内模控制与预测控制

内模控制与预测控制
内模控制与预测控制

预测PID 控制算法的基本原理及研究现状

预测PID 控制算法的基本原理及研究现状 预测PID 控制算法的基本原理及研究现状 关键词:模型预测控制预测PID 控制算法 在现今全球竞争日益激烈的市场环境下,通过先进控制获取经济效益来提高企业竞争力,已成为一种趋势。据有关文献报道(薛美盛等, 2002),各种不同石 油化工装置实施先进控制后,其每年净增效益如表1 所示。虽然各公司所报出的 年效益有所不同,但其数据出入不大,而实施先进控制所需成本只占其产生效益 的很小一部分比例。 国外发达国家经验表明(孙德敏等, 2003):采用先进控制理论和过程优化将 增加30%的投资,但可提高产品层次和质量,降低能源和原材料消耗,从而增加 85%的效益,如图1 所示。投资70%的资金购置DCS,换来的是15%的经济效益; 再增加30%的投资,可以换来85%的经济效益。其中增加的8%用于传统的先进 控制(TAC),得到的经济效益是8%;增加的13%用于预测控制(DMC),得到的经 济效益为37%;增加的9%用于在线闭环优化(CLRTO),换来的经济效益是40%! 因此,实施先进控制与优化是不用投资的技术改造。 然而,控制理论本身也面临着一些问题和困难,需要不断改进和提高。尽管 大量新的控制算法不断涌现,但常规的PID 及改进的PID 控制算法仍广泛应用于 工业控制领域。一些先进控制算法专用性强、适应性差、鲁棒性能差、算法复杂、 实施和维护成本高,这些都限制了它们的推广和发展。据日本控制技术委员会 (SICE)对110 家企业和150 位控制工程师调查显示(Huruo, 1998),近20 年来,工 业界迫切需要解决的控制难题分别是:大滞后、强耦合、时变、严重干扰以及非 线性对象的控制,这些问题始终都没有得到切实有效的解决。部分先进控制理论 理论性太强,实际应用需做大量的改进和简化,使先进控制具备鲁棒性是当前重 要的发展方向。 在先进控制技术中,最有应用前途的是模型预测控制,该技术经历了4 代发 展,已非常完善和成熟了。第一代模型预测技术以DMC(Cutler, 1979) 和 IDCOM(Richalet, 1978)两种商业产品为标志;QDMC(Garcia, 1986)标志着第二代 模型预测技术;IDCOM-M(Froisy, 1990)、SMCA 和SMOC(Yous, 1991)代表着第 三代模型预测技术的产生;第四代模型预测技术就是人们熟悉的DMC-plus 和 RMPCT,分别是Aspen 和Honeywell 公司的最新商业化软件。现今模型预测控制 技术不仅能处理硬、软约束、病态排除、多目标优化,而且能通过Kalman 滤波 器消除不可测干扰和噪声的影响(Lundstr?m, 1995),同时采用鲁棒控制技术和先 进的辨识技术处理模型的不确定性,大大增强了模型预测技术的适应能力。 正因为模型预测控制的强大功能,它是一些具有非最小相位、积分、不稳定、 多变量强耦合(包括方系统、胖系统、瘦系统)等特殊动态特性过程的理想控制工 具。 据统计,2002 年全世界共成功实施4600 例模型预测控制算法(Qina, 2003), 是1997 年的两倍多,短短5 年时间比过去近20 年应用的还多,可见其发展速度 之快。因此,它被誉为20 世纪80 年代“最有前途的先进控制算法”,一点也不过 分。 像所有先进控制算法一样,模型预测控制也有着自身的缺点: (1)预测控制算法比较复杂,计算量比较大。正因为复杂,在算法实现上要考 虑多方面因素,既要保证算法简洁,又要使算法具有足够的可靠性和稳定性,同

基于内模原理的PID控制器参数整定仿真实验

基于内模原理的PID 控制器参数整定仿真实验 1. 内模控制 内模控制器(IMC)就是内部模型控制器(Internal model controller)的简称,由控制器与滤波器两部分组成,两者对系统的作用相对独立,前者影响系统的响应性能,后者影响系统的鲁棒性。它就是一种实用性很强的控制方法,其主要特点就是结构简单、设计直观简便,在线调节参数少,且调整方针明确,调整容易。特别就是对于鲁棒及抗扰性的改善与大时滞系统的控制,效果尤为显著。因此自从其产生以来,不仅在慢响应的过程控制中获得了大量应用,在快响应的电机控制中也能取得了比PID 更为优越的效果。IMC 设计简单、跟踪性能好、鲁棒性强,能消除不可测干扰的影响,一直为控制界所重视内模控制( Internal Model Control IMC ) 就是一种基于过程数学模型进行控制器设计的新型控制策略。其设计简单、控制性能良好, 易于在线分析。它不仅就是一种实用的先进控制算法, 而且就是研究预测控制等基于模型的控制策略的重要理论基础, 也就是提高常规控制系统设计水平的有力工具。 值得注意的就是,目前已经证明,已成功应用于大量工业过程的各类预测控制算法本质上都属于IMC 类,在其等效的IMC 结构中特殊之处只就是其给定输入采用了未来的超前值(预检控制系统),这不仅可以从结构上说明预测控制为何具有良好的性能,而且为其进一步的深入分析与改进提供了有力的工具。 内模控制的结构框图如图1: 图1-1 内模控制的结构图 其中,IMC G —内模控制器;p G —实际被控过程对象;m G —被控过程的数学模型;

d G —扰动通道传递函数。 (1)当0)(,0)(≠=s G s R d 时, 假若模型准确,即)()(s G s G m p =,由图可 知,)]()(1)[()]()(1)[()(IMC IMC s G s G s G s G s G s G s Y m d d -=-=p , 假若“模型可倒”,即)(1s G m 可以实现,则可令) (1)(IMC s G s G m =,可得0)(=s Y ,不管)(s G d 如何变化,对)(s Y 的影响为零。表明控制器就是克服外界扰动的理想控制器。 (2)当0)(,0)(≠=s R s G d 时, 假若模型准确,即)()(s G s G m p =,又因为0)(=s D ,则0)(?=s D ,有 )()()() (1)()()()(IMC s R s R s G s G s R s G s G s Y m ===p p , )()]()(1[)()()()(IMC IMC s G s G s G s R s G s G s Y d p p -+=。 当模型没有误差,且没有外界扰动时, 其反馈信号0)()()] ()([m p =+-s D s U s G s G , 表明控制器就是)(s Y 跟踪)(s R 变化的理想控制器 2. 基于IMC 的控制器的设计 2、1 因式分解过程模型 )(*)()(S G S G S Gm m -m += 式中,)(S G +m 包含了所有的纯滞后与右半平面的零点,并规定其静态增益1。)(S G m -为过程模型的最小相位部分。 2、2 设计IMC 控制器 )(*) (1)(IMC s F s G s G -=m 这里F(S)为IMC 滤波器。选择滤波器的形式,以保证内模控制器为真分式。对

内模控制

内模控制 内模控制是一种基于过程数学模型进行控制器设计的新型控制策略。它与史密斯预估控制很相似,有一个被称为内部模型的过程模型设计简单、控制性能好、鲁棒性强,并且便于系统分析,控制器设计可由过程模型直接求取。 内模控制方法由Garcia 和Morari 于1982年首先正式提出。可以和许多其它控制方式相结合,如内模控制与神经网络、内模控制与模糊控制、内模控制和自适应控制、内模控制和最优控制、预测控制的结合使内模控制不断得到改进并广泛应用于工程实践中,取得了良好的效果。 内模控制结构: 内模控制器的设计思路是从理想控制器出发,然后考虑了某些实际存在的约束,再回到实际控制器的。 讨论两种不同输入情况下,系统的输出情况: (1)当 0 )(, 0)(≠=s D s R 假若模型准确,即 由图可见 ) ()(?s G s G p P =)()(?s D s D =)](?)(1)[()]()(1)[()(IMC IMC s G s G s D s G s G s D s Y p p -=-= 可以实现 )(?1 s p )(=s Y 可得 不管 如何变化,对 的影响为零。表明控制器是克服外界扰动的理想控制器。 则令 )(s D )(s Y ——实际对象; ——对象模型; ——给定值; ——系统输出; ——在控制对象输出上叠加的扰动。 )(s G p ) (?s G p )(s R )(s Y ) (s D

(2)当 时: 0)(,0)(≠=s R s D )()(?s G s G p P =假若模型准确,即 ?表明控制器是 跟踪 变化的理想控制器。 )(s R )(s Y 当模型没有误差 )()]()(1[)()()()(IMC IMC s D s G s G s R s G s G s Y p p -+=其反馈信号 0)()()](?)([)(?p p =+-=s D s U s G s G s D ——内模控制系统具有开环结构。 内模控制器的设计 步骤1 因式分解过程模型 - p p p G G G ???+ =式中, 包含了所有的纯滞后和右半平面的零点,并规定其静态增益为 1。 为过程模型的最小相位部分。 + p G ?-p G ?步骤2 设计控制器 这里 f 为IMC 滤波器。选择滤波器的形式,以保证内模控制器为真 ——整数,选择原则是使 成为有理传递函数。 对于阶跃输入信号,可以确定Ⅰ型IMC 滤波器的形式 r s T s f )1(1 )(f += 对于斜坡输入信号,可以确定Ⅱ型IMC 滤波器的形式为 r s T s rT s f )1(1 )(f f ++= f T ——滤波器时间常数。 r )(IMC s G 因此,假设模型没有误差,可得 )()](?)(1[)()()(?)(s D s G s f s R s f s G s Y + +-+=p p )()(? ) ()(s f s G s R s Y +=p 设 时 )()(? ) ()(s f s G s R s Y +=p 0)(=s D 表明:滤波器 与闭环性能有非常直接的关系。滤波器中的时间常数 是个可调整的参数。时间常数越小, 对 的跟踪滞后越小。 )(s f f T )(s Y )(s R 事实上,滤波器在内模控制中还有另一重要作用,即利用它可以调整系统 的鲁棒性。其规律是,时间常数 越大,系统鲁棒性越好。 f T

预测控制的现状

预测控制的现状和发展前景 预测控制一经问世,即在复杂工业过程中得到成功应用,显示出强大的生命力,它的应用领域也已扩展到诸如化工、石油、电力、冶金、机械、国防、轻工等各工业部门。它的成功主要是由于它突破了传统控制思想的约束.采用了预测模型、滚动优化、反馈校正和多步预测等新的控制策赂,获取了更多的系统运行信息,因而使控制效果和鲁棒性得以提高。 预测控制的理论研究工作也取得了进展。比如采用内模结构的分析方法,为研究预测控制的运行机理、动静态待性、稳定性和鲁棒性提供了方便。运用内模结构的分析方法还可找出各类预测控制算法的共性,建立起它们的统一格式,便于对预测控制的进一步理解和研究。此外,将预测控制与自校正技术结合起来,可以提高预测模型的精度;减少预测模型输出误差,提高控制效果。但现有的理论研究仍远远落后于工业应用实践。从目前发表的文献来看,理论分析研究大多集中在单变量、线性化模型等基本算法上:而成功的工业应用实践又大多是复杂的多变量亲统;这表明预测控制的理论研究落后于工业生产实际;因此,如何突破现状,解决预测控制中存在的问题,对促进这类富有生命力的新型计算机控制算法的进一步发展有重要意义。下面就目前预测控制中存在的主要问题和发展前景作些探讨。 (1) 进一步开展对预测控制的理论研究,探讨算法中主要设计参数对稳定性、鲁棒性及其他控制性能的影响,给出参数选择的定量结果。 上述问题的主要困难是,由于采用以大范围输出预测为基础的在线滚动优化控制策略,使得预测控制闭环输入、输出方程非常复杂,其主要设计参数都足以蕴含的方式出现在闭环传递函数中,因而难以用解析表示式表示出各参数变化对闭环系统动、静态特性、稳定性和鲁棒性的影响,给出设计参数变化的选择准则。要突破这一点,还要做大量工作,需要探讨新的分析方法。 (2)研究当存在建模误差及干扰时,顶测控制的鲁棒性,并给出定量分析结果。 在设计控制系统时,对于建模误差及干扰等的影响,并未考虑在内。实际上,为了简化问题,常对模型作降阶处理及其他简化,对一些次要的动特性和外部扰动也予以忽略。在这种情况下,系统在运行过程中能否保证稳定,具有所期望的控制性能,并能保证到什么程度,这就是的“近年来所谓的“控制系统的鲁棒性”问题。所谓鲁棒性是指系统的稳定性及其性能指标对结构和参数变化的不敏感性,也就是当内部和外部条件变化时,系统本身仍然能保持性能良好的运行的鲁棒程度。鲁棒性分为稳定鲁棒性和性能鲁棒性两种,稳定鲁棒件说明实际系统偏离设计所用数学模型,出现模型误差时,系统保持闭环稳定性的能力。性能鲁棒性是表示实际系统偏离设计所用数学模型时,系统保持满意性能的能力。虽然性能鲁棒性隐含着稳定的要求,但其着眼点不是集中在稳定性上,至今控制系统统的鲁棒性主要是研究稳定鲁棒性,因为稳定性是—个控制系统首先要保证的条件。 分析预测控制系统的稳定鲁棒性有一定难度。当过程模型采用非最小化的非非参数模型时,如MAC、DMC等,研究闭环系统的稳定鲁棒性涉及到高阶多项式稳定性的判别问题.且可调设计参数又隐含在闭环传递函数中,难于找出它们与稳定鲁棒性的定量关系,增加了分析的难度,当过程模型采用最小化的参数模型时,如GPR,GPP等,虽模型的参数个数少了,可大大降低闭环特征多项式的阶次,有可能定量地分所闭环系统的稳定鲁棒性。但因为采用了最小化的经简化后的低阶模型,没有包含在模型内的未建模动态和于扰等,在某些特定条件下有可能被激发,导致系统无法稳定运行,这其中所遇到的问题与研究自适应控制系统鲁棒性的问题相类似,解决这一问题,尚需进—步做工作。 当前,研究预测控制系统的稳定鲁棒性,除了继续从理论上进行探讨、研究新的分析方

内模控制和Smith预估器

第五节 Smith 预估控制 Smith 预估控制方法是在1957年由Smith 提出来的,其特点是预先估计被控系统在基本扰动下的动态特性,然后用预估器进行补偿,力图使被延迟的被控制量超前反映到控制器中,使控制器提前动作,从而显著地减小系统的超调量,同时加速系统的调节过程。 一、Smith 预估控制原理 预估控制系统原理图如图7-24所示。 (a) 预估控制系统原理框图 (b) Smith 预估器 图7-24 预估控制系统原理图 图中,s e s G τ?)(p 为具有时滞为τ的对象传递函数,其中)(p s G 为被控对象; )(m s G 为内部模型(又称为对象的标称或名义模型),即Smith 预估器的传递函数,()s e s G s G τ??=1)()(p m ; )(s D 为(前馈)内模控制器; )(s d 为扰动; )(s R 为参考输入; )(s Y 为被控对象输出; )(m s Y 为内部模型输出。 由图7-24可知,将Smith 预估器与控制器(或被控对象)二者并联。在理论上可以使被控对象的时间滞后得到完全补偿,控制器的设计就不必再考虑对象的时滞作用了。 现在,系统中假设没有补偿器(预估器) ,则控制器输出与被控量之间的传递函数便为 s e s G s U s Y τ?=)() ()(p (7-50) 上式表明,受到)(s U 控制作用的被控量)(s Y 要经过纯滞后时间τ之后才能反馈到系统控制器输入端。若采用预估补偿器,则控制量)(s U 与反馈到控制器输入端的反馈信号)(s Y ′之间的传递函数乃是两个并联通道之和,即 )()() ()(m p s G e s G s U s Y s +=′?τ (7-51) 为使反馈信号)(s Y ′不发生时间滞后τ,则要求(7-51)式满足 )()())(() ()(p m p s G s G e s s G s U s Y s =+=′?τ (7-52) 于是,就导出了Smith 预估补偿器的传递函数为 () s e s G s G τ??=1)()(p m (7-53) 在系统中设置了Smith 预估器的情况下,可以推导出系统的闭环传递函数为

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

模型预测控制快速求解算法

模型预测控制快速求解算法 模型预测控制(Model Predictive Control,MPC)是一种基于在线计算的控制优化算法,能够统一处理带约束的多参数优化控制问题。当被控对象结构和环境相对复杂时,模型预测控制需选择较大的预测时域和控制时域,因此大大增加了在线求解的计算时间,同时降低了控制效果。从现有的算法来看,模型预测控制通常只适用于采样时间较大、动态过程变化较慢的系统中。因此,研究快速模型预测控制算法具有一定的理论意义和应用价值。 虽然MPC方法为适应当今复杂的工业环境已经发展出各种智能预测控制方法,在工业领域中也得到了一定应用,但是算法的理论分析和实际应用之间仍然存在着一定差距,尤其在多输入多输出系统、非线性特性及参数时变的系统和结果不确定的系统中。预测控制方法发展至今,仍然存在一些问题,具体如下: ①模型难以建立。模型是预测控制方法的基础,因此建立的模型越精确,预测控制效果越好。尽管模型辨识技术已经在预测控制方法的建模过程中得以应用,但是仍无法建立非常精确的系统模型。 ②在线计算过程不够优化。预测控制方法的一大特征是在线优化,即根据系统当前状态、性能指标和约束条件进行在线计算得到当前状态的控制律。在在线优化过程中,当前的优化算法主要有线性规划、二次规划和非线性规划等。在线性系统中,预测控制的在线计算过程大多数采用二次规划方法进行求解,但若被控对象的输入输出个数较多或预测时域较大时,该优化方法的在线计算效率也会无法满足系统快速性需求。而在非线性系统中,在线优化过程通常采用序列二次优化算法,但该方法的在线计算成本相对较高且不能完全保证系统稳定,因此也需要不断改进。 ③误差问题。由于系统建模往往不够精确,且被控系统中往往存在各种干扰,预测控制方法的预测值和实际值之间一定会产生误差。虽然建模误差可以通过补偿进行校正,干扰误差可以通过反馈进行校正,但是当系统更复杂时,上述两种校正结合起来也无法将误差控制在一定范围内。 模型预测控制区别于其它算法的最大特征是处理多变量多约束线性系统的能力,但随着被控对象的输入输出个数的增多,预测控制方法为保证控制输出的精确性,往往会选取较大的预测步长和控制步长,但这样会大大增加在线优化过程的计算量,从而需要更多的计算时间。因此,预测控制方法只能适用于采样周

MATLAB模型预测控制工具箱函数

M A T L A B模型预测控制工具箱函数 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型; ⑤MPC传递函数模型。

在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样 周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod= ss2mod(A,B,C,D) pmod= ss2mod(A,B,C,D,minfo) pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下: 2)MPC状态空间模型转换为通用状态空间模型函数mod2ss()

预测控制

1.1 引言 预测控制是一种基于模型的先进控制技术,它不是某一种统一理论的产物,而是源于工业实践,最大限度地结合了工业实际地要求,并且在实际中取得了许多成功应用的一类新型的计算机控制算法。由于它采用的是多步测试、滚动优化和反馈校正等控制策略,因而控制效果好,适用于控制不易建立精确数字模型且比较复杂的工业生产过程,所以它一出现就受到国内外工程界的重视,并已在石油、化工、电力、冶金、机械等工业部门的控制系统得到了成功的应用。工业生产的过程是复杂的,我们建立起来的模型也是不完善的。就是理论非常复杂的现代控制理论,其控制的效果也往往不尽人意,甚至在某些方面还不及传统的PID控制。70年代,人们除了加强对生产过程的建模、系统辨识、自适应控制等方面的研究外,开始打破传统的控制思想的观念,试图面向工业开发出一种对各种模型要求低、在线计算方便、控制综合效果好的新型算法。这样的背景下,预测控制的一种,也就是模型算法控制(MAC -Model Algorithmic Control)首先在法国的工业控制中得到应用。同时,计算机技术的发展也为算法的实现提供了物质基础。现在比较流行的算法包括有:模型算法控制(MAC)、动态矩阵控制(DMC )、广义预测控制(GPC)、广义预测极点(GPP)控制、内模控制(IMC)、推理控制(IC)等等。随着现代计算机技术的不断发展,人们希望有一个方便使用的软件包来代替复杂的理论分析和数学运算,而Matlab、C、C++等语言很好的满足了我们的要求。 1.2 预测控制的存在问题及发展前景 70年代以来,人们从工业过程的特点出发,寻找对模型精度要求不高,而同样能实现高质量控制性能的方法,以克服理论与应用之间的不协调。预测控制就是在这种背景下发展起来的一种新型控制算法。它最初由Richalet和Cutler等人提出了建立在脉冲响应基础上的模型预测启发控制(Model Predictive Heuristic Control,简称“MPHC”),或称模型算法控制(Model Algorithmic Control,简称“MAC”);Cutler等人提出了建立在阶跃响应基础上的动态矩阵控制(Dynamic Matrix Control,简称“DMC”),是以被控系统的输出时域响应(单位阶跃响应或单位冲激响应)为模型,控制律基于系统输出预测,控制系统性能有较强的鲁棒性,并且方法原理直观简单、易于计算机实现。它的产生并不是理论发展的需要,而是在工业实践过程中独立发展起来,即实践超前于理论它一经问世就在石油、电力和航空等领域中得到十分成功的应用。之后,又延伸到网络、冶金、轻工、机械等部门或系统。80年代初期,人们为了增强自适应控制系统的鲁棒性,在广义最小方差控制的基础上,吸取预测控制中的多步预测、滚动优化思想,以扩大反映过程未来变化趋势的动态信息量,提高自适应控制系统的实用性。这样就出现了便于辨识过程参数模型、带自校正机制、在线修改模型参数的预测控制算法,主要有Clarke等提出的广义预测控制(GPC) Do Keyser的扩展时域预测自适应控制(EPSAC),广义预测极点配置控制(GPP)。Brosilow于1978年提出推理机制(1C), Garcia. Norari 于1982年提出内部模型控制(简称内模控制,IMC ),从模型结构的角度对预测控制作了更深入的研究,分析出预测控制具有内模控制的结构。应用内模控制结构来分析预测控制系统,有利于理解预测控制的运行机理,分析预测控制系统的闭环动静态特性、稳定性和鲁棒性,找出各类预测控制算法的内在联系,导出它们的统一格式,有力推动了预测控制在算法研究、稳定性鲁棒性的理论分析和应用研究上的发展。但实际上,预测控制的理论还是落后于其实际应用的,因此在理论和应用方面,仍需得到进一步的研究和发展。 1.2.1 预测控制存在的问题就目前的研究现状来看,预测控制的研究中主要存在一下问题:(1) 理论分析难以深入。目前的许多理论分析工作都是针对广义预测控制算法进行的。其分析方法与一般的自适应控制的方法类似,都是把主要精力放在寻找一种在线估计方法,然后与预测控制策略相结合,得到的分析结果也与一般的自适应算法结果相似,完全看不出预测控制的特点。所以,要得到对预测控制深入的理论分析结果,首先必须摆脱自适应控制的束缚,针对预测控制本身的机理特点,寻找新的分析方法。另外,对多变量预测控制算法

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

神经网络内模控制

目录 摘要........................................................................................................................................................................I Abstract...................................................................................................................................................................II 1绪论. (1) 1.1选题背景和意义 (1) 1.2国内外同类研究或同类设计的概况综述 (1) 1.3立题依据 (3) 1.4本文所做的主要工作 (3) 2神经网络的基本原理 (5) 2.1人工神经元模型 (5) 2.2神经网络的学习方式和学习规则 (6) 2.3神经网络的特点 (7) 3基于神经网络的内模控制系统 (8) 3.1内模控制的简介 (8) 3.2内模控制的发展现状 (8) 3.3内模控制的基本原理 (8) 3.5线性内模控制器的设计 (9) 3.6神经非线性内模控制 (11) 4基于BP神经网络的内模控制 (14) 4.1BP神经网络 (14) 4.1.1BP神经网络的结构 (14) 4.1.2BP神经网络的算法 (15) 4.2基于BP网络的内模控制仿真研究 (20) 4.1.1BP网络的算法流程 (20) 4.2.2神经网络模型结构和算法 (21) 4.3具体对象的仿真 (22) 4.3.1线性系统的内模控制 (22) 4.3.2非线性系统的内模控制 (24) 参考文献 (28) 致谢.......................................................................................................................................错误!未定义书签。附录A. (30) 附录B (34)

内模控制基本原理及鲁棒无差条件

内模控制基本原理及鲁棒无差条件 一、引言 内模控制(IMC,internal model control) 由Gariac于1982年提出,其产生的背景主要有两个方面:一是为了对当时提出的两种预测控制算法MAC和DMC进行系统分析;二是作为Smiht预估器的一种扩展,使设计更为简便,使鲁棒性及抗扰性大为改善,内模控制技术发展至今,已形成了较为完备的理论体系。 内模控制本质上是一种鲁棒控制,虽作为先进控制理论的一种,但由于其对数学理论的要求不是特别高,结构简单,在线调节参数少,设计直观简便,并对模型不确定性有很强的鲁棒性,故其在工业过程中的应用越来越广泛。 二、内模控制原理 具有反馈滤波的内模控制机构图如图1所示,其中,R(s)是输入,d为扰动,y(s)为输出,Q(s)为控制器,P(s)为实际受控对象,P m(s)为对象模型,e m(s)为反馈信号,F(s)为滤波器。 对象模型:用来预测变量对系统输出的影响,对系统的性能有很大影响。 控制器:通过对控制器的设计是系统能够跟踪输入。 滤波器:将滤波器一如内膜控制器中,在保证控制品质的同时,增强系统的鲁棒性。 在这种控制结构下,若模型准确,无扰动时,e m(s)为0,此时系统为开环 图1 内模控制基本结构图 控制,添加扰动时,扰动对系统的作用将通过反馈通道添加到系统的输入端,从而抑制扰动对系统的影响。当模型失配时,反馈信号包含模型失配的误差和扰动输入,此时可以通过调节滤波器的参数使内模控制系统的鲁棒性和稳定性得到保

证,实验证明,只要扰动为有界输入,无论扰动为多大值,总可以通过调节滤波器的参数来消除扰动。 具有一般结构的内膜控制器(即不添加反馈滤波的结构)具有3个基本性质:对偶稳定性、零稳态偏差特性及理想控制特性。 对偶稳定性:当过程模型与被控对象匹配且无未知干扰时,此时系统为开环,输出y(s)= Q(s)P(s),此时只要满足Q(s)、P(s)均是稳定的,则系统为稳定系统。 零稳态偏差特性:当闭环系统稳定,即使模型失配,只要设计控制器 Q(s)=P m -1(s)(P m -1(s)存在并可实现),系统对阶跃输入信号和恒值扰动无稳态误差(可由下文鲁棒无差的条件推出)。 理想控制器特性:当模型匹配时,只要Q(s)= P m -1(s)(P m -1(s)存在并可实现),系统无稳态误差(此时系统开环,y (s )=R(s),扰动经反馈通道消除)。 但令Q(s)= P m -1(s),在实际系统中也许无法实现,例如模型中包含非最小相位系统零点,或含有滞后环节,或模型P m (s)严格正则时。 三、IMC 系统稳态鲁棒无差条件 对图1系统的传递函数进行等效变换,可以得到图2的传递函数等效结构。 由图2的结构可得系统的输出为 y=d P FQP Q F r P P FQ QP m m -++-+111)(1 (1) 系统的反馈误差为 e m =d P P FQ FQP r P P FQ F QP FQP m m m m ) (11)(1)1(1-+-+-+-+- (2) 图2 IMC 系统的等效结构

MATLAB模型预测控制工具箱函数..

MATLAB模型预测控制工具箱函数 8.2 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 8.2.1 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型;

⑤ MPC 传递函数模型。 在上述5种模型格式中,前两种模型格式是MATLAB 通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC 状态空间模型和MPC 传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC 状态空间模型之间的转换 MPC 状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod ()和mod2ss ()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC 状态空间模型函数ss2mod () 该函数的调用格式为 pmod= ss2mod (A,B,C,D) pmod = ss2mod (A,B,C,D,minfo) pmod = ss2mod (A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D 为通用状态空间矩阵; minfo 为构成MPC 状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆ minfo(1)=dt ,系统采样周期,默认值为1; ◆ minfo(2)=n ,系统阶次,默认值为系统矩阵A 的阶次; ◆ minfo(3)=nu ,受控输入的个数,默认值为系统输入的维数; ◆ minfo(4)=nd ,测量扰的数目,默认值为0; ◆ minfo(5)=nw ,未测量扰动的数目,默认值为0; ◆ minfo(6)=nym ,测量输出的数目,默认值系统输出的维数; ◆ minfo(7)=nyu ,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o ,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod 为系统的MPC 状态空间模型格式。 例8-5 将如下以传递函数表示的系统模型转换为MPC 状态空间模型。 1 2213)(232+++++=s s s s s s G 解:MATLAB 命令如下:

自适应内模控制

控 制 理 论 与 应 用 Control Theory & Applications 收稿日期:-年-月-日;修回日期:-年-月-日. 1 1 文章编号: ******自适应内模控制 摘要:为了降低系统模型参数变化对测试转台控制系统的影响,提出了基于惯量辨识技术的自适应内模 控制方案。首先建立了某型号测试转台数学模型,设计了测试转台内模控制器,在此基础上采用基于扰动转矩观测器的惯量辨识算法来辨识测试转台转动惯量的变化情况,然后通过模糊控制器根据转动惯量的变化自动调整内模控制器的参数,从而确保了控制器的控制性能。仿真和实验结果表明,该控制方案对惯量的变化有着很强的自适应性,提高了测试转台控制系统的抗干扰性能和系统的鲁棒性,取得了较好的控制效果。 关键词:测试转台;参数变化;内模控制;惯量辨识;模糊控制;自适应控制 中图分类号:TP273 文献标识码:A Adaptive internal model control of ******* Abstract :In order to reduce the influence of variation of model parameters to the test turntable, an adaptive IMC based on inertia identification technology is proposed. Firstly, an IMC controller is designed based on the mathematical model of a type of test turntable. Then the inertia identification method using disturbance observer is proposed to identify the inertia variations of the test turntable. And a fuzzy logic controller is introduced to adjust the parameters of the IMC controller online with the inertia variations to ensure the effectiveness of the system. Simulation and experimental results show that the proposed scheme has a strong adaptation to the inertia variations which can enhance the disturbance rejection property and improve the robustness of the system. Key words : test turntable; parameter variation; internal mode control; inertia identification; fuzzy controller; adaptation control 1 引言(Introduction ) 惯性导航与制导技术的发展水平是决定航空、航天和航海技术发展的重要因素,而高精度、高性能的测试转台是惯性导航与制导技术发展的有力保障[1] 。测试转台存在机械摩擦、轴系耦合、轴系垂直度和正交度、台体刚度、负载框架对称性以及其它机械和电气方面非线性因素的影响,目前测试转台大多基于传统的频域设计理论,经典控制很难对系统中的各种非线性因素进行有效的抑制,难以获得较好的控制效果[2] 。 内模控制原理简单,能消除未知干扰,具有跟踪调节性能好、鲁棒性强等优点[3-6] ,在机器人控制、过程控制、机组控制等工业现场 得到了大量应用[7-11] 。在测试转台此类机电系 统中,内模控制也取得了较多的研究成果,文献[12]采用自适应内模控制方法进行遥操作机器人控制,仿真和实验结果证明了其有效性;文献[13]采用内模控制设计了永磁同步电机调速系统,仿真结果表明该控制器能自适应调节控制参数,使电机调速系统具有良好的动态和稳态性能;文献[14]针对扰动设计了内模控制滤波器,取得了较好的效果。 测试转台系统在高、低速运行过程中由于轴系间的耦合会造成转动惯量的变化,同时,为了降低测试成本,测试转台往往用来对多种惯性器件或惯性设备进行性能测试,不同的测试对象也会造成测试转台转动惯量的变化。当系统模型参数变化较大时,如果控制器参数保持不变,会使系统性能变差,甚至导致系统不

相关文档
最新文档