遗传算法综述

遗传算法综述
遗传算法综述

遗传算法综述

史俊杰

摘要:遗传算法来源于进化论和群体遗传学,是计算智能的重要组成部分,正受到众多学科的高度重视。本文主要回顾了遗传算法的起源和发展历程,并对遗传算法的基本原理及特点作了简要阐述。进一步指出了遗传算法存在的问题及相应的改进措施,讨论了遗传算法在实际中的应用,并对遗传算法的未来的发展进行了探讨。

关键字:遗传算法,适应度函数,神经网络

1.遗传算法的起源

遗传算法(Genetic Algorithm,GA)是模拟自然界生物进化机制的一种算法,即遵循适者生存、优胜劣汰的法则,也就是寻优过程中有用的保留,无用的则去除。在科学和生产实践中表现为,在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法,即找出一个最优解。这种算法是1960年由Holland提出来的,其最初的目的是研究自然系统的自适应行为,并设计具有自适应功能的软件系统。

2.遗传算法的发展过程

从二十世纪六十年代开始,密切根大学教授Holland开始研究自然和人工系统的自适应行为,在这些研究中,他试图发展一种用于创造通用程序和机器的理论。在六十年代中期至七十年代末期,Bagly发明“遗传算法”一词并发表了第一篇有关遗传算法应用的论文。1975年竖立了遗传算法发展史上的两块里程碑,一是Holland出版了经典著作“Adaptation in Nature and Artifieial System”,二是Dejong完成了具有指导意义的博士论文“An Analysis of the Behavior of a Class of Genetie Adaptive System”。进入八十年代,随着以符号系统模仿人类智能的传统人工智能暂时陷入困境,神经网络、机器学习和遗传算法等从生物系统底层模拟智能的研究重新复活并获得繁荣。进入九十年代,以不确定性、非线性、时间不可逆为内涵,以复杂问题为对象的科学新范式得到学术界普遍认同,如广义进化综合理论。由于遗传算法能有效地求解属于、NPC类型的组合优化问题及非线性多模型、多目标的函数优化问题,从而得到了多学科的广泛重视。3.遗传算法特点

遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。遗传算法具有进化计算的所有特征,同时又具有自身的特点:

(1)搜索过程既不受优化函数的连续性约束,也没有优化函数导数必须存在的要

求。

(2)遗传算法采用多点搜索或者说是群体搜索,具有很高的隐含并行性,因而可以提高计算速度。

(3)遗传算法是一种自适应搜索技术,其选择、交叉、变异等运算都是以一种概率方式来进行,从而增加了搜索过程的灵活性,具有较好的全局优化求解能力。

(4)遗传算法直接以目标函数值为搜索信息,对函数的性态无要求,具有较好的普适性和易扩充性。

(5)遗传算法更适合大规模复杂问题的优化。

4.遗传算法研究理论

在自然界,由于组成生物群体中各个体之间的差异,对所处环境有不同的适应和生存能力,遵照自然界生物进化的基本原则,适者生存、优胜劣汰,将要淘汰那些最差个体,通过交配将父本优秀的染色体和基因遗传给子代,通过染色体核基因的重新组合产生生命力更强的新的个体与由它们组成的新群体。在特定的条件下,基因会发生突变,产生新基因和生命力更强的新个体;但突变是非遗传的,随着个体不断更新,群体不断朝着最优方向进化,遗传算法是真实模拟自然界生物进化机制进行寻优的。在此算法中,被研究的体系的响应曲面看作为一个群体,相应曲面上的每一个点作为群体中的一个个体,个体用多维向量或矩阵来描述,组成矩阵和向量的参数相应于生物种组成染色体的基因,染色体用固定长度的二进制串表述,通过交换、突变等遗传操作,在参数的一定范围内进行随机搜索,不断改善数据结构,构造出不同的向量,相当于得到了被研究的不同的解,目标函数值较优的点被保留,目标函数值较差的点被淘汰。由于遗传操作可以越过位垒,能跳出局部较优点,到达全局最优点。

遗传算法是一种迭代算法,它在每一次迭代时都拥有一组解,这组解最初是随机生成的,在每次迭代时又有一组新的解由模拟进化和继承的遗传操作生成,每个解都有一目标函数给与评判,一次迭代成为一代。典型的算法的流程图如图1所示,步骤有: Step1 初始化:采用随机法生成0N 个初始串作为初始群体,每个初始串称为一个个体。 Step2 计算适应度:根据适应度函数计算第 k 代种群每个个体的适应值

)(i k X f k N i ,...,2,1 ,记具有最高适应值的个体为*k

X 。 Step3 选择:由父种群k N k k X X ,...,1采用适应度比例法选出子种群k N k k X X '1',...,,

其中被选中

的概率为k N i i k

i k i

k N i X

f X f X P k ,...1,)()()(1==∑=。 Step4 交叉变异:交叉运算,从子种群中以相同的概率选出两个个体,这两个个体之间以事先给定的概率执行重组运算,产生两个新个体,重复这一过程。变异运算根据一定的变异率 P~f 随机 地对 一个体的某一位进行翻转,产生一个新的个体,重复这一过

程。然后并入Step2中最高适应值的个体*k X 最终形成新一代群体1111,...,+++k N k k X X 记 :

1111,...,+++k N k k X X 中具有最高适应度的个体为 *1+k X 。

Step5 若遗传代数满足终止条件,则停止运算,输出 1作为近似最优个体;否则令 k= k+1转Step2。

图1 遗传算法流程图

4.1遗传算法的原型

John Holland 教授通过模拟生物进化过程设计了最初的遗传算法,称之为标准遗传算法。标准遗传算法给出了遗传算法的基本框架,以后对于遗传算法的改进,都是基于此种算法。尽管遗传算法的实现在细节上有所不同,但都具有以下的共同结构:算法迭代更新一个假设池,这个假设池称为群体。在每一次的迭代中,根据适应度函数评估群体中的所有成员,然后从当前群体中用概率方法选取适应度最高的个体产生新一代群体。在这些选中的个体中,一部分保持原样地进入下一代群体,其他的被用作产生后代个体的基础。

4.2遗传算法的基本要素

遗传算法的基本要素包括染色体编码方法、适应度函数、运行参数和遗传操作。

其中染色体编码方法是指个体的编码方法,目前包括二进制法、实数法等。二进制法是指把个体编码成为一个二进制串,实数法是指把个体编码成为一个实数串。

适应度函数是指根据目标编写的计算个体适应度值的函数,通过适应度函数计算每个个体的适应度值,提供给选择算子进行选择。

运行参数是遗传算法在初始化时确定的参数,主要包括群体大小M,遗传代数G,交叉概率P t,和变异概率P m。

遗传操作是指选择操作、交叉操作和变异操作。

选择是用来确定交叉个体,以及被选个体将产生多少个子代个体。常用的方法有:(1)适应度比例方法,各个个体的选择概率和其适应度值成比例。

(2)最佳个体保存方法,把群体中适应度最高的个体不进行配对交叉而直接复制到下一代中。

(3)排序选择方法,指在计算每个个体的适应度后,根据适应度大小对群体中个体排序,并把事先设计好的概率表按序分配给个体,作为各自的选择概率。所有个体按适应度排序,而选择概率和适应度无直接关系而仅与序号有关。

(4)联赛选择方法,其操作思想是从群体中任意选择一定数目的个体,其中适应度最高的个体保存到下一代。并反复执行,直到保存到的个体数达到预先设定的数目为止。

交叉指把两个父代个体的部分结构加以替换重组而生成新个体的操作。交叉操作的作用是组合出新的个体,是GA 区别于其它进化算法的重要特征,遗传算法中起核心作用的是遗传操作。各种交叉算子都包括两个基本内容:

(1)从由选择操作形成的群体中,对个体随机配对并按预先设定的交叉概率来决定每对是否需要进行交叉操作。

(2)设定配对个体的交叉点,并对这些点前后的配对个体的部分结构进行相互交换。常用的交叉操作方法有一点交叉、二点交叉、一致交叉、二维交叉、树结构交叉等等。

变异即对群体中个体串的某些基因座上的基因值作变动。变异的目的有两个:(1)使遗传算法具有局部的随机搜索能力。

(2)保持群体的多样性。

变异算子的操作一般分两步:

(1)在群体中所有个体的码串范围内随机确定基因座。

(2)以事先设定的变异概率来对这些基因座的基因值进行变异。变异算子有很多方式,如基本变异算子、逆转算子、自适应变异算子等等。

5.遗传算法的应用——遗传算法优化BP神经网络

近年来人工神经网络发展迅速,在经济、军事、工业生产和生物医学等领域获得广泛应用,并产生深远的影响。由于学习能力是神经网络中最引人注意的特征,所以在神经网络的发展过程中,学习算法的研究一直占据重要地位,上个世纪80 年代中期出现的BP(back-propagation)算法,有效地解决了前向多层神经网络地学习问题,从而极大地推动了这一领域的研究工作。但是从本质上讲,BP 算法属于梯度下降算法,不可避免地存在易陷入局部极小、收敛速度慢、误差函数必须可导、网络结构某有成型的理论指导等缺点。

由美国密歇根大学的HollandJ。教授发起的遗传算法是一种高效的并行全局搜索算法,该算法具有很好的鲁棒性,在解决全局优化问题方面取得了成功。所以可以将遗传算法应用于神经网络的学习过程中,这样可以避免传统的BP算法容易陷入局部极小的问题,并且由于适应度函数无需可导,因此基于遗传算法的学习算法适应的神经元激活函数类型更广。同时可以提高快BP 算法的训练速度,降低收敛时间。

5.1案例:利用遗传算法优化BP神经网络进行癌症诊断

样本:样本数据为包括十个量化特征的平均值、标准差、和十个量化特征的最坏值,共30个数据。明显,这30个输入自变量相互之间存在一定的关系,并非相互独立,因此,为了缩短建模时间,提高建模精度,有必要将30个输入自变量中起主要影响因素的自变量筛选出来参与最终的建模。

设计思路:利用遗传算法进行优化计算,首先需要将解空间映射到编码空间,每个编码对应问题的一个解(即为染色体或个体)。这里,降编码长度设计为30,染色体的每一位对应一个输入自变量,每一位的基因取值为“1”或“0”,染色体为1,表示参与最终建模,否则,未参与。选取测试集数据均差的倒数作为遗传算法的适应度函数。

设计步骤:如图2所示:

(1)单BP模型建立

为了比较遗传算法优化前后的预测效果,先利用全部的30个输入自变量建立BP 模型。

(2)初始种群产生

随机产生N 个初始串结构数据,每个串数据结构即为一个个体,N 个个体构成了一个种群。遗传算法以这N 个串结构作为初始点开始迭代。

(3)适应度函数计算

这里选取测试集数据误差平方和的倒数作为适应度函数为:

()∑=-==n i i

i t t SE X f 12?11)(

式中i t ?为测试集的预测集,i t 为为测试集的真实值,n 为测试集的样本数目。

图2 GA 优化BP 神经网络设计步骤

(4)选择操作

选择操作选用比例选择算子,即个体被选中并遗传到下一代种群中的概率与该个体的适应度大小成正比,具体的操作过程是:

①计算种群中所有适应度之和

)(1∑==r

n k k X f F

②利用上式计算种群中各个个体的相对适应度,并以此作为该个体被选中并遗传到下一代种群中的概率。

F

X f p k k )(= k =1,2,···,n ③采用模拟轮盘赌操作,产生(0,1)之间的随机数,来确定各个个体被选中的次数。显然,适应度大的个体,其选择的概率也大,能被多次选中,其遗传基因就会在种群中扩大。

(5)交叉操作

对于输入自变量的压缩降维,交叉操作采用最简单的单点交叉算子,具有操作过程为:

①先对种群中的个体进行两两随机配对,初始种群大小为20,故有10个相互配对的个体组;

②对每一对相互配对的个体,随机选取某一基因之后的位置作为交叉点;

③对每一对相互配对的个体,根据②中确定的交叉点位置,相互交换两个个体的部分染色体,产生出两个新个体。

(6)变异操作

对于输入自变量的压缩降维,变异操作采用最简单的单点变异算子,操作过程为: ①随机产生变异点;

②根据①中的变异点位置,改变其对应的基因座上的基因值,变异后“1”变为“0”或“0”变为“1”。

(7)优化结果输出

经过一次次的迭代进化,当满足迭代终止条件时,输出的末代种群对应的便是问题的最优解或最近解,即筛选出的最具代表性的输入自变量组合。

(8)优化BP 模型建立

根据优化计算得到的结果,将选出的参与建模的输入自变量对应的训练集和测试

集数据提取出来,利用BP神经网络重新建立模型进行仿真测试,从而进行结果的分析。

MATLAB程序如下,程序运行结果如下图3所示:

%% 遗传算法的优化计算——输入自变量降维

%% 清空环境变量

clear all

clc

warning off

%% 声明全局变量

global P_train T_train P_test T_test mint maxt S s1

S=30;

s1=50;

%% 导入数据

load data。mat

a=randperm(569);

Train=data(a(1:500),:);

Test=data(a(501:end),:);

% 训练数据

P_train=Train(:,3:end)';

T_train=Train(:,2)';

% 测试数据

P_test=Test(:,3:end)';

T_test=Test(:,2)';

% 显示实验条件

total_B=length(find(data(:,2)==1));

total_M=length(find(data(:,2)==2));

count_B=length(find(T_train==1));

count_M=length(find(T_train==2));

number_B=length(find(T_test==1));

number_M=length(find(T_test==2));

disp('实验条件为:');

disp(['病例总数:' num2str(569)。。。

' 良性:' num2str(total_B)。。。

' 恶性:' num2str(total_M)]);

disp(['训练集病例总数:' num2str(500)。。。

' 良性:' num2str(count_B)。。。

' 恶性:' num2str(count_M)]);

disp(['测试集病例总数:' num2str(69)。。。

' 良性:' num2str(number_B)。。。

' 恶性:' num2str(number_M)]);

%% 数据归一化

[P_train,minp,maxp,T_train,mint,maxt]=premnmx(P_train,T_train);

P_test=tramnmx(P_test,minp,maxp);

%% 创建单BP网络

t=cputime;

net_bp=newff(minmax(P_train),[s1,1],{'tansig','purelin'},'trainlm'); % 设置训练参数

net_bp。trainParam。epochs=1000;

net_bp。trainParam。show=10;

net_bp。trainParam。goal=0。1;

net_bp。trainParam。lr=0。1;

net_bp。trainParam。showwindow=0;

%% 训练单BP网络

net_bp=train(net_bp,P_train,T_train);

%% 仿真测试单BP网络

tn_bp_sim=sim(net_bp,P_test);

% 反归一化

T_bp_sim=postmnmx(tn_bp_sim,mint,maxt);

e=cputime-t;

T_bp_sim(T_bp_sim>1。5)=2;

T_bp_sim(T_bp_sim<1。5)=1;

result_bp=[T_bp_sim' T_test'];

%% 结果显示(单BP网络)

number_B_sim=length(find(T_bp_sim==1 & T_test==1));

number_M_sim=length(find(T_bp_sim==2 &T_test==2));

disp('(1)BP网络的测试结果为:');

disp(['良性乳腺肿瘤确诊:' num2str(number_B_sim)。。。

' 误诊:' num2str(number_B-number_B_sim)。。。

' 确诊率p1=' num2str(number_B_sim/number_B*100) '%']);

disp(['恶性乳腺肿瘤确诊:' num2str(number_M_sim)。。。

' 误诊:' num2str(number_M-number_M_sim)。。。

' 确诊率p2=' num2str(number_M_sim/number_M*100) '%']);

disp(['建模时间为:' num2str(e) 's'] );

%% 遗传算法优化

popu=20;

bounds=ones(S,1)*[0,1];

% 产生初始种群

% initPop=crtbp(popu,S);

initPop=randint(popu,S,[0 1]);

% 计算初始种群适应度

initFit=zeros(popu,1);

for i=1:size(initPop,1)

initFit(i)=de_code(initPop(i,:));

end

initPop=[initPop initFit];

gen=100;

% 优化计算

[X,EndPop,BPop,Trace]=ga(bounds,'fitness',[],initPop,[1e-6 1 0],'maxGenTerm',。。。

gen,'normGeomSelect',0。09,'simpleXover',2,'boundaryMutation',[2 gen 3]);

[m,n]=find(X==1);

disp(['优化筛选后的输入自变量编号为:' num2str(n)]);

% 绘制适应度函数进化曲线

figure

plot(Trace(:,1),Trace(:,3),'r:')

hold on

plot(Trace(:,1),Trace(:,2),'b')

xlabel('进化代数')

ylabel('适应度函数')

title('适应度函数进化曲线')

legend('平均适应度函数','最佳适应度函数')

xlim([1 gen])

%% 新训练集/测试集数据提取

p_train=zeros(size(n,2),size(T_train,2));

p_test=zeros(size(n,2),size(T_test,2));

for i=1:length(n)

p_train(i,:)=P_train(n(i),:);

p_test(i,:)=P_test(n(i),:);

end

t_train=T_train;

%% 创建优化BP网络

t=cputime;

net_ga=newff(minmax(p_train),[s1,1],{'tansig','purelin'},'trainlm'); % 训练参数设置

net_ga。trainParam。epochs=1000;

net_ga。trainParam。show=10;

net_ga。trainParam。goal=0。1;

net_ga。trainParam。lr=0。1;

net_ga。trainParam。showwindow=0;

%% 训练优化BP网络

net_ga=train(net_ga,p_train,t_train);

%% 仿真测试优化BP网络

tn_ga_sim=sim(net_ga,p_test);

% 反归一化

T_ga_sim=postmnmx(tn_ga_sim,mint,maxt);

e=cputime-t;

T_ga_sim(T_ga_sim>1。5)=2;

T_ga_sim(T_ga_sim<1。5)=1;

result_ga=[T_ga_sim' T_test'];

%% 结果显示(优化BP网络)

number_b_sim=length(find(T_ga_sim==1 & T_test==1));

number_m_sim=length(find(T_ga_sim==2 &T_test==2));

disp('(2)优化BP网络的测试结果为:');

disp(['良性乳腺肿瘤确诊:' num2str(number_b_sim)。。。

' 误诊:' num2str(number_B-number_b_sim)。。。

' 确诊率p1=' num2str(number_b_sim/number_B*100) '%']);

disp(['恶性乳腺肿瘤确诊:' num2str(number_m_sim)。。。

' 误诊:' num2str(number_M-number_m_sim)。。。

' 确诊率p2=' num2str(number_m_sim/number_M*100) '%']);

disp(['建模时间为:' num2str(e) 's'] );

图3 程序结果图

由此可得到结论:遗传算法优化BP神经网络的识别率比单纯的BP神经网络高,而且识别速度较快。

6.遗传算法的改进与未来

6.1遗传算法的改进

虽然遗传算法已经取得了广泛的应用,但存在着收敛速度慢及算法稳定性差等缺陷。用遗传算法进行路径规划时,随机产生初始种群,为了避免陷入局部极值点,种群数量要达到一定的规模。但种群规模大会导致搜索空间较大,删除冗余个体的能力较差,大大影响路径规划的速度。特别在环境较为复杂的情形下,这种缺点就更加明显。针对标准遗传算法的不足,在吸收前人研究成果的基础上,对于遗传算法的求解过程,我们提出了如下改进措施与步骤:

(1)人工方法产生初始群体

先将优化问题的初始解转化为个体,然后在问题的解空间中用人工方法产生初始种群的其它个体,使初始群体的个体模式阶次较高、模式数目较大,具有多样性。这样通

过适当选择字符串长度和群体规模,可以在开始的几代内找到各极值点所在的区域,加快搜索速度。

(2)上代群体的处理

对于上代群体,计算其个体的适应度,判别其是否满足终止条件。如果满足终止条件,停止遗传操作,输出最优解。否则,将上代群体全部放入中间群体,并对上代群体独立进行优选父代交换和大突变操作。

(3)优选父代交换

优选父代交换的主要思想是指在进行交换操作时,提高父代的质量,即选择较优的父代个体参与交换。具体过程是:从上代群体中随机选取两个个体,然后比较其适应度,保留适应度大的个体,再从上代群体中随机选取两个个体,同样保留适应度大的个体,以保留下来的两个个体作为父代个体。产生[0,1]之间均匀分布的随机数s,如果s

(4)大突变操作

理论上,遗传算法的突变操作可以产生新个使算法跳出“早熟”。但为了保持算法的稳定性,突变操作的突变率通常取得很小,单靠传统的突变操作需要很多代才能变异出一个不同于其它个体的新个体。大突变操作的思想是:对上代群体,以一个远大于通常的突变概率的概率进行一次突变操作,并将突变后产生的新个体加入到中间群体。大突变操作能够随机、独立地产生许多新个体,从而能始终保持群体的多样性,使群体脱离“早熟”。

(5)基于Metropolis判别准则的复制策略

对于中间群体,运用基于Metropolis判别准则的复制策略,产生下一代群体。基于Metropolis判别准则的复制策略分为两步:

a.实施最优保留策略将中间群体中性能最好的个体无条件地复制到下一代群体中,这样就会保留中间群体中的最好解,使遗传算法可以以概率1收敛到全局最优解,保证了算法的收敛。

b.实施Metropolis判别准则的复制策略在中间群体中随机选取个体i和j,i和j竞争进入下一代群体的准则采用Metropolis判别准则:产生[0,1]之间均匀分布的随机数s,如果s<=min(1,exp(- (f(i) -f(j))/T))(式中,f(i),f(j)分别为个体i和j的适应度,T为控

制参数),则个体i复制到下一代群体,否则个体j复制到下一代群体。改进后遗传算法的基本流程如图4所示。

图4 改进的遗传算法

6.2遗传算法的未来

遗传算法的未来发展还有很大的空间,我们可以探索研究以下几个方面:

(1)基于遗传算法的机器学习:这一新的研究方向把遗传算法从历史离散的搜索空间的优化搜索算法扩展到具有独特的规则生产功能崭新的机器学习算法。

(2)遗传算法与其他计算智能方法的相互渗透和结合:遗传算法正日益和神经网络、模糊推理以及混沌理论等其他职能计算方法相互渗透和结合,以到达取长补短的作用。(3)并行处理遗传算法:并行处理的遗传算法的研究不仅是遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的,遗传算法在操作上具有高度的并行性。

(4)遗传算法与人工生命的渗透:基于遗传算法的进化模型是研究人工生命现象的基础。

参考文献

[1]席裕庚,柴天佑,恽为民.遗传算法综述[J].控制理论与应用.1996(13)06:697-708

[2]常洪江.遗传算法综述[J].电脑学习.2010(06)3:115-116

[3]李华昌,谢淑兰,易忠胜.遗传算法的原理与应用[J].矿冶.2005(14)01:87-90

[4]徐宗本,陈志平,章祥荪.遗传算法基础理论研究的新近发展[J].数学进展. 2004(29)2: 97-114

[5]李伟超,宋大猛,陈斌.基于遗传算法的人工神经网络[J].计算机工程与设计.2006(27)2: 316-318

[6]李敏强,徐博艺,寇纪淞.遗传算法与神经网络的结合[J].系统工程理论与实践.1999(02) 2:65-69

[7]韩万林,张幼蒂.遗传算法的改进[J].中国矿业大学学报.2000(29)1:102-105

遗传算法综述

遗传算法综述 摘要:遗传算法(genetic algorithms,GA)是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,适用于处理传统搜索方法难以解决的复杂和非线性优化问题。遗传算法可广泛应用于组合优化、机器学习、自适应控制、设计和人工生命等领域,是21世纪有关智能计算中的重要技术之一。 本文通过对相关论文的查阅和整理,对遗传算法的研究现状和发展趋势进行了综述并谈论了一些自己的看法。 关键词:遗传算法研究现状发展趋势 引言:遗传算法是模拟遗传选择和自然淘汰的生物进化过程的计算模型,由美国Michigan大学的Holland教授于1969年提出,后经DeJong、Goldberg 等人归纳总结,形成一种新的全局优化搜索算法[1]。遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。 1、遗传算法的基本原理 与传统搜索算法不同, 遗传算法从一组随机产生的初始解,称为群体, 开始搜索过程。群体中的每个个体是问题的一个解,称为染色体。这些染色体在后续迭代中不断进化, 称为遗传。遗传算法主要通过交叉、变异、选择运算实现。交叉或变异运算生成下一代染色体, 称为后代。染色体的好坏用适应度来衡量。根据适应度的大小从上一代和后代中选择

一定数量的个体, 作为下一代群体, 再继续进化, 这样经过若干代之后, 算法收敛于最好的染色体, 它很可能就是问题的最优解或次优解。“遗传算法中使用适应度这个概念来度量群体中的各个个体的在优化计算中有可能到达最优解的优良程度。度量个体适应度的函数称为适应度函数。适应度函数的定义一般与具体求解问题有关”[2]。 遗传算法包含两个数据转换操作,一个是从表现型到基因型的转换,将搜索空间的参数或解转换成遗传空间中的染色体或个体,这个过程称为编码(coding)。另一个是从基因型到表现型的转换,即将个体转化成搜索空间中的参数,这个过程称为译码(decode)。 图1展示了遗传算法的运行过程。 图1 遗传算法的运行过程示意图 2、遗传算法的研究现状 2.1 遗传算法研究方向[3] 在遗传算法的研究中,目前主要有三类研究方向: ⑴研究遗传算法本身的理论基础。 ⑵用遗传算法作为工具解决工程问题。主要是进行优化,关心的是能

自适应遗传算法讲解学习

自适应遗传算法

自适应遗传算法 一.主要流程: 1. 参数的初始化。设定遗传种群规模N ,阵元数M ,信源数P 等。 2. 编码。采用十进制编码方法。 3. 初始种群的产生。随机数生成。 4. 适应度函数的评价。选取 ()() R P ΘA )tr f = (1) 其中, H 1H )(A A A A P A -= (2) P A 是A 的投影矩阵,A 是阵列流型。 ∑==L i L 1 H 1XX R ) (3) R )是数据协方差矩阵的最大似然估计。 5. 选择。比例选择方法与精英选择方法结合使用,在当代种群中选择优良个体遗传到下一代。既保证了种群的多样性,也使最优个体得以保留。 1)比例选择方法(赌轮盘法):每个个体被选中的概率与它的适应度函数值大小成正比,即适应度函数越高的个体被选中的概率也就越高。 2)精英选择方法:让种群中适应度函数值最高的个体不进行配对交叉,直接复制到下一代中。但是容易陷入局部最优解,全局搜索能力差。 6. 交叉。按照概率P c 对种群中个体两两配对,进行交叉操作。本文中选取算数交叉的方式。 算数交叉:是由两个个体的线性组合来产生新的个体,假设第t 代的两个个体为A (t)、B (t),则算数交叉后产生的新个体是

()()()()t t t A B A αα-+=+11 (4) ()()()()t t t B A B αα-+=+11 (5) 其中,α选取(0,1)之间的随机数。 交叉概率:使交叉概率随着遗传代数的增长,逐渐减小,目的是进化前期注重交叉运算,全局搜索能力强。 2.02cos *4.0+?? ? ??*=πK T P c (6) 其中,T 是进化代数,K 是总进化次数。 7. 变异。按照概率P m 对种群个体进行变异。本文中选取均匀变异的方式。 均匀变异:如某基因座上的基因值为X k ,其取值范围为[Umin,Umax],对其进行变异后的值为 )U -r(U +U =X min max min k (7) 其中,r 选取[0,1]之间的随机数。 变异概率:使变异概率随着遗传代数的增长,逐渐增加,目的是进化后期注重变异运算,局部搜索能力强。 005.02sin *045.0+?? ? ??*=πK T P m (8) 其中,T 是进化代数,K 是总进化次数。 8. 终止条件判断。若已达到设定的最大遗传代数,则迭代终止,输出最优解;若不满足终止条件,则返回第4步,进行迭代寻优过程。

遗传算法参数调整实验报告(精)

遗传算法参数调整实验报告 算法设计: 编码方案:遍历序列 适应度函数:遍历路程 遗传算子设计: 选择算子:精英保留+轮盘赌 交叉算子:Pxover ,顺序交叉、双亲双子, 变异算子:Pmutation ,随机选择序列中一个染色体(城市)与其相邻染色体交换 首先,我们改编了我们的程序,将主函数嵌套在多层迭代之内,从外到内依此为: 过程中,我们的程序将记录每一次运行时种群逐代进化(收敛)的情况,并另外记录总体测试结果。 测试环境: AMD Athlon64 3000+ (Overclock to 2.4GHz)

目标:寻求最优Px 、Pm 组合 方式:popsize = 50 maxgen = 500 \ 10000 \ 15000 Px = 0.1~0.9(0.05) Pm = 0.01~0.1(0.01) count = 50 测试情况:运行近2万次,时间约30小时,产生数据文件总共5.8GB 测试结果:Px, Pm 对收敛结果的影响,用灰度表示结果适应度,黑色为适应度最低 结论:Px = 0.1 ,Pm = 0.01为最优,并刷新最优结果19912(之前以为是20310),但20000次测试中最优解只出现4次,程序需要改进。 Maxgen = 5000 Pm=0.01 Px = 0.1 Maxgen = 10000 0.1 0.9 Px = 0.1 0.9 0.1

目标:改进程序,再寻求最优参数 方式:1、改进变异函数,只保留积极变异; 2、扩大测试范围,增大参数步进 popsize = 100 \ 200 \ 400 \ 800 maxgen = 10000 Px = 0.1 \ 0.5 \ 0.9 Pm = 0.01 \ 0.04 \ 0.07 \ 0.1 count = 30 测试情况:运行1200次,时间8小时,产生数据文件600MB 测试结果: 结论:Px = 0.1,Pm = 0.01仍为最优,收敛情况大有改善,10000代基本收敛到22000附近,并多次达到最优解19912。变异函数的修改加快了整体收敛速度。 但是收敛情况对Pm并不敏感。另外,单个种群在遗传过程中收敛速度的统计,将是下一步的目标。

遗传算法的流程图

一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.测试数据 输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 二概要设计 1.程序流程图 2.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual

{ char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 4.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在; 显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。 (4)染色体交叉函数crossoveroperator() 这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色

遗传算法综述

3D S可以方便灵活地实现对动画帧中的节点、平面、边界、颜色和轨迹的控制,同时对于物体变形测试,轴心点设置以及段信息的获取和设置也能方便准确地进行。而keyscri p t语言的优点体现在于其精确的数值计算,它可以对大量的复杂无序的动作进行随机计算,节省了制作时间。利用keyscri p t编辑器还能方便地进行语法检查并能直接执行无语法错误的keyscri p t程序。3 内存管理方式 3D S使用了独特的Pharlap的虚拟内存管理技术(VMM 386),该技术使3D—Studi o能使用比物理内存RAM更大的空间。这种内存管理方式与W indow2 s T M的内存管理方式不同,因此一般不在W indow s T M中使用3D S,若要在W indow s T M中使用,则必须在W in2 dow s T M的system1in i中的[386Enh]段加入device= Pharlap1386,使W indow s T M可以使用Pharlap的内存管理方式。这种内存管理方式也有一些不足,如内存一旦被3D S使用将不被释放。 4 硬件环境 使用3D—Studi o410的最低配制要求是386(带协处理器)的主机,至少8兆的内存,20兆以上的硬盘空间,DO S313以上的操作系统。由于3D S中的许多图形渲染时都必须使用256色,且观看3D S自带的一些图片也必须在256色的模式下进行,所以需要SV GA或TV GA的显示器。输入系统除了键盘外还必须配有鼠标,也可选配数字化仪。由于3D S在进行图形渲染需要大容量的内存,同时还需要CPU进行大量的浮点运算,因此当CPU为Pen tium T M、内存为16兆以上,并使用高性能的显示卡时,3D S的动画制作功能才能得到完美体现。由于ln tel公司生产的CPU兼容的Cyrix、AM D等公司生产的CPU浮点运算能力较差,因此CPU首选还是ln tel公司的产品。外设还可选配数字化仪等设备,对于需要直接输出到磁带上,并使用电视进行播发的动画,则可选用专业用户级以上的逐帧录向设备。 总之,3D S是一个庞大的图形工作平台,学会使用它的各种命令,发挥软件的强大功能绘制出优秀的动画和图象,还需要有很多技巧。随着人们对3D S认识加深,以它为平台开发的动画产品必将更加丰富多彩。 参考文献 1 [美]S1D1E lli o t,P1L1M iller,G1G1Pyro s著1黄心渊等译《3D—Studi o技术精粹》1北京:清华大学出版社。 19951 2 黄心渊 左正兴编著1《3D—Studi o(310—410)技术与应用》1北京:清华大学出版社,19961 收稿日期:1996年11月18日 遗传算法综述 艾丽蓉 何华灿 (西北工业大学计算机系 西安710072) 摘 要 本文从计算智能与进化计算谈起,论述了遗传算法产生的思想及背景,遗传算法的应用与研究现状,以及遗传算法研究的基本内容与问题,最后对GA与传统搜索算法做一比较,并概述了GA在并行处理应用中的潜在优势。 关键词 计算智能 进化计算 遗传算法(GA) 0 序言 长久以来,人们一谈到人工智能就马上想到逻辑、规则、推理,而一谈到计算就联想到矩阵运算、解微分方程,似乎智能和计算是两股道上跑的车。人工智能在走过几十年的曲折道路之后,人们经过认真反思,不断探索新的研究途径,于是一个新的研究方向——计算智能应运而生。 研究思维模拟主要的道路有四条:基于心理学的符号处理方法,基于社会学层次型的智能体方法,基于生物进化的进化计算与自适应方法,以及基于生理学的人工神经网络方法。目前聚集在计算智能大旗下的主要是后两个学派的学者(加上从事模糊计算和混沌计算等方面的学者)。实际上,只要在计算机上,模拟人类思想,不管用什么方法,其本质的基础还是二进制数字计算,在当前符号处理主宰人工智能的情况下,更应强调遗传算法等以数字计算为基础的方法对推动人工智能发展有着特殊的作用。 计算技术的飞速发展使大规模的现实模拟成为可能,而针对社会和生物现象的模拟,对人类认识自身及其环境具有重大意义,进化是其中最为诱人的领域之一。人的智能是从哪里来的?归根结底是从生物进化中得来的,反映在遗传基因中,脑的结构变化也是通过基

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

遗传算法的参数整定报告

基于遗传算法的PID控制器参数整定报告 一、遗传算法。 遗传算法(GAs)是基于自然界生物进化机制的搜索寻优技术。用遗传算法来整定PID参数,可以提高优化性能,对控制系统有良好的控制精度、动态性能和鲁棒性。 一般的,Gas包括三个基本要素:复制、交叉和突变。 二、PID Optimal-Tuning PID控制:对偏差信号e(t)进行比例、积分和微分运算变换后形成的一种控制规律。 (1) 可调参数:比例度δ(P)、积分时间Ti(I)、微分时间Td(D)。 通常,PID控制准则可以写成下面传递函数的形式: ) 1( ) (s T T s K s G d i p + + =(2) Kp、Ti和Td分别是比例放大率、积分时间常量和微分时间常量。 1)比例控制(P):是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误 差(Steady state error),比例度减小,稳态误差减小; 2)积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。 3)微分(D)控制:在微分控制中,控制器的输出与输入误差信号()()()()? ? ? ? ? ? + + =?t e dt d T d e T t e K t u d t i p0 1 τ τ

的微分(即误差的变化率)成正比关系。 文中,性能指标是误差平方的时间加权积分,表示为: ),,1,0(,0 2n k dt e t J i t k ==? (3) 其中n 是非负整数,i t 是积分周期。此外,其他标准项如超调量、上升时间和稳定时间也被一个合成性能指标选择: ))(1(s s r r c t c t c os J ++= (4) s r os t t 、、分别代表超调量、上升时间和稳定时间。s r c 、c 两个系数有用户定义或决定。预期的性能指标的最下化可以认为是小的超调量、短的上升时间和稳定时间。 三个PID 参数的编码方式如下: 10101011:S 1010100011100111 p K i K d K p K 、i K 和d K 都是八位二进制字符格式。 自适应函数的选择关系到性能指标,如: 101)(J J F F == (5) 实际上,)(J F 可以是任何一个能切实表达F 和J 关系的非线性函数。 遗传操作是模拟生物基因遗传的操作,从优化搜索的角度而言,遗传操作可使问题的解一代一代地优化,并逼近最优解,主要包括三个遗传算子:选择、交叉和变异。关于他们的具体方法这里不在赘述。 三、 计算机实现 作者编程使用的事TURBO C 。程序包括两个部分:一个是仿真PID 控制系统的闭环阶跃响应;另一个是实施对一代所有成员的遗传算法的仿真,这里遗传算法将一代作为一个整体。在第一代生物的二进制代码随机产生之后,这个过程重复直至迭代次数达到预选的次数。 步长、PID 参数X 围、性能指标、自适应函数和方法得时间延迟都是从一个文件中读取。而遗传算法的的参数,诸如世代数、交叉概率、变异概率、选择概率等通过菜单选择。 整个闭环系统仿真的完成可以用四阶龙格库塔法或直接时域计算。在程序中,复制的实现是通过轮盘赌博法的线性搜索,面积加权于上一代成员的适应值。交叉发生在每一对复制产生的成员。 交叉操作是将一个随机产生的一个在0到1之间数与交叉概率比较决定是否需要交叉。如果需要交叉,则在1到47之间随机产生一个交叉位置代码。变异,对新一代所有成员都随机产生一个0到1之间的数与变异概率比较,然后再决定是否改变代码的一位。同理,反转也是这样判定和操作的。另一需要说明的事,两个反转位置代码是在1~48之间随机选择的。同样,

遗传算法综述

遗传算法综述 太原理工大学刘晶学号:s2******* 摘要:遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它能在搜索过程中自动获得和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优的方案。遗传算法作为一种实用、高效、鲁棒性强的优化技术,有着广泛的应用前景。 关键词:遗传算法数学模型优点流程 一,概述。遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。美国Michigan 大学的Holland 教授及其学生受到生物模拟技术的启发,创造了一种基于生物遗传和进化机制的适应于复杂系统优化的自适应概率优化技术———遗传算法。 二,基本遗传算法的数学模型。基本遗传算法可表示为:SGA=(C,E,P0,M,Φ,Γ,Ψ,T)式中,C为个体的编码方法;E 为个体适应度评价函数;P0 为初始种群;M为种群大小;Φ为选择算子;Γ为交叉算子;Ψ为变异算子;T为遗传运算终止条件。 三,遗传算法的优点。 3.1 对可行解的广泛性表示。遗传算法的处理对象不是参数本身,而是针对那些通过参数集进行编码得到的基因个体。次编码操作

使得遗传算法可以直接对结构对象进行操作。 (1)通过对连接矩阵的操作,遗传算法可用来对神经网络或自动机的结构或参数加以优化。 (2)通过对集合的操作,遗传算法可实现对规则集合和知识库的精炼而达到高质量的机器学习目的。 (3)通过对树结构的操作,用遗传算法可得到用于分类的最佳决策树。 (4)通过对任务序列的操作,遗传算法可用于任务规划,而通过对操作序列的处理,可自动构造的顺序控制系统。 3.2 群体搜索特性。许多传统的搜索方法都是单点搜索,这种点对点的搜索方法,对于多峰分布的搜索空间常常会陷于局部的某个单峰的极值点,相反,遗传算法采用的是同时处理群体中多个个体的方法。 3.3 不需要辅助信息。遗传算法仅用适应度函数的数值来评估基因个体,并在此基础上进行遗传操作。更重要的是,遗传算法的适应度函数不仅不受连续可微的约束,而且某定义域可以任意设定。对适应度函数的唯一要求是,编码必须与可行解空间对应,不能有死码。由于限制条件的缩小,使得遗传算法的应用范围大大扩展。 3.4 内在启发式随机搜索特性。遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜索方向。概率仅仅是作为一种工具来引导其搜索过程朝着搜索空间的更优化的解区域移动的。虽然看起来它是一种盲目搜索方法,实际上它有明确的搜索方向,具有内

遗传算法

遗传算法发展前景概况 (华北电力大学电气与电子工程学院,北京102206) 摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。 关键词:遗传算法; 遗传算子;进化计算;编码 GENERAL GENETIC ALGORITHM DEVELOPMENT PROSPECT (North China Electric Power University Electrical And Electronic Engineering Institute,Beijing102206) ABSTRACT: Genetic algorithm is a kind of natural selection and based on biological evolution of genetic mechanism, group suitable for complex system optimization adaptive probability optimization technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own. KEY WORD: Genetic algorithm; Genetic operator; Evolutionary computation; coding 1.引言 现在,遗传算法正在迅速发展,遗传算法与其很强的解决问题能力和适合于复杂系统的自适应优化技术渗透到研究和工业工程领域,在电力系统,系统辨识,最优控制,模式识别等领域有了很广泛的应用,取得了很好的效果。 2.遗传算法基本思想 遗传算法是建立在自然选择和群体遗传学基础上的随机,迭代和进化,具有广泛适用性的搜索方法,所有的自然种类都是适应环境而生存,这一自然适用性是遗传算法的主要思想。 遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部基因决定了个体的外部表现。因此,在一开始就要实现外部表现到内部基因的映射,即编码工作,通常采用二进制码。初始种群产生之后,按照适者生存和优胜劣汰的原则,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集和种群,这种过程将导致种群像自然进化那样产生比前代更适应于环境的后代种群,末代种群中的最有个体经过解码,可以作为问题近似最优解。 遗传算法采纳了自然进化模型,如选择,交叉,变异等,计算开始时,种群随机初始化产生一定数目的N个个体,并计算每个个体的适应度函数,如果不满足优化准则,就开始新一代的计算。为了产生下一代,按照适应度选择个体父代进行基因重组二产生子代。所有的子代按一定的概率进行变异,子代取代父代构成新一代,然后重新计算子代的适应度。这一过程循环执行,直到满足优化准则为止。 3.遗传算法基本操作

遗 传 算 法 详 解 ( 含 M A T L A B 代 码 )

GATBX遗传算法工具箱函数及实例讲解 基本原理: 遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概 率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。

Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 运用遗传算法工具箱: 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。 以GATBX为例,运用GATBX时,要将GATBX解压到Matlab下的toolbox文件夹里,同时,set path将GATBX文件夹加入到路径当中。 这块内容主要包括两方面工作:1、将模型用程序写出来(.M文件),即目标函数,若目标函数非负,即可直接将目标函数作为适应度函数。2、设置遗传算法的运行参数。包括:种群规模、变量个数、区域描述器、交叉概率、变异概率以及遗传运算的终止进化代数等等。

最新最全的遗传算法工具箱及说明

最新最全的遗传算法工具箱Gaot_v5及说明 Gaot_v5下载地址:https://www.360docs.net/doc/8e5112504.html,/mirage/GAToolBox/gaot/gaotv5.zip 添加遗传算法路径: 1、 matlab的file下面的set path把它加上,把路径加进去后在 2、 file→Preferences→General的Toolbox Path Caching里点击update Toolbox Path Cache更新一下,就OK了

遗传算法工具箱Gaot_v5包括许多实用的函数,各种算子函数,各种类型的选择方式,交叉、变异方式。这些函数按照功能可以分成以下几类:

主程序 ga.m提供了 GAOT 与外部的接口。它的函数格式如下: [x endPop bPop traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,termFN,termOps, selectFn,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) 输出参数及其定义如表 1 所示。输入参数及其定义如表 2 所示。 表1 ga.m的输出参数 输出参数 定义 x 求得的最好的解,包括染色体和适应度 endPop 最后一代染色体(可选择的) bPop 最好染色体的轨迹(可选择的) traceInfo 每一代染色体中最好的个体和平均适应度(可选择的) 表2 ga.m的输入参数 表3 GAOT核心函数及其它函数

核心函数: (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数 【输出参数】 pop--生成的初始种群 【输入参数】 num--种群中的个体数目 bounds--代表变量的上下界的矩阵 eevalFN--适应度函数 eevalOps--传递给适应度函数的参数 options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如 precision--变量进行二进制编码时指定的精度 F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度) (2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,... termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数 【输出参数】 x--求得的最优解 endPop--最终得到的种群 bPop--最优种群的一个搜索轨迹 【输入参数】

遗传算法综述

遗传算法综述 遗传算法是计算数学中用于解决最优化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。 在阅读了一些相关资料后,我整理出这篇综述,将通过五个部分来介绍遗传算法以及其在计算机科学领域的相关应用、 一、起源和发展分支 尝试性地将生物进化过程在计算机中模拟并用于优化问题求解开始于20世纪50年代末,其目的是将生物进化的思想引入许多工程问题中而成为一种优化工具,这些开拓性的研究工作形成了遗传算法的雏形。但当时的研究进展缓慢,收效甚微。原因是由于缺少一种通用的编码方式,人们只有通过变异才能改变基因结构,而无法使用交叉,因而增加了迭代次数。同时算法本身需要较大的计算量,当时的计算机速度便无法满足要求,因而限制了这一仿生过程技术的迅速发展。20世纪60年代中期,Holland在Fraser和Bremermann等人研究成果的基础上提出了位串编码技术,这种编码技术同时适用于变异操作和交叉操作。 遗传算法的真正产生源于20世纪60年代末到70年代初,美国Michigan大学的Holland教授在设计人工适应系统中开创性地使用了一种基于自然演化原理的搜索机制,并于1975年出版了著名的专著“Adaptation in Natural and Artificial Systems”,这些有关遗传算法的基础理论为遗传算法的发展和完善奠定了的基础。同时,Holland教授的学生De Jong首次将遗传算法应用于函数优化中,设计了遗传算法执行策略和性能评价指标,他挑选的5个专门用于遗传算法数值实验的函数至今仍被频繁使用,而他提出的在线(on-line)和离线(off-line)指

遗传算法概述

第1期作者简介:李红梅(1978-),女,湖南湘潭人,硕士,广东白云学院讲师,研究方向为演化计算。 1遗传算法的发展史 遗传算法(Genetic Algorithms )研究的历史比较短,20世纪 60年代末期到70年代初期,主要由美国家Michigan 大学的John Holland 与其同事、学生们研究形成了一个较完整的理论 和方法,遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。我国对于GA 的研究起步较晚,不过从20世纪90年代以来一直处于不断上升中。 2遗传算法的基本思想 遗传算法是从代表问题可能潜在解集的一个种群(popu- lation )开始的,而一个种群则由经过基因(gene )编码(coding ) 的一定数目的个体(individual )组成。每个个体实际上是染色体(chromosome )带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现是某种基因组合,它决定了个体的形状的外部表现。初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation )演化产生出越来越好的近似解。在每一代中,根据问题域中个体的适应度(fitness )、大小挑选(selection )个体,借助于自然遗传学的遗传算子(genetic operators )进行组合交叉(crossover )和变异(mutation ),产生出代 表新的解集的种群。这个过程将导致后生代种群比前代更加适应环境,末代种群中的最优个体经过解码(decoding ),可以作为问题近似最优解。 3遗传算法的一般流程 (1)随机产生一定数目的初始种群,每个个体表示为染色 体的基因编码; (2)计算每个个体的适应度,并判断是否符合优化准则。若符合,输出最佳个体及其代表的最优解并结束计算,否则转向第3步; (3)依据适应度选择再生个体,适应度高的个体被选中的概率高,适应度低的个体可能被淘汰; (4)执行交叉和变异操作,生成新的个体;(5)得到新一代的种群,返回到第2步。 4遗传算法的特点 传统的优化方法主要有三种:枚举法、启发式算法和搜索 算法: (1)枚举法 可行解集合内的所有可行解,以求出精确最 优解。对于连续函数,该方法要求先对其进行离散化处理,这样就可能因离散处理而永远达不到最优解。此外,当枚举空间比较大时,该方法的求解效率比较低,有时甚至在目前先进计算机工具上无法求解。 (2)启发式算法 寻求一种能产生可行解的启发式规则, 以找到一个最优解或近似最优解。该方法的求解效率比较高,但对每一个需求解的问题必须找出其特有的启发式规则。这个启发式规则一般无通用性,不适合于其它问题。 (3)搜索算法 寻求一种搜索算法,该算法在可行解集合 的一个子集内进行搜索操作,以找到问题的最优解或者近似最优解。该方法虽然保证不了一定能够得到问题的最优解,但若适当地利用一些启发知识,就可在近似解的质量和效率上达到一种较好的平衡。 遗传算法不同于传统的搜索和优化方法。主要区别在于: ①遗传算法直接处理问题参数的适当编码而不是处理参数集 本身。②遗传算法按并行方式搜索一个种群数目的点,而不是 遗传算法概述 李红梅 (广东白云学院计算机系,广东广州510450) 摘要:遗传算法是一种全局优化的随机搜索算法。它是解决复杂优化问题的有力工具。在工程设计、演化硬件电路 设计以及人工智能等方面应用前景广阔。系统地介绍了遗传算法的发展史、基本思想、特点、主要应用领域等相关方 面。 关键词:遗传算法;搜索;进化;最优解;种群中图分类号:TP312 文献标识码:A 文章编号:1672-7800(2009)01-0067-02 第8卷第1期2009年1月 Vol.8No.1Jan.2009 软件导刊 Software Guide

遗传算法概述

第一章 遗传算法概述 2.1 遗传算法的原理 遗传算法是模拟生物在自然环境中的遗传和进化过程而形成的一种概率搜索算法。遗传算法是通过模拟生物在自然界中的进化过程而形成的一种优化算法。它的基本过程是:先随机生成规模为m 的初始群体,对连续优化问题即为n R 中的m 个点},,,{,},,,,{21112111m n m m m n x x x x x x x x ==的集合, },,,{21k sn k s k s x x x 称为个体或者染色体,通过对该群体使用遗传操作(包括选择、 交叉、变异遗传算子),得到m 个新的个体,这称作是群体的一代进化,相当于通常优化算法的一次迭代。不断重复这一过程,可看作是群体的逐代演化,直到得到满足给出条件的问题解。 可以看出,遗传算法的关键是进化过程中使用的遗传操作即选择、交叉和变异等算子,这些算子决定了下一代个体的具体位置。 选择策略对算法性能的影响有举足轻重的作用。常用的是轮盘选择和精英选择。 a. 轮盘选择(roulette wheel selection ) 选择的基本依据是个体的适应值,对于最小化问题,个体适应值取为)()(x f K x f -=',其中K 为一足够大的正数。定义第i 个体的选择概率为 ∑=''=n i i i i x f x f p 1)() ( (3) 其意义是个体适应值在群体总适应值中所占的比例。生成一个[0,1]内的随机数r ,若i i p p p r p p p +++≤<+++- 21110,假设00=p ,则选择个体i 。 b. 精英选择(elitist selection ) 当下一代群体的最佳个体适应值小于当前群体最佳个体的适应值,则将当前群体最佳个体或者适应值大于下一代最佳个体适应值的多个个体直接复制到下一代,随机替代或替代最差的下一代群体中的相应数量的个体。 交叉与变异算子的选取与编码方式有关,最初Holland[5] 提出的遗传算法是采用二进制编码来表现个体,后来发现对连续优化问题采用浮点编码可以达到更好的效果,因此越来越多地使用浮点编码,下述的交叉、变异算子针对浮点编码。

matlab遗传算法工具箱函数及实例讲解

matlab遗传算法工具箱函数及实例讲解 最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。还好用遗传算法的工箱予以实现了,期间也遇到了许多问题。借此与大家分享一下。 首先,我们要熟悉遗传算法的基本原理与运算流程。 基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化进行不断演化,直到满足期望的终止条件。 运算流程: Step 1:对遗传算法的运行参数进行赋值。参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。 Step 2:建立区域描述器。根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。 Step 3:在Step 2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。 Step 4:执行比例选择算子进行选择操作。 Step 5:按交叉概率对交叉算子执行交叉操作。 Step 6:按变异概率执行离散变异操作。 Step 7:计算Step 6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。 Step 8:判断是否满足遗传运算的终止进化代数,不满足则返回Step 4,满足则输出运算结果。 其次,运用遗传算法工具箱。 运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库。目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATBX、GAOT以及Math Works公司推出的GADS。实际上,GADS 就是大家所看到的Matlab中自带的工具箱。我在网上看到有问为什么遗传算法函数不能调用的问题,其实,主要就是因为用的工具箱不同。因为,有些人用的是GATBX带有的函数,但MATLAB自带的遗传算法工具箱是GADS,GADS当然没有GATBX里的函数,因此运行程序时会报错,当你用MATLAB来编写遗传算法代码时,要根据你所安装的工具箱来编写代码。

相关文档
最新文档