学基础 临床放射生物学是研究电离辐射对肿瘤组织和正常组织的效应以及研究这两类组织被射线作用后所引起的生物反应的一门学科。它是放射肿瘤学的四大支柱(肿瘤学、放射物理学、放射生物学和放射治疗学)之一,因此从事肿瘤放射治疗的医生必须掌握这门学科的基础知识。 第一章物理和化学基础 第一节线性能量传递 一、概念 线性能量传递(linear energy transfer,LET)是指射线在行径轨迹上,单位长度的能量转换。单位是KeV/um。注意,LET有两层含义,其物理学含义为带电粒子穿行介质时能量的损失即阻止本领,而LET的生物学含义则强调带电粒子穿行介质时能量被介质吸收的线性比率。例如,γ射线在穿过细胞核时,以孤立单个的电离或激发形式将大部分能量沉积在细胞核中,引起DNA损伤,其部分损伤又能够被细胞核中的酶修复,1Gy的吸收剂量相当于产生1000个γ射线轨迹,故γ射线属于低LET;α粒子在穿过细胞核时产生的轨迹少,但每条轨迹的电离强度大,因而产生的损伤大,这种损伤常常累及邻近的多个碱基对,于是损伤难以修复,1Gy的吸收剂量相当于产生4个α粒子轨迹,故α粒子属于高LET。一般认为10KeV/um是高LET和低LET的分界值,LET值<10KeV/um时称低LET射线,如X、γ、β射线,LET 值>10KeV/um时称高LET射线,如中子、质子、α粒子。 二、高LET射线特性 1.物理学特点:高LET存在Bragg峰,即射线进入人体后最初的阶段能量释放(沉积)不明显,到达一定深度后能量突然大量释放形成Bragg峰(即射线在射程前端剂量相对较小,而到射程末端剂量达到最大值),随后深部剂量又迅速跌落。 2.高LET生物效应特点:(1)相对生物效应(RBE)高,致死效应强,细胞生存曲线的陡度加大;(2)氧增强比(OER)小,对乏氧细胞的杀伤力较大;(3)亚致死性损伤的修复能力小,细胞生存曲线无肩部;(4)细胞周期依赖性小,高LET能够杀伤常规放疗欠敏感的G0期和S期细胞。 图01不同LET的细胞存活曲线 如图01所示,1.相等照射剂量的情况下,随着LET值的增加,细胞杀伤作用增强,2.随着LET值的增加,细胞存活曲线变得越来越陡峭,曲线肩部越来越小。 表不同类型和不同能量的电离辐射的传能线密度 辐射类型粒子动能 (MeV) 传能线密度 (keV/μm) 辐射类型 粒子动能 (MeV) 传能线密度 (keV/μm) γ线 1.17~1.33 0.3 中子 4 17 8 0.2 14 12 X线250kVp 2 质子0.95 45 3 0.3 2.0 17 β粒子0.0055 5.5 7.0 12 0.01 4.0 340 0.3 0.1 0.7 α粒子 3.4 130

辐射生物效应-放射生物学 夏寿萱主编 知识点复习

辐射生物学效应复习 一、名词解释 1.布喇格电离峰P6:粒子的速度控制着能量丧失的速度。快速运动的粒子的电离能力要比慢速运动的小。ɑ粒子质量较大,运动较慢,因此,有足够的时间在短距离内引起较多的电离。当ɑ粒子穿入介质后,随着深度的增加和更多电离事件的发生,能量耗失,粒子运动变慢,而慢速粒子又引起了更多的电离,这样就形成了通常称为的布喇格电离峰。 2.活性氧P24 :从强调O2对机体不利一面的角度出发,将那些较O2的化学性质更为活跃的O2的代谢产物或自由衍生的含氧物质称为活性氧。 3.靶学说P46 :靶学说认为辐射生物效应是由于电离粒子包括电磁波击中了某些分子或细胞内的特定结构(靶)的结果。 4.细胞凋亡P178:是指为维持内环境稳定,由基因控制的细胞自主的有序死亡。既包括生理性的程序死亡,又指由外来因素诱发的细胞自杀。 5. 辐射增敏剂P270:主要指那些能够增加机体或细胞的辐射敏感性的化学物质,临床上用于增强射线对肿瘤的杀伤能力。 6.染色体畸变P319:当人员受到一定剂量的电离辐射作用后,在外周血淋巴细胞和骨髓细胞中早期即可见到染色体的改变,这种变化称之为染色体畸变。 7.辐射的遗传效应P413:辐射对生物体生殖细胞内的遗传物质的损伤,即诱发基因突变和染色体畸变,可能会在子一代(F1)中表达为各种先天性畸形,而且还会在以后的许多世代中出现,这就是辐射的遗传效应。 8. 水的辐解反应P26:辐射可使水分子分解为·OH和·H两种自由基,这一过程与液相中水分子的自发性电解有着明显区别,因此称为水的辐解反应。 9. 细胞坏死P178:通常是由突然及严重的损伤所造成的细胞意外死亡。 10. 电离辐射的直接作用P28:是指来自放射源的能量或粒子直接作用于溶质分子、并造成结构与功能损伤的过程。 11. 电离辐射的间接作用P28:指的是水的辐解反应产物与溶质分子之间发生的可能导致溶质分子结构变化的各种反应。 12. 氧效应:P12:受照射的生物系统或分子的辐射效应随介质中氧浓度的增加而增加,这种现象称为氧效应。

放射生物学复习重点

1、名词解释:间期死亡、增殖死亡、急性放射病、慢性放射病、骨痛症候群, 衰变常数、半衰期、氧效应、相对生物学效应; 间期死亡:指细胞受较大剂量(100Gy或更大)照射后,不经有丝分裂,在几个小时内就开始死亡。 增殖死亡:即细胞受照后经历1个或几个有丝分裂周期后,丧失了继续增殖的能力而引起的死亡。 急性放射病:机体在短时间(数秒-数天)内受到大剂量(>1Gy)电离辐射照射引起的全身性疾病。 慢性放射病:指机体在较长时间内连续或间歇受到超当量剂量限值的电离辐射作用,达到一定累计计量后引起多系统损害的全身性疾病,通常以造血组织损伤作为主要表现。 骨痛症候群:受亲骨性核素损伤的病人,出现四肢骨、胸骨、腰椎等部位的疼痛,其特点是疼痛部位不确切,与气候变化无一定关系。 衰变常数λ:每秒衰变的核数为原有放射性核数的几分之几 半衰期T?=0.693/λ:放射性核数因衰变而减少到原来的一半所需要的时间 氧效应:受照组织、细胞或者溶液系统,其辐射效应随周围介质中氧浓度的增加而增加的现象 相对生物学效应:由于各种辐射的品质不同,在相同吸收剂量下,不同辐射的生物效应也是不同的,反映这种差异的量称之为相对生物效应。 2、熟悉哪些是电离辐射(直接、间接),非电离辐射; 电离辐射:凡能引起物质的原子或分子发生电离作用的辐射,均称为电离辐射。(不仅包括粒子辐射,还包括了部分电磁辐射X、γ) 紫外线及能量低于紫外线的电磁辐射都属于非电离辐射。 电磁辐射:实质是电磁波,相对于粒子辐射而言的。 3、熟悉传能线密度的概念 带电粒子在物质中穿行单位路程时,由能量转移小于能量截止值的历次碰撞所造成的能量损失 4、熟悉元素、同位素、同质异能素。 元素:原子核内具有相同电荷数的同一类原子。 核素:原子核内质子数、中子数和能态完全相同的一类原子。 同位素:原子核内质子数相同、中子数不同的多种核素。 同质异能素:中子数和质子数都相同而仅仅是能量状态不同的两种核素。

临床放射生物学的现状和未来

临床放射生物学的现状和未来 摘要:临床放射生物学是研究射线引起的生物学效应的一门学科,1940年以来,在物理学、化学和生物学的有关领域内的显著技术进展为放射生物学的研究提供了更为广泛而精细的手段。近年来随着细胞生物学及其相关学科的发展,临床放射生物学也取得很大进步,并直接推动放射治疗的进展,提高放射治疗的疗效。关键词:细胞凋亡放射敏感性放射增敏剂 前言:研究放射生物学的目的就是要了解放射对肿瘤和正常组织的生物效应,与放射效应相关的因素即规律肿瘤杀灭和正常组织损伤的机制。通过对上述问题的研究和回答,发现和发展有效的治疗方法,提高肿瘤的局控率,减少对正常组织的损伤。本文系统综述了临床放射生物学研究的现状,包括对放射敏感性的预测,放射治疗效价的修饰措施,放疗中正常组织损伤的防治,新的治疗手段和此学科领域的热点以及对临床放射生物学未来的展望。 临床放射生物学历史 在X射线发现不久,人们开始研究正常组织和肿瘤组织对放射线产生的各种效应,这些早期的放射生物学工作多侧重于动物实验和组织病理学的研究。 进入五十年代,由于细胞生物学的进步,精确的放射计量技术和组织培养技术的应用,创立了定量地研究细胞放射损伤的方法——细胞存活曲线,发现有关哺乳动物细胞的放射损伤和修复的许多问题及乏氧细胞的放射性抗拒等问题,引起了临床放射治疗中对高LET高能射线、氧和其它放射增敏剂及加温疗法的应用和研究。 六十年代以来,有不少学者从分子生物学角度来探讨放射损伤修复及与

DNA单链和双链断裂的关系,这让放射生物学的研究进入了分子水平。 20世纪末和21世纪初随着人类基因组计划的完成,基因组学和后基因组学的兴起使生命科学的发展实现了飞跃,从研究思维和研究手段深刻影响了整个生物医学领域的发展,使放射生物学在组织水平、细胞水平和分子水平各方面都有不少系统的理论和精辟的阐述。 1.细胞凋亡 细胞凋亡是一种主动的由基因导向的细胞消亡过程,属于普遍存在的生物学现象,在保持机体内稳态方面发挥积极作用。在机体的生理过程中,在一定的信号启动下,凋亡相关基因有序地表达,制约着对整体无用或有害细胞的消除,因此这种活动被命名为程序化细胞死亡,简称程控死亡。 1.1细胞凋亡的形态学特征 细胞凋亡不同于细胞坏死,其形态特征是胞体缩小,染色质浓缩成块状,并沿核膜聚积,形成许多固缩的核素片,而细胞器与膜系保持完整,质膜出芽,形成膜包被染色质碎片的凋亡小体。可被周围细胞吞噬清除或排出管腔。细胞坏死的特征则是细胞器肿胀,膜系破坏,整个细胞崩解。由于以上的特征性区别,细胞凋亡不引发周围组织的炎症反应,而是静悄悄地死去,就地清除,保持组织的完整性。 1.2细胞凋亡的生化特征 细胞凋亡的生物化学特征是染色质DNA裂解,裂解发生于核小体联结区,一个或数个核小体从DNA母链裂解,形成小的片段。这一过程受基因调控,为细胞的主动代谢反应,需要RNA和蛋白质的合成,在某些细胞中已证实有Ca2+,

放射生物学复习重点

精心整理 1、名词解释:间期死亡、增殖死亡、急性放射病、慢性放射病、骨痛症候群,衰变常数、半 衰期、氧效应、相对生物学效应; 间期死亡:指细胞受较大剂量(100Gy或更大)照射后,不经有丝分裂,在几个小时内就开始死亡。 增殖死亡:即细胞受照后经历1个或几个有丝分裂周期后,丧失了继续增殖的能力而引起的死亡。 一定 疼 的现象2、 3、 4、 5、 结合能:由若干个核子结合成原子核的过程中释放的能量叫做该原子核的结合能。 平均结合能:核子结合成原子核时平均每个核子释放出的能量叫做该原子核的平均结合能。 原子核的稳定性指标:平均结合能 6、熟悉核衰变的类型及其反应式,会简单计算。 α衰变:X→Y+He+Q主要在重核中发生,由重核原子衰变成轻核原子,释放出氦的原子核。 Β正衰变:X→Y+e++v+Q(e为正电子v为中微子,质子数为0,质量数为0) 原子核中的一个质子转变为中子,同时释放出一个正电子 β负衰变:X→Y+e-+v+Q(e为负电子v为中微子,质子数为0,质量数为0) 原子核中的一个中子转变为质子,同时释放出一个负电子

γ衰变:X→Y+γ+Q原因:原子核处于激发态 7、带电粒子;γ射线与物质相互作用方式。 带电粒子: 1电离带电粒子通过介质时,直接与介质的原子核的壳层电子碰撞,或者发生静电库仑作用,带电粒子将一部分能量或全部能量传给壳层电子,使壳层电子脱离原子核的束缚而成为自由电子。这个过程也叫做电离。而这个自由电子和相对应的正离子通常被称为离子对。脱离出原子核束缚的自由电子又可以作为一个带电粒子继续在介质中引起其它原子或分子的电离称为次级电离。 2激发在上述过程中如果壳层电子获得的能量还不够大,不能成为自由电子,而只是从较低的能态跃迁到较高的能态,这个过程称为激发。一个原子经过激发后的状态我们把它叫做激发态,处于激发态的原子是不稳定的,他必定会向稳态跃迁,跃迁时还会放出其它的电磁辐射。 3散射质量很轻的带电粒子在介质中通过时,由于它们和核或核外电子的电场相互作用而产生运 电离辐射可通过直接作用和间接作用引起生物分子的电离和激发,大致经过物理、物理化学、化学、生物化学和早期生物学五个阶段造成生物分子的损伤,表现出严重的放射生物学效应。 1自由基(freeradical)独立存在、带有不成对电子(一个或多个)的原子、离子、分子或基团。形成自由基的方式:直接作用、间接作用。 直接作用:电离辐射直接引起靶分子电离和激发而发生物理化学变化,生成生物分子自由基的作用称之为直接作用。 间接作用:电离辐射作用于水分子产生的自由基在与生物分子发生物理化学变化,生成生物分子自由基的作用称之为间接作用。(有加成,抽氢,电子俘获) 10、细胞辐射敏感性的特点。能分辨不同细胞,不同细胞周期辐射敏感性的差异。

放射生物学复习重点

放射生物学复习重点

1、名词解释:间期死亡、增殖死亡、急性放射病、慢性放射病、骨痛症候群, 衰变常数、半衰期、氧效应、相对生物学效应; 间期死亡:指细胞受较大剂量(100Gy或更大)照射后,不经有丝分裂,在几个小时内就开始死亡。 增殖死亡:即细胞受照后经历1个或几个有丝分裂周期后,丧失了继续增殖的能力而引起的死亡。 急性放射病:机体在短时间(数秒-数天)内受到大剂量(>1Gy)电离辐射照射引起的全身性疾病。 慢性放射病:指机体在较长时间内连续或间歇受到超当量剂量限值的电离辐射作用,达到一定累计计量后引起多系统损害的全身性疾病,通常以造血组织损伤作为主要表现。 骨痛症候群:受亲骨性核素损伤的病人,出现四肢骨、胸骨、腰椎等部位的疼痛,其特点是疼痛部位不确切,与气候变化无一定关系。 衰变常数λ:每秒衰变的核数为原有放射性核数的几分之几 半衰期T?=0.693/λ:放射性核数因衰变而减少到原来的一半所需要的时间 氧效应:受照组织、细胞或者溶液系统,其辐射效应随周围介质中氧浓度的增加而增加的现象 相对生物学效应:由于各种辐射的品质不同,在相同吸收剂量下,不同辐射的生物效应也是不同的,反映这种差异的量称之为相对生物效应。 2、熟悉哪些是电离辐射(直接、间接),非电离辐射; 电离辐射:凡能引起物质的原子或分子发生电离作用的辐射,均称为电离辐射。 (不仅包括粒子辐射,还包括了部分电磁辐射X、γ) 紫外线及能量低于紫外线的电磁辐射都属于非电离辐射。 电磁辐射:实质是电磁波,相对于粒子辐射而言的。 3、熟悉传能线密度的概念 带电粒子在物质中穿行单位路程时,由能量转移小于能量截止值的历次碰撞所造成的能量损失 4、熟悉元素、同位素、同质异能素。 元素:原子核内具有相同电荷数的同一类原子。 核素:原子核内质子数、中子数和能态完全相同的一类原子。

相关文档
最新文档